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Let’s say we have a compound experiment (an experiment with
multiple components). If the 1st component has n1 possible outcomes,
the 2nd component has n2 possible outcomes, . . . , and the rth
component has nr possible outcomes, then overall there are
n1n2 . . . nr possibilities for the whole experiment.

Sampling Table
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The sampling table gives the number of possible samples of size k out
of a population of size n, under various assumptions about how the
sample is collected.

Order Matters Not Matter
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Cardano’s Definition of Probability
If the number of outcomes is finite and all outcomes are equally likely,
the probability of an event A happening is:

PCardano(A) =
number of outcomes favorable to A

number of outcomes

Set algebra

Unions, Intersections, and Complements
Complements - The following are true.

A ∪A
c

= Ω

A ∩A
c

= ∅

De Morgan’s Laws

(A ∪ B)
c

= A
c ∩ Bc

(A ∩ B)
c

= A
c ∪ Bc

Probability

Axioms of probability

Any assignment from subsets of E to real numbers is a probability
measure if the following holds:

Probabilities are positive P (A) ≥ 0.

The probability of the whole space is 1 P (E) = 1.

Probabilities of a union of disjoint sets
P (A ∪ B) = P (A) + P (B), provided A ∩ B = ∅.

Consequences

For any probability measure, the following are true:

Probability of the empty set P (∅) = 0.

Probability of the complement P (AC) = 1− P (A).

Conditional probability

Conditional Probability

P (A|B) =
P (A ∩ B)

P (B)

Probability of A, given that B occurred.

Conditional Probability is Probability P (A|B) is a probability
function for any fixed B. Any theorem that holds for probability also
holds for conditional probability.

Probability of an Intersection or Union

Intersections via Conditioning

P (A,B) = P (A)P (B|A)

P (A,B,C) = P (A)P (B|A)P (C|A,B)

Unions via Inclusion-Exclusion

P (A ∪ B) = P (A) + P (B)− P (A ∩ B)

P (A ∪ B ∪ C) = P (A) + P (B) + P (C)

− P (A ∩ B)− P (A ∩ C)− P (B ∩ C)

+ P (A ∩ B ∩ C).

Law of Total Probability

Assume the n events Ai are pairwise disjoint (Ai ∩ Aj = ∅ for any
i 6= j) and their union is the whole sample space, and let B be any
event. Then:

P (B) = P (B|A1)P (A1) + . . .+ P (B|An)P (An)
=
∑n
i=1 P (B|Ai)P (Ai)

Bayes’ Rule

P (A|B) =
P (B|A)P (A)

P (B)

Independence
2 Independent Events A and B are independent if knowing whether
A occurred gives no information about whether B occurred. More
formally, A and B (which have nonzero probability) are independent if
and only if one of the following equivalent statements holds:

P (A ∩ B) = P (A)P (B), P (A|B) = P (A), P (B|A) = P (B)

3 Independent Events A, B and C are independent if information
about two of them gives no information about whether the third one
occurred. In other words, P (A|EB ∩ EC) = P (A), where EB is either

B, BC , or E, and EC is either C, CC or E. The relations obtained by
permuting A, B and C must also hold.

Conditional Independence A and B are conditionally independent
given C if P (A ∩ B|C) = P (A|C)P (B|C). Conditional independence
does not imply independence, and independence does not imply
conditional independence.

Random Variables

A Random Variable (RV) is a function form a probability space
into the real numbers:

X : Ω→ R
The support of X is the smallest closed set S such that P (X ∈ S) = 1
(morally, the set of values that X can take).
The distribution of the RV is not the probability distribution of Ω,
but the induced distribution in the real numbers A→ P (X ∈ A). E.g.
Ω has a continuous uniform distribution in the interval [0, 1], X(w) is
1 if w > 1/2 and 0 otherwise. Then X has a Bernoulli distribution
with p = 1/2.

Discrete Random Variables

A RV is discrete if its support is finite, or infinite countable (the
integer, the positive integers, etc). Its support is
{x ∈ Ω : P (X = x) > 0}.

PMF, CDF, and Independence
Probability Mass Function (PMF) Gives the probability that a
discrete random variable takes on the value x.

pX(x) = P (X = x)

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pm
f

●

●

●

●

●

The PMF satisfies

pX(x) ≥ 0 and
∑
x

pX(x) = 1
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Cumulative Distribution Function (CDF) Gives the probability
that a random variable is less than or equal to x.

FX(x) = P (X ≤ x)
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The CDF is an increasing, right-continuous function with

FX(x)→ 0 as x→ −∞ and FX(x)→ 1 as x→∞

Independence Intuitively, two random variables are independent if
knowing the value of one gives no information about the other.
Discrete r.v.s X and Y are independent if for all values of x and y

P (X = x, Y = y) = P (X = x)P (Y = y)

Continuous Random Variables (CRVs)

Probability density function (PDF)
What’s the probability that a CRV is in an interval? Take the
difference in CDF values (or use the PDF as described later).

P (a ≤ X ≤ b) = P (X ≤ b)− P (X ≤ a) = FX(b)− FX(a)

For X ∼ N (µ, σ2), this becomes

P (a ≤ X ≤ b) = Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)
What is the Probability Density Function (PDF)? The PDF f
is the derivative of the CDF F .

F
′
(x) = f(x)

A PDF is nonnegative and integrates to 1. By the fundamental
theorem of calculus, to get from PDF back to CDF we can integrate:

F (x) =

∫ x

−∞
f(t)dt
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To find the probability that a CRV takes on a value in an interval,
integrate the PDF over that interval.

F (b)− F (a) =

∫ b

a

f(x)dx

Expected Value and Indicators

Expected Value and Linearity

Expected Value (a.k.a. mean, expectation, or average) is a weighted
average of the possible outcomes of our random variable.
Mathematically, if x1, x2, x3, . . . are all of the distinct possible values
that a discrete random variable X can take, the expected value of X is

E(X) =
∑
i
xiP (X = xi)

Expected value of a CRV Analogous to the discrete case, where
you sum x times the PMF, for CRVs you integrate x times the PDF.

E(X) =

∫ ∞
−∞

xf(x)dx
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Linearity For any r.v.s X and Y , and constants a, b, c,

E(aX + bY + c) = aE(X) + bE(Y ) + c

Same distribution implies same mean If X and Y have the same
distribution, then E(X) = E(Y ) and, more generally,

E(g(X)) = E(g(Y ))

Conditional Expected Value is defined like expectation, only
conditioned on any event A.

E(X|A) =
∑
x
xP (X = x|A)

Indicator Random Variables

Indicator Random Variable is a random variable that takes on the
value 1 or 0. It is always an indicator of some event: if the event
occurs, the indicator is 1; otherwise it is 0. They are useful for many
problems about counting how many events of some kind occur. Write

IA =

{
1 if A occurs,

0 if A does not occur.

Note that I2A = IA, IAIB = IA∩B , and IA∪B = IA + IB − IAIB .

Distribution IA ∼ Bern(p) where p = P (A).

Fundamental Bridge The expectation of the indicator for event A is
the probability of event A: E(IA) = P (A).

Variance and Standard Deviation

Var(X) = E (X − E(X))
2

= E(X
2
)− (E(X))

2

SD(X) =
√

Var(X)

LOTUS, UoU

LOTUS

Expected value of a function of an r.v. The expected value of X
is defined this way:

E(X) =
∑
x

xP (X = x) (for discrete X)

E(X) =

∫ ∞
−∞

xf(x)dx (for continuous X)

The Law of the Unconscious Statistician (LOTUS) states that
you can find the expected value of a function of a random variable,
g(X), in a similar way, by replacing the x in front of the PMF/PDF by
g(x) but still working with the PMF/PDF of X:

E(g(X)) =
∑
x

g(x)P (X = x) (for discrete X)

E(g(X)) =

∫ ∞
−∞

g(x)f(x)dx (for continuous X)

What’s a function of a random variable? A function of a random
variable is also a random variable. For example, if X is the number of
bikes you see in an hour, then g(X) = 2X is the number of bike wheels

you see in that hour and h(X) =
(X

2

)
=

X(X−1)
2 is the number of

pairs of bikes such that you see both of those bikes in that hour.

What’s the point? You don’t need to know the PMF/PDF of g(X)
to find its expected value. All you need is the PMF/PDF of X.

Universality of Uniform (UoU)

When you plug any CRV into its own CDF, you get a Uniform(0,1)
random variable. When you plug a Uniform(0,1) r.v. into an inverse
CDF, you get an r.v. with that CDF. For example, let’s say that a
random variable X has CDF

F (x) = 1− e−x, for x > 0

By UoU, if we plug X into this function then we get a uniformly
distributed random variable.

F (X) = 1− e−X ∼ Unif(0, 1)

Similarly, if U ∼ Unif(0, 1) then F−1(U) has CDF F . The key point is
that for any continuous random variable X, we can transform it into a
Uniform random variable and back by using its CDF.

Moments

Moments describe the shape of a distribution. Let X have mean µ and
standard deviation σ, and Z = (X − µ)/σ be the standardized version

of X. The kth moment of X is µk = E(Xk) and the kth standardized

moment of X is mk = E(Zk). The mean, variance, skewness, and
kurtosis are important summaries of the shape of a distribution.

Mean E(X) = µ1

Variance Var(X) = µ2 − µ2
1

Skewness Skew(X) = m3

Kurtosis Kurt(X) = m4 − 3



Joint PDFs and CDFs

Joint Distributions
The joint CDF of X and Y is

F (x, y) = P (X ≤ x, Y ≤ y)

In the discrete case, X and Y have a joint PMF

pX,Y (x, y) = P (X = x, Y = y).

In the continuous case, they have a joint PDF

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y).

The joint PMF/PDF must be nonnegative and sum/integrate to 1.

Conditional Distributions
Conditioning and Bayes’ rule for discrete r.v.s

P (Y = y|X = x) =
P (X = x, Y = y)

P (X = x)
=
P (X = x|Y = y)P (Y = y)

P (X = x)

Conditioning and Bayes’ rule for continuous r.v.s

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=
fX|Y (x|y)fY (y)

fX(x)

Hybrid Bayes’ rule

fX(x|A) =
P (A|X = x)fX(x)

P (A)

Marginal Distributions
To find the distribution of one (or more) random variables from a joint
PMF/PDF, sum/integrate over the unwanted random variables.

Marginal PMF from joint PMF

P (X = x) =
∑
y

P (X = x, Y = y)

Marginal PDF from joint PDF

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy

Independence of Random Variables
Random variables X and Y are independent if and only if any of the
following conditions holds:

� Joint CDF is the product of the marginal CDFs
� Joint PMF/PDF is the product of the marginal PMFs/PDFs
� Conditional distribution of Y given X is the marginal

distribution of Y

Write X ⊥⊥ Y to denote that X and Y are independent.

Multivariate LOTUS
LOTUS in more than one dimension is analogous to the 1D LOTUS.
For discrete random variables:

E(g(X,Y )) =
∑
x

∑
y

g(x, y)P (X = x, Y = y)

For continuous random variables:

E(g(X,Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fX,Y (x, y)dxdy

Covariance and Transformations

Covariance and Correlation

Covariance is the analog of variance for two random variables.

Cov(X,Y ) = E ((X − E(X))(Y − E(Y ))) = E(XY )− E(X)E(Y )

Note that
Cov(X,X) = E(X

2
)− (E(X))

2
= Var(X)

Correlation is a standardized version of covariance that is always
between −1 and 1.

Corr(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )

Covariance and Independence If two random variables are
independent, then they are uncorrelated. The converse is not
necessarily true (e.g., consider X ∼ N (0, 1) and Y = X2).

X ⊥⊥ Y −→ Cov(X,Y ) = 0 −→ E(XY ) = E(X)E(Y )

Covariance and Variance The variance of a sum can be found by

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y )

Var(X1 +X2 + · · ·+Xn) =

n∑
i=1

Var(Xi) + 2
∑
i<j

Cov(Xi, Xj)

If X and Y are independent then they have covariance 0, so

X ⊥⊥ Y =⇒ Var(X + Y ) = Var(X) + Var(Y )

Covariance Properties For random variables W,X, Y, Z and
constants a, b:

Cov(X,Y ) = Cov(Y,X)

Cov(X + a, Y + b) = Cov(X,Y )

Cov(aX, bY ) = abCov(X,Y )

Cov(W +X,Y + Z) = Cov(W,Y ) + Cov(W,Z) + Cov(X,Y )

+ Cov(X,Z)

Correlation is location-invariant and scale-invariant For any
constants a, b, c, d with a and c nonzero,

Corr(aX + b, cY + d) = Corr(X,Y )

If correlation is 1 If Corr(X,Y ) = 1, there are constants a > 0, b
such that X = aY + b

If correlation is −1 If Corr(X,Y ) = −1, there are constants a < 0, b
such that X = aY + b

Transformations

One Variable Transformations Let’s say that we have a random
variable X with PDF fX(x), but we are also interested in some
function of X. We call this function Y = g(X). Also let y = g(x). If g
is differentiable and strictly increasing (or strictly decreasing), then
the PDF of Y is

fY (y) = fX(x)

∣∣∣∣dxdy
∣∣∣∣ = fX(g

−1
(y))

∣∣∣∣ ddy g−1
(y)

∣∣∣∣
The derivative of the inverse transformation is called the Jacobian.

Two Variable Transformations Similarly, let’s say we know the
joint PDF of U and V but are also interested in the random vector
(X,Y ) defined by (X,Y ) = g(U, V ). Let

∂(u, v)

∂(x, y)
=

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
be the Jacobian matrix. If the entries in this matrix exist and are
continuous, and the determinant of the matrix is never 0, then

fX,Y (x, y) = fU,V (u, v)

∣∣∣∣∣∣∣∣∂(u, v)

∂(x, y)

∣∣∣∣∣∣∣∣
The inner bars tells us to take the matrix’s determinant, and the outer
bars tell us to take the absolute value. In a 2× 2 matrix,∣∣∣∣∣∣∣∣ a b

c d

∣∣∣∣∣∣∣∣ = |ad− bc|

Convolutions
Convolution Integral If you want to find the PDF of the sum of two
independent CRVs X and Y , you can do the following integral:

fX+Y (t) =

∫ ∞
−∞

fX(x)fY (t− x)dx

Example Let X,Y ∼ N (0, 1) be i.i.d. Then for each fixed t,

fX+Y (t) =

∫ ∞
−∞

1
√

2π
e
−x2/2 1

√
2π
e
−(t−x)2/2

dx

By completing the square and using the fact that a Normal PDF
integrates to 1, this works out to fX+Y (t) being the N (0, 2) PDF.

Poisson Process

Definition We have a Poisson process of rate λ arrivals per unit
time if the following conditions hold:

1. The number of arrivals in a time interval of length t is Pois(λt).

2. Numbers of arrivals in disjoint time intervals are independent.

For example, the numbers of arrivals in the time intervals [0, 5],
(5, 12), and [13, 23) are independent with Pois(5λ),Pois(7λ),Pois(10λ)
distributions, respectively.

0 T1 T2 T3 T4 T5

+ + + + +

Count-Time Duality Consider a Poisson process of emails arriving
in an inbox at rate λ emails per hour. Let Tn be the time of arrival of
the nth email (relative to some starting time 0) and Nt be the number
of emails that arrive in [0, t]. Let’s find the distribution of T1. The
event T1 > t, the event that you have to wait more than t hours to get
the first email, is the same as the event Nt = 0, which is the event that
there are no emails in the first t hours. So

P (T1 > t) = P (Nt = 0) = e
−λt −→ P (T1 ≤ t) = 1− e−λt

Thus we have T1 ∼ Expo(λ). By the memoryless property and similar
reasoning, the interarrival times between emails are i.i.d. Expo(λ), i.e.,
the differences Tn − Tn−1 are i.i.d. Expo(λ).

Discrete Distributions

Bernoulli Distribution
The Bernoulli distribution is the simplest case of the Binomial
distribution, where we only have one trial (n = 1). Let us say that X is
distributed Bern(p). We know the following:

Story A trial is performed with probability p of “success”, and X is
the indicator of success: 1 means success, 0 means failure.

Example Let X be the indicator of Heads for a fair coin toss. Then
X ∼ Bern( 1

2 ). Also, 1−X ∼ Bern( 1
2 ) is the indicator of Tails.



Binomial Distribution
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Bin(10,1/2)

Let us say that X is distributed Bin(n, p). We know the following:

Story X is the number of “successes” that we will achieve in n
independent trials, where each trial is either a success or a failure, each
with the same probability p of success. We can also write X as a sum
of multiple independent Bern(p) random variables. Let X ∼ Bin(n, p)
and Xj ∼ Bern(p), where all of the Bernoullis are independent. Then

X = X1 +X2 +X3 + · · ·+Xn

Example If Jeremy Lin makes 10 free throws and each one
independently has a 3

4 chance of getting in, then the number of free

throws he makes is distributed Bin(10, 3
4 ).

Properties Let X ∼ Bin(n, p), Y ∼ Bin(m, p) with X ⊥⊥ Y .

� Redefine success n−X ∼ Bin(n, 1− p)
� Sum X + Y ∼ Bin(n+m, p)

� Conditional X|(X + Y = r) ∼ HGeom(n,m, r)

� Binomial-Poisson Relationship Bin(n, p) is approximately
Pois(λ) if p is small.

� Binomial-Normal Relationship Bin(n, p) is approximately
N (np, np(1− p)) if n is large and p is not near 0 or 1.

Geometric Distribution
Let us say that X is distributed Geom(p). We know the following:

Story X is the number of “trials” that we will repeat before we
observe our first success. Our successes have probability p.

Example If each pokeball we throw has probability 1
10 to catch Mew,

the number of pokeballs thrown will be distributed Geom( 1
10 ).

Poisson Distribution
Let us say that X is distributed Pois(λ). We know the following:

Story There are rare events (low probability events) that occur many
different ways (high possibilities of occurences) at an average rate of λ
occurrences per unit space or time. The number of events that occur
in that unit of space or time is X.

Example A certain busy intersection has an average of 2 accidents
per month. Since an accident is a low probability event that can
happen many different ways, it is reasonable to model the number of
accidents in a month at that intersection as Pois(2). Then the number
of accidents that happen in two months at that intersection is
distributed Pois(4).

Properties Let X ∼ Pois(λ1) and Y ∼ Pois(λ2), with X ⊥⊥ Y .

1. Sum X + Y ∼ Pois(λ1 + λ2)

2. Conditional X|(X + Y = n) ∼ Bin
(
n,

λ1
λ1+λ2

)
3. Chicken-egg If there are Z ∼ Pois(λ) items and we randomly

and independently “accept” each item with probability p, then
the number of accepted items Z1 ∼ Pois(λp), and the number of
rejected items Z2 ∼ Pois(λ(1− p)), and Z1 ⊥⊥ Z2.

Continuous Distributions

Uniform Distribution
Let us say that U is distributed Unif(a, b). We know the following:

Properties of the Uniform For a Uniform distribution, the
probability of a draw from any interval within the support is
proportional to the length of the interval. See Universality of Uniform
and Order Statistics for other properties.

Example William throws darts really badly, so his darts are uniform
over the whole room because they’re equally likely to appear anywhere.
William’s darts have a Uniform distribution on the surface of the
room. The Uniform is the only distribution where the probability of
hitting in any specific region is proportional to the length/area/volume
of that region, and where the density of occurrence in any one specific
spot is constant throughout the whole support.

Normal Distribution

Let us say that X is distributed N (µ, σ2). We know the following:

Central Limit Theorem The Normal distribution is ubiquitous
because of the Central Limit Theorem, which states that the sample
mean of i.i.d. r.v.s will approach a Normal distribution as the sample
size grows, regardless of the initial distribution.

Location-Scale Transformation Every time we shift a Normal
r.v. (by adding a constant) or rescale a Normal (by multiplying by a
constant), we change it to another Normal r.v. For any Normal
X ∼ N (µ, σ2), we can transform it to the standard N (0, 1) by the
following transformation:

Z =
X − µ
σ

∼ N (0, 1)

Standard Normal The Standard Normal, Z ∼ N (0, 1), has mean 0
and variance 1. Its CDF is denoted by Φ.

Exponential Distribution
Let us say that X is distributed Expo(λ). We know the following:

Story You’re sitting on an open meadow right before the break of
dawn, wishing that airplanes in the night sky were shooting stars,
because you could really use a wish right now. You know that shooting
stars come on average every 15 minutes, but a shooting star is not
“due” to come just because you’ve waited so long. Your waiting time
is memoryless; the additional time until the next shooting star comes
does not depend on how long you’ve waited already.

Example The waiting time until the next shooting star is distributed
Expo(4) hours. Here λ = 4 is the rate parameter, since shooting
stars arrive at a rate of 1 per 1/4 hour on average. The expected time
until the next shooting star is 1/λ = 1/4 hour.

Expos as a rescaled Expo(1)

Y ∼ Expo(λ)→ X = λY ∼ Expo(1)

Memorylessness The Exponential Distribution is the only
continuous memoryless distribution. The memoryless property says
that for X ∼ Expo(λ) and any positive numbers s and t,

P (X > s+ t|X > s) = P (X > t)

Equivalently,
X − a|(X > a) ∼ Expo(λ)

For example, a product with an Expo(λ) lifetime is always “as good as
new” (it doesn’t experience wear and tear). Given that the product has
survived a years, the additional time that it will last is still Expo(λ).

Min of Expos If we have independent Xi ∼ Expo(λi), then
min(X1, . . . , Xk) ∼ Expo(λ1 + λ2 + · · ·+ λk).

Max of Expos If we have i.i.d. Xi ∼ Expo(λ), then
max(X1, . . . , Xk) has the same distribution as Y1 + Y2 + · · ·+ Yk,
where Yj ∼ Expo(jλ) and the Yj are independent.

Gamma Distribution
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Let us say that X is distributed Gamma(a, λ). We know the following:

Story You sit waiting for shooting stars, where the waiting time for a
star is distributed Expo(λ). You want to see n shooting stars before
you go home. The total waiting time for the nth shooting star is
Gamma(n, λ).

Example You are at a bank, and there are 3 people ahead of you.
The serving time for each person is Exponential with mean 2 minutes.
Only one person at a time can be served. The distribution of your
waiting time until it’s your turn to be served is Gamma(3, 1

2 ).

χ2 (Chi-Square) Distribution

Let us say that X is distributed χ2
n. We know the following:

Story A Chi-Square(n) is the sum of the squares of n independent
standard Normal r.v.s.

Properties and Representations

X is distributed as Z
2
1 + Z

2
2 + · · ·+ Z

2
n for i.i.d. Zi ∼ N (0, 1)

X ∼ Gamma(n/2, 1/2)

LLN, CLT

Law of Large Numbers (LLN)
Let X1, X2, X3 . . . be i.i.d. with mean µ. The sample mean is

X̄n =
X1 +X2 +X3 + · · ·+Xn

n

The Law of Large Numbers states that as n→∞, X̄n → µ with
probability 1. For example, in flips of a coin with probability p of
Heads, let Xj be the indicator of the jth flip being Heads. Then LLN
says the proportion of Heads converges to p (with probability 1).

Central Limit Theorem (CLT)

Approximation using CLT

We use ∼̇ to denote is approximately distributed. We can use the
Central Limit Theorem to approximate the distribution of a random
variable Y = X1 +X2 + · · ·+Xn that is a sum of n i.i.d. random
variables Xi. Let E(Y ) = µY and Var(Y ) = σ2

Y . The CLT says

Y ∼̇N (µY , σ
2
Y )

If the Xi are i.i.d. with mean µX and variance σ2
X , then µY = nµX

and σ2
Y = nσ2

X . For the sample mean X̄n, the CLT says

X̄n =
1

n
(X1 +X2 + · · ·+Xn) ∼̇N (µX , σ

2
X/n)



Asymptotic Distributions using CLT

We use
D−→ to denote converges in distribution to as n→∞. The

CLT says that if we standardize the sum X1 + · · ·+Xn then the
distribution of the sum converges to N (0, 1) as n→∞:

1

σ
√
n

(X1 + · · ·+Xn − nµX)
D−→ N (0, 1)

In other words, the CDF of the left-hand side goes to the standard
Normal CDF, Φ. In terms of the sample mean, the CLT says

√
n(X̄n − µX)

σX

D−→ N (0, 1)

Continuous Multivariate Distributions

Joint Probability density f(x, y) ; P ((X,Y ) ∈ A) =
∫
A
f(x, y).

Marginal density fx(x) =
∫
R f(x, y) dy ; P (X ∈ C) =

∫
C
fx(x) dx.

Multivariate Uniform Distribution
See the univariate Uniform for stories and examples. For the 2D
Uniform on some region, probability is proportional to area. Every
point in the support has equal density, of value 1

area of region . For the

3D Uniform, probability is proportional to volume.

Multivariate Normal (MVN) Distribution

A vector ~X = (X1, X2, . . . , Xd) is Multivariate Normal if every linear
combination is Normally distributed, i.e., t1X1 + t2X2 + · · ·+ tdXd is
Normal for any constants t1, t2, . . . , td. The parameters of the
Multivariate Normal are the mean vector ~µ = (µ1, µ2, . . . , µd) and
the covariance matrix Σ where the (i, j) entry is Cov(Xi, Xj).

Properties The Multivariate Normal has the following properties.

� Any subvector is also MVN.

� If any two elements within an MVN are uncorrelated, then they
are independent.

� The joint PDF of a Multivariate Normal is:

f(x) = det((2π)dΣ)−
1
2 e−

1
2
(x−µ)′Σ−1(x−µ)

Distribution Properties

Convolutions of Random Variables
A convolution of n random variables is simply their sum. For the
following results, let X and Y be independent.

1. X ∼ Pois(λ1), Y ∼ Pois(λ2) −→ X + Y ∼ Pois(λ1 + λ2)

2. X ∼ Bin(n1, p), Y ∼ Bin(n2, p) −→ X + Y ∼ Bin(n1 + n2, p).
Bin(n, p) can be thought of as a sum of i.i.d. Bern(p) r.v.s.

3. X ∼ Gamma(a1, λ), Y ∼ Gamma(a2, λ)
−→ X + Y ∼ Gamma(a1 + a2, λ). Gamma(n, λ) with n an
integer can be thought of as a sum of i.i.d. Expo(λ) r.v.s.

4. X ∼ N (µ1, σ
2
1), Y ∼ N (µ2, σ

2
2)

−→ X + Y ∼ N (µ1 + µ2, σ
2
1 + σ2

2)

Special Cases of Distributions
1. Bin(1, p) ∼ Bern(p)

2. Beta(1, 1) ∼ Unif(0, 1)

3. Gamma(1, λ) ∼ Expo(λ)

Inequalities

1. Cauchy-Schwarz |E(XY )| ≤
√
E(X2)E(Y 2)

2. Markov P (X ≥ a) ≤ E|X|
a for a > 0

3. Chebyshev P (|X − µ| ≥ a) ≤ σ2

a2
for E(X) = µ,Var(X) = σ2

4. Jensen E(g(X)) ≥ g(E(X)) for g convex; reverse if g is
concave

Miscellaneous Definitions

Precision The precision of a distribution is the inverse of the
variance τ = 1

σ2
.

Mode The mode of a discrete distribution is the point in the support
that maximizes the PMF. The mode of a continuous distribution is
the point in the support that maximizes the PDF.

Medians and Quantiles Let X have CDF F . Then X has median
m if F (m) ≥ 0.5 and P (X ≥ m) ≥ 0.5. For X continuous, m satisfies
F (m) = 1/2. In general, the ath quantile of X is min{x : F (x) ≥ a};
the median is the case a = 1/2.

log Statisticians generally use log to refer to natural log (i.e., base e).

i.i.d r.v.s Independent, identically-distributed random variables.

Gamma and Beta Integrals

You can sometimes solve complicated-looking integrals by
pattern-matching to a gamma or beta integral:∫ ∞

0

x
t−1

e
−x

dx = Γ(t)

∫ 1

0

x
a−1

(1− x)
b−1

dx =
Γ(a)Γ(b)

Γ(a+ b)

Also, Γ(a+ 1) = aΓ(a), and Γ(n) = (n− 1)! if n is a positive integer.

Maximum likelihood

The RV X follows a parametric distribution X ∼ D(λ). We don’t
know λ, but we have n independent observations {xj}nj=1 from X.
The likelihood of λ is:

� If D(λ) is discrete with mass function pλ(x):

L
(
λ| {xj}nj=1

)
= P

(
{xj}nj=1|λ

)
=

n∏
j=1

pλ(xj)

� If D(λ) es continuous with density fλ(x):

L
(
λ| {xj}nj=1

)
=

n∏
j=1

fλ(xj)

The maximum likelihood estimator of λ is the value λ* that
maximizes the likelihood:

λ
∗

= argmaxλ L (λ| (xj))

Conjugate families

In the Bayesian approach to statistics, parameters are uncertain, so we
assign a probability distribution to them. The prior for a parameter is
its distribution before observing data. The posterior is the
distribution for the parameter after observing data.

The Beta family The Beta is a parametric family of distributions
depending on two parameters a, b, used to represent uncertainty about
a real number p known to lie in the interval [0, 1] (for instance, a
probability).

f(x) =
Γ(a+ b)

Γ(a)Γ(b)
x
a−1

(1− x)
b−1

, x ∈ (0, 1)
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Beta is the Conjugate Prior of Bernoulli experiments Beta is
the conjugate prior of the Binomial because if you have a
Beta-distributed prior on p in a Binomial, then the posterior
distribution on p given the Binomial data is also Beta-distributed.
Consider the following two-level model:

X|p ∼ Bin(n, p)

p ∼ Beta(a, b)

Then after observing X = x, we get the posterior distribution

p|(X = x) ∼ Beta(a+ x, b+ n− x).

Beta is also the conjugate prior of the Geometric: if you have a
Beta-distributed prior on p, and the experiment follows a Geometric
distribution based on p:

Y |p ∼ Geom(p)

p ∼ Beta(a, b)

Then after observing Y = y, we get the posterior distribution

p|(Y = y) ∼ Beta(a+ 1, b+ x− 1).

Gamma is the Conjugate Prior of a Poisson Process If our
uncertainty for the rate λ of a Poisson process is modelled with a
Gamma(α, β), and we count x observations on a time interval of
length T , then our posterior follows λ ∼ Gamma(α+ x, β + T ).

Maximum A Posteriori (MAP) The MAP estimator is the mode
of the posterior. It can be regarded as a smoothed version of the
maximum likelihood estimator.

Objective priors

In absence of prior information, it is customary to use a prior that
carries as little information as possible. These are called objective
priors. There are several notions of objective prior, but most of them
are improper: they are not true probability distributions, so we don’t
really have prior probabilistic information.
However, an improper prior can be updated with data to provide a
proper posterior : a true probability distribution that can answer
probabilistic questions and give expected values. Usually, the objective
prior can be interpreted as a limiting case of the conjugate family, and
the updating rule for the conjugate family still holds.



Uniform prior

The uniform prior for a real parameter assigns equal probability
density to all admissible values of the parameter. This is called the
principle of indifference. Hence, it is improper whenever the support
is infinite.

Uniform priors for:

a probability p: the uniform distribution on [0, 1], which is also the
Beta(1, 1) distribution.

the rate λ of a Poisson process: the uniform distribution on R+,
which is improper, and is also the Gamma(1, 0) distribution.

the mean µ of a Normal N experiment with known precision τ :
the uniform distribution on R, which is improper, and is also the
N (µ = 0, τ = 0) distribution.

the precision τ of Normal N experiment with known mean µ:
the uniform distribution on R+, which is improper, and is also the
Gamma(1, 0) distribution.

The main drawback of the principle of indifference is that the prior
associated to σ is different from the prior associated to σ2 or the
prior associated to τ = 1

σ2
(it depends on the parameterization).

Jeffreys prior

The Jeffreys prior is invariant by reparameterization: the Jeffreys
prior for σ, σ2 and τ are all equivalent.

For a single parameter, the Jeffreys prior is also a reference prior: it
maximizes the expected information gain from the data.

Jeffreys prior for:

a probability p: density f(p) ∝ 1√
p(1−p)

: the Beta( 1
2 ,

1
2 )

distribution.

the rate λ of a Poisson process: “pseudo-density” f(λ) ∝ 1√
λ

: the

Gamma( 1
2 , 0) improper distribution.

the mean µ of a Normal N experiment with known precision τ :
“pseudo-density” f(µ) ∝ 1: the uniform distribution on R, which is
improper, and is also the N (µ = 0, τ = 0) distribution.

the precision τ of Normal N experiment with known mean µ:
“pseudo-density” f(τ) ∝ 1

τ : the Gamma(0, 0) distribution for the
precision τ .

Regression

General regression model: some variables X1, . . . , Xn are known
(not random), others ε1, . . . , εk are random. The goal is to understand
better, and make predictions for the target variable Y . The function f
is unknown:

Y = f(X1, . . . , Xn, ε1, . . . , εk)

Linear Regression

Y = f(X1, . . . , Xn, ε)

= β0 + β1 ·X1 + · · ·+ βn ·Xn + ε

ε ∼ N (0, σ
2
).

Least squares regression: mininize RSS =
∑

(yj − f(xj))
2. It’s also

the maximum likelihood estimation for the unknown parameters
β0, . . . , βn, σ.

Software

A simulation in python
In a simulation, we write different code for the random experiment and
the filters that check if the outcome belongs to different events. We
freeze a random independent sample, and approximate all probabilities
and means using the same random sample. In this way, we
approximate the whole probability space by a sample, in which the
Cardano rule applies, and we are guaranteed to work with a
probability distribution (all probabilities lie between 0 and 1,
correlations lie between -1 and 1, etc).

import random

# a random experiment
def one_dice ():

return random.randint (1,6)

# a "filter" decides if an outcome belongs to an event
def five_or_more(w):

return w>=5
def is_even(w):

return w%2==0

#sample size
N = 10000
# independent random sample
sample = [one_dice () for _ in range(N)]

# approximate the probability that dice is 5 or 6
probA = sum(1 for w in sample if five_or_more(w))/N
# approximate the probability that dice is even
probB = sum(1 for w in sample if is_even(w))/N
# approximate the probability of the intersection
probAB = sum(1 for w in sample

if five_or_more(w) and is_even(w) )/N

# approximate the conditional probability
probA_cond_B = probAB/probB

#check the two events are independent ( approximately )
print(probAB , probA*probB)

# approximate the expectated value
mean = sum(w for w in sample)/N
# approximate the variance
var = sum((w-mean)**2 for w in sample)/N

A simulation with Random Variables

import random

# Omega is "throw three coins"
def threecoins ():

’’’Returns a list with three elements , each one of
them

is either 1 (head) or 0 (tails)’’’
return [random.randint (0,1) for _ in range (3)]

# Two random variables are defined on Omega: X and Y
def X(w):

’counts total number of heads ’
return sum(w)

def Y(w):
’True if first toss is the same as the last’
return w[0]==w[-1]

N = 1000
sample = [threecoins () for _ in random(N)]
# Aproximate E[X*Y]
eXY = sum(X(w)*Y(w) for w in sample)/N

Plotting

Histogram of discrete data

P = st.poisson(mu =1.8)
N = 1000
#A sample that takes values in the integers
sample = P.rvs(N)
max_integer = 10
plt.hist(sample , bins=[k+0.5 for k in range(-1,

max_integer +1)], density=1,alpha =0.8)

Histogram of continuous data

E = st.expon(scale =3)
N = 100
sample = E.rvs(N)
plt.hist(sample , density=1,alpha =0.8)

Bar plot of a mass function

n0=5
B = st.binom(n=n0, p=0.25)
plt.bar(range(n0+1) ,[B.pmf(k) for k in range(n0+1)],

fill=False)

Line plot of a density, or distribution function

E = st.expon(scale =3)
xmin , xmax = -3, 3 #plotting interval
N = 100 # number of subdivions
xs = np.linspace(xmin , xmax , N)
ys = E.pdf(xs) #use E.cdf(xs) for cumulative

distribution function
plt.plot(xs , ys, ’g’)

Combine plots, with labels and titles

E1 = st.expon(scale =1)
E2 = st.expon(scale =2)

xmin , xmax = -1,8
N = 100
xs = np.linspace(xmin , xmax , N)
ys1 = E1.pdf(xs)
plt.plot(xs , ys1 , ’g’, label=’density function of

Exponential (1)’)

ys2 = E2.pdf(xs)
plt.plot(xs , ys2 , ’b-’, label=’density function of

Exponential (2)’)

plt.title(’Density functions of two Exponential
distributions ’)

plt.xlabel(’x’)
plt.legend ()
plt.show()



scipy.stats

A frozen distribution N = scipy.stats.norm(loc=mean, scale=std)

Random sample of size M N.rvs(M)

Mean N.mean()

Variance N.var()

Distribution function at points xs (array) N.cdf(xs)

Density function at points xs (if continuous) N.pdf(xs)

Mass function at points xs (if discrete) N.pmf(xs)

Percentiles ps N.ppf(ps)

pandas

Create a dataframe:

df = pd.DataFrame(data = {
"calculus": [10,5,8,7],
"algebra": [8,7,6,5],
"probability": [7,6,6,8],
},
index = ["Jaimita", "Fulanito", "Menganito", "

Zutanita"],
)

Browse first rows df.head(2)

Summary of column types df.info()

Column statistics df.describe(include="all")

Selecting a column df["calculus"] (the result is a Series)

max of a Series df["calculus"].max()

mean of a Series df["calculus"].mean()

std of a Series df["calculus"].std()

Selecting a column df["calculus"] (the result is a Series)

Selecting columns df[["calculus", "probability"]]

Selecting rows by index df.loc[["Jaimita", "Fulano"]]

Selecting rows by row number df.iloc[1:3]

Selecting rows and columns df.loc[ list of indices,
list of columns]

Selecting rows by condition df[df["calculus"]>7]

Plot histogram df["calculus"].hist()

Scatter plot df.plot.scatter("algebra", "calculus")

Drop rows df.drop(["Jaimita", "Fulano"], inplace=True)

Drop columns df.drop(["calculus", "probability"], inplace=True)

Read a csv file advertising = pd.read csv("advertising.csv",
usecols=[1,2,3,4])

scikit-learn

Fit a linear model, print R2 score:

import sklearn.linear_model as skl_lm
regr = skl_lm.LinearRegression ()
X = advertising [["TV", "Radio", "Newspaper"]]
y = advertising["Sales"]
regr.fit(X,y)
print(regr.score())

Make predictions

advertising_future = pd.DataFrame(
[ [100,30 ,30],

[100,40,30],
],
columns =["TV", "Radio", "Newspaper"]

)
regr.predict(advertising_future)

Fit a polinomial model, split randomly into train and test sets:

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree =2)
X = poly.fit_transform(auto[["horsepower"]])
y = auto["mpg"]
Xtrain , Xtest , ytrain , ytest = train_test_split(X, y,

test_size =0.25)
regr = skl_lm.LinearRegression ()
regr.fit(Xtrain ,ytrain)
print(regr.score(Xtest , ytest))
regr.predict(poly.fit_transform ([[250]]))

statsmodels

import statsmodels.formula.api as smf
regr = smf.ols("Sales ~ TV + Radio", advertising).fit()
est.predict(advertising_future)
regr.summary ()

R-squared R2 = 1− RSS
TSS , where RSS =

∑
(yj − f(xj))

2,

TSS =
∑

(yj − ȳ)2. Always smaller than 1. The larger the better.

adjusted R-squared Adjusted - R2 = 1− RSS/(n−p−1)
TSS/(n−1)

, where n is the

number of data points, and p is the number of explanatory variables.
The larger the better.

AIC Akaike Information Criterion. The smaller the better. The
absolute value is not important. A difference of ≈ 1.4 between the AIC
of model A and the AIC of model B means that model A is twice as
likely as model B to minimize information loss, regardless of the
magnitude of the AIC.

BIC Bayes Information Criterion. The smaller the better. As for AIC,
only the differences in BIC matter, and not their absolute value.

Intercept Independent term in the linear model.

P>|t| p-value for t-statistic for each coefficient. If one of them is
greater than 0.05, you should consider removing that explanatory
variable.

[0.025 0.975] confidence interval for each coefficient. Values in the
interval are not “unreasonable”.



Computations with one dimensional Random Variables

Object of interest Finite Infinite discrete Continuous Sample

Support A finite set F
An infinite but countable set I

e.g. N,Z, . . .
A subset S of R

e.g. R, (0,∞), (a, b)

A sample of size N

{x1, . . . , xN}

P (X ∈ A)

probability of A

∑
k∈A∩F

pX(k)

pX is the mass function

∑
k∈A∩I

pX(k)

pX is the mass function

∫
A∩S fX(x) dx

fX is the density function

P (A) ≈ Psample(A)

Psample(A) = number of xi that lie in A
N

P (X ≤ t)
FX(t)

FX is the distribution function

P (X ≤ t) ≈ Fsample(A)

Fsample(A) = number of xi smaller than t
N

faster to compute if the sample is ordered

g(X)

transformation of X by g
g is inyective

g(X) is finite

pg(X)(k) = pX(g−1(k))

g(X) is discrete infinite

pg(X)(k) = pX(g−1(k))

g(X) is continuous if g is smooth

fg(X)(k) = fX(g−1(x))
(
g−1

)′
(x)

{g(x1), . . . , g(xN )}
is a sample of g(X) of size N

g(X)

transformation of X by g
g is not inyective can get complicated

{g(x1), . . . , g(xN )}
is a sample of g(X) of size N

X|A
conditioning the RV X

by the event A

X|A is finite

pX|A(k) =
pX (k)
P (A)

X|A is discrete

pX|A(k) =
pX (k)
P (A)

X|A is continuous

fX|A(x) =
fX (x)
P (A)

filter {x1, . . . , xN}
keep only the xj that lie in A

get a sample of X|A of size smaller than N

E[X]

expectation of X

∑
k∈F

k pX(k)

a finite sum

∑
k∈I

k pX(k)

an infinite series

∫
S x fX(x) dx

an integral E[X] ≈ sample mean =
ΣNi=1xi
N

E[g(X)]

expectation of g(X)

∑
k∈F

g(k) pX(k)

a finite sum

∑
k∈I

g(k) pX(k)

an infinite series

∫
S g(x) fX(x) dx

an integral E[g(X)] ≈ ΣNi=1g(xi)

N

X + Y
sum of RVs X and Y

can get complicated (involves “convolutions”)

except in a few special cases

{x1 + y1, . . . , xN + yN}
is a sample of X + Y of size N

X follows a parametric distribution

X ∼ D(Y, Z, . . . )

the parameters Y, Z, . . . are RVs rather complicated except in a few special cases

first sample yj ∈ Y, zj ∈ Z, . . .
then sample xj from D(yj , zj , . . . )

{x1, . . . , xN} is a sample of X of size N



Table of Distributions

Distribution PMF/PDF and Support Expected Value Variance scipy.stats

Discrete Uniform
DisUniform(1, . . . , n)

P (X = k) = 1/n

k = 1, . . . , n 1+n
2

n2−1
12

randint(low=1, high=n+1)

Bernoulli
Bern(p)

P (X = 1) = p

P (X = 0) = q = 1− p p pq bernoulli(p=p0)

Binomial
Bin(n, p)

P (X = k) =
(n
k

)
pkqn−k

k ∈ {0, 1, 2, . . . n} np npq binom(n=n0, p=p0)

Geometric
Geom(p)

P (X = k) = (1− p)k−1p

k ∈ {1, 2, . . . } 1/p 1−p
p2

geom(p=p0)

Poisson
Pois(µ)

P (X = k) = e−µµk

k!

k ∈ {0, 1, 2, . . . } µ µ poisson(mu=mu0)

Uniform
Unif(a, b)

f(x) = 1
b−a

x ∈ (a, b) a+b
2

(b−a)2

12
uniform(loc=a, scale=b-a)

Normal
N (µ, σ2)

f(x) = 1
σ
√

2π
e−(x − µ)2/(2σ2)

x ∈ (−∞,∞) µ σ2 norm(loc=mu,scale=sigma)

Exponential

Expo(λ)

f(x) = λe−λx

x ∈ (0,∞) 1
λ

1
λ2 expon(scale=1/lambd)

Gamma
Gamma(α, β)

f(x) = βα

Γ(α)
xα−1e−βx

x ∈ (0,∞) α
β

α
β2 gamma(a=alpha, scale=1/beta)

Beta
Beta(a, b)

f(x) =
Γ(a+b)

Γ(a)Γ(b)
xa−1(1− x)b−1

x ∈ (0, 1) µ = a
a+b

µ(1−µ)
(a+b+1)

beta(a=a0, b=b0)

Multivariate Normal
N (µ,Σ) f(x) = det((2π)Σ)−

1
2 e−

1
2

(x−µ)′Σ−1(x−µ) µ Σ multivariate normal(mean=mu, cov=Sigma)



Maximum likelihood and Conjugate distributions

Data Likelihood Unknown Parameters Max Likelihood Conjugate prior Conjugate posterior MAP

x is 0 or 1
a single Bernoulli trial

Bernoulli
X ∼ Bern(p)

a probability

p ∈ [0, 1] p̂ = x p ∼ Beta(a, b)

p ∼ Beta(a, b+ 1) if x = 0

p ∼ Beta(a+ 1, b) if x = 1 p = a+x−1
a+b−1

xj is 0 or 1

j ∈ {1, . . . , n}
n Bernoulli trials

Bernoulli
Xj ∼ Bern(p)

a probability

p ∈ [0, 1] p̂ =

∑n
j=1 xj
n

p ∼ Beta(a, b)

p ∼ Beta(a+ e, b+ f)

e =
∑n
j=1 xj successes

f = n−
∑n
j=1 xj failures p =

a+
∑n
j=1 xj−1

a+b+n−2

x ∈ {0, . . . , n}
a binomial experiment with n items

Binomial
X ∼ Bin(p, n)

a probability

p ∈ [0, 1] p̂ = x
n

p ∼ Beta(a, b)

p ∼ Beta(a+ x, b+ f)

x successes, f = n− x failures p = a+x−1
a+b+n−2

x ∈ {1, 2 . . . }
a single geometric experiment

Geometric
X ∼ Geom(p)

a probability

p ∈ [0, 1] p̂ = 1
x

p ∼ Beta(a, b)

p ∼ Beta(a+ 1, b+ f)

1 success, f = x− 1 failures p = a
a+b+x−2

x ∈ {1, 2 . . . }
j ∈ {1, . . . , n}

n geometric experiments
Geometric

Xj ∼ Geom(p)

a probability

p ∈ [0, 1] p̂ = n∑n
j=1 xj

p ∼ Beta(a, b)

p ∼ Beta(a+ n, b+ f)
n successes

f =
∑
xj − n failures p = a+n−1

a+b+n+f−2

x ∈ {1, 2 . . . }
a Poisson experiment

on a time interval of length T
Poisson

X ∼ Pois(Tλ)

the process rate

λ > 0 λ̂ = x
T

λ ∼ Gamma(α, β)

λ ∼ Gamma(α+ x, β + T )

x observations, time T λ = α+x−1
β+T

tj ∈ R+

time between observations of Poisson process

j ∈ {1, . . . , n}
Exponential

Xj ∼ Expo(λ) a rate λ > 0 λ̂ = n∑n
j=1 tj

λ ∼ Gamma(α, β)

λ ∼ Gamma(α+ n, β + T )

n observations
total time T =

∑n
j=1 tj λ = α+n−1

β+
∑n
j=1 tj

xj ∈ R
a Gaussian with known mean µ

j ∈ {1, . . . , n}
Gaussian

Xj ∼ N (µ, σ)

the Gaussian variance
or the Gaussian precision

τ = 1
σ2 > 0

σ̂2 =
∑n
i=1(xi−µ)2

n

τ̂ = n∑n
i=1(xi−µ)2

τ ∼ Gamma(α, β)

τ ∼ Gamma(α̃, β̃)

α̃ = α+ n
2

β̃ = β +
∑n
i=1(xi−µ)2

2
α̃−1

β̃

xj ∈ R
a Gaussian with known precision τ = 1

σ2

j ∈ {1, . . . , n}
Gaussian

Xj ∼ N (µ, σ)
the Gaussian mean

µ ∈ R µ̂ =

∑n
j=1 xj
n

µ ∼ N (m, t = 1
s2

)

µ ∼ N (m̃, t̃)

m̃ =
t m+τ

∑n
i=1 xi

t+nτ

t̃ = t+ nτ m̃

xj ∈ R
a Gaussian with unknown parameters

Gaussian
Xj ∼ N (µ, σ)

the Gaussian
mean and variance

µ ∈ R, σ ∈ R

µ̂ = x̄ = 1
n

∑n
j=1 xj

σ̂2 = 1
n

∑n
j=1(xj − x̄)2 ... Normal-Gamma(m, t, α, β) ...

xj ∈ Rp

a Gaussian vector
with unknown parameters

Gaussian
Xj ∼ N (µ,Σ)

the Gaussian parameters

µ ∈ Rp,Σ ∈ Rp×p
µ̂ = x̄ = 1

n

∑n
j=1 xj

Σ̂ = 1
n

∑n
j=1(xj − x̄) · (xj − x̄)t ... Normal-Wishart ...

https://en.wikipedia.org/wiki/Normal_distribution#Bayesian_analysis_of_the_normal_distribution
https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Bayesian_inference
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