Python and MILP Cheatsheet

Pablo Angulo for ESTIN@UPM.ES

python

Base types

bool booleans takes only two values: True and False.
int positive and negative integers, not bounded
float floating point numbers approximate any real number (e.g.
$\left.-1.25 \mathrm{e}-6\left(-1.26 \cdot 10^{-6}\right)\right)$
str A string is a sequence of characters. Always represented with quotes or double quotes (e.g. 'Hello, World', or "Hello, World")

Variables

Identifiers start with a letter or _, may contain numbers
identifier $=$ value binds the value to the identifier
my_number = 1 Binds identifier my_number to the integer 1.
my_number += 10 Equivalent to my_number = my_number +10
$\mathrm{a}=\mathrm{b}=1$ Binds both identifiers a and b to the integer 1 .
$, \mathrm{b}=1,2$ Binds a to 1 , and b to 2
, b = ["one", "two"] unpacks list ["one", "two"], binding a to "one", and b to "two"

Inmutable container types

Inmutable types can not be modified, but new objects can be built from the old ones.
str Can only hold characters (e.g. a = "Hello, World").
tuple May hold any data type (e.g. b = (12, True, "abc"))
Operations with containers
len(container) Returns the number of elements in container.
container[index] Access an element within the container. Index starts at 0 , last element has index -1 : (e.g. $\mathrm{b}[0] \Rightarrow 12, \quad \operatorname{print}(\mathrm{~b}[-1]) \Rightarrow$ "abc").
container [start:end] Get a subsequence, or slice. start index is included, end index is excluded: (e.g. a[0:5] \Rightarrow "Hello").
container1 + container2 concatenate compatible containers (e.g. a + "!" \Rightarrow "Hello, World!")
container*number repeat container (e.g. "abc"*3 \Rightarrow "abcabcabc").
Mutable container types
dict Holds (key, value) pairs (e.g. d = \{1:"one", 2:"two"\}).
$d[1]=" u n o "$ Update an existing element $d \Rightarrow\{1: " u n o ", 2: " t w o "\})$. d[4]="four" Adds a new (key,value) pair d \Rightarrow \{1:"uno", 2:"two", 4:"four"\}).
list May hold any data type (e.g. l = [12, True, "abc"]).
$1[1: 3]=[$ False, False] Updates a whole slice $1 \Rightarrow$ [12, False
False]).
1.append(1e3) Add an element at the end of the list $1 \Rightarrow$ [12, False False, 1e3]).

Conversions
int(5.46) int () of a float truncates the decimal part.
int("14") returns the integer 14
float("12.3") returns the float 12.3.
$\operatorname{str}(2.34)$ returns the string "2.34".
bool (x) return False if x is None, the boolean False, the number 0, or an empty container.
Conditionals
Exactly one of the indented blocks of an "if/elif/else" statement will be executed (or maybe none of them if there is no "else" clause):
if some_condition: do_this()
elif other_condition
do_that()
else
do_whatever ()
Combine conditions with and, or, and using parenthesis.
\# Lines that start with \# are comments, and are not executed
if $(a>0)$ and $(a+b<=1)$:
do_this()
and_this()
\# One equal sign = for assignment, two of them == for comparison
\#! = for "not equal"
elif (len(d)!=1) or ($a==$ "Hello, Planet"):
do_that()
\# next line is not indented, so it will be executed in any case and_do_this_regardless()

Loops

for loops repeat some statements while one variable runs over the elements of a container.
$\mathrm{s}=0$
\# when the loop starts, s is 0
for x in $[1,2,3,4]$:
$s=s+x$
\# when the loop ends, s is $1+2+3+4=10$
\# when the loop ends, s is $1+2+3+4=10$ the print(s)
while loops repeat some statements while a certain condition is satisfied
$\mathrm{s}=0$
\# when the loop starts, s is 0
while $s<5$:
$s=s+1$
when the loop ends, s is 5
\# the final value, 5, will be printed only once print(s)

Functions

In the function definition, the body of the function is indented Statements in the function body are not executed when the function is defined.
def $\operatorname{suma}(x, y)$
'"'this text describes the purpose of the function','
$\mathrm{s}=\mathrm{x}+\mathrm{y}$
return
return s
In a function call, the body of the function is executed
\#the identifier z is bound to the integer 3
$z=\operatorname{suma}(1,2)$

python libraries

import modules

- Import a module import numpy my_array = numpy.zeros(10)
- Import a module using an alias
import numpy as $n p$
$\mathrm{x}=\mathrm{np} . \mathrm{pi} / 2$
- Import specific functions from a module
from numpy import sin, arcsin
\# prints "1"
print $(\sin (\arcsin (1)))$
numpy
numpy provides arrays, which are mutable data structures, but with fixed size. They are very efficient, and are designed for numerical computation. Many famous libraries are built on top of numpy.
import numpy as np
- Build an array from a list
xs $=n p . \operatorname{array}([1,10,100]$
- Add a number to all elements of the array $\mathrm{xs}+1$
$\Rightarrow \operatorname{array}([1,11,101])$
- Apply a function to all elements of the array np. $\log 10(x s)$
$\Rightarrow \operatorname{array}([0,1,2])$
- Add two arrays
xs + np. $\log 10(x s)$
$\Rightarrow \operatorname{array}([1,11,102])$
- Fill a one dimensional array with numbers from 0 to n (n is not included)
np. arange (3)
$\Rightarrow \operatorname{array}([0,1,2])$
- Fill a one dimensional array with n floating points equispaced from a to b (both a and b are included)
np.linspace ($1,2,5$)
$\Rightarrow \operatorname{array}([1,1.25,1.5,1.75,2])$
- Fill a one dimensional array with n zeros zs = np.zeros(n)
- Fill a two dimensional, $n \times m$ array (a.k.a. a matrix) with zeros. $\mathrm{A}=\mathrm{np} \cdot \operatorname{zeros}(\mathrm{n}, \mathrm{m})$)
- Fill a 5×5 array with the value 7 .
$B=7 * n p$.ones $((5,5))$
- * is the element-wise product of arrays, © is the matrix "dot product".
B $=7$ *np.ones $((5,5))$
\# 5×5 identity matrix
$\mathrm{Id}=$ np.eye (5)
\# D is diagonal, with ' 7 ' in the diagonal
$D=I d * B$
\# $\mathrm{E}=\mathrm{B}$
$E=I d @ B$
matplotlib
matplotlib can build many types of graphics that represent quantitative information. The submodule pyplot makes it easy to use.
import matplotlib.pyplot as plt
\# 101 points: 0, 0.01, 0.02... 0.99, 1
$\mathrm{xs}=\mathrm{np} . \operatorname{linspace}(0,1,101)$
\# sine and cosine are evaluated at each of those points
$\mathrm{fs}=\mathrm{np} \cdot \sin (2 * \mathrm{np} \cdot \mathrm{pi} * \mathrm{xs})$
$\mathrm{gs}=\mathrm{np} \cdot \cos (2 * \mathrm{np} \cdot \mathrm{pi} * \mathrm{xs})$
plt.figure(figsize=(10,5))
\# the graph of the sine is a dotted blue line
\# the graph of the cosine is a solid green line
plt.plot(xs, fs, "b.", label="graph of f")
plt.plot(xs, gs, "g-", label="graph of g")
plt.legend ()
plt.xlabel("x axis")
plt.ylabel("y axis")
plt.title("A graph that combines two plots")

Linear programming

optimization problems
Decision variables. Some variables x_{1}, \ldots, x_{n} whose value we can choose.

Constraints. The decision variables must satisfy all the constraints:
Equality constraint: $g\left(x_{1}, \ldots, x_{n}\right)=c$, for a certain function g of the decision variables
Inequality constraint: $h\left(x_{1}, \ldots, x_{n}\right) \leq b$, for a certain function h f the decision variables.

Objective. A function $f\left(x_{1}, \ldots, x_{n}\right)$ that we want to either minimize (eg. the less cost, the better) or maximize (e.g. the more welfare, the better).

LP and MILP problems

An optimization problem where the objective function, and all the constraints, are linear functions:

- In a Linear Programming (LP) problem, all decision variables can take any real value, provided that all the constraints are satisfied.
- In a Mixed Integer Linear Programming (MILP) problem, some decision variables can take any real value continuous variables), but others may only take integer values integer variables).

The relaxed problem

For a given MILP problem, the relaxed problem is the $L P$ program with the same decision variables, objective and constraints, but the requirement that some variables must be integer is removed

Feasible region

If there are n decision variables x_{1}, \ldots, x_{n}, the feasible region is the subset of \mathbb{R}^{n} consisting of the points of \mathbb{R}^{n} that satisfy all the constraints.
A feasible region can be bounded, unbounded or empty.

Classification of MILP problems

Unique optimal solution

Optimal value is attained at exactly one point of the feasible region

$$
\begin{array}{rr}
\text { Max: } & x+y \\
\text { Such that: } & 0 \leq x \leq 2 \\
& 0 \leq y \leq 2 \\
& x, y \in \mathbb{Z}
\end{array}
$$

Multiple optimal solution

Optimal value is attained at more than one point of the feasible region

$$
\begin{array}{cc}
\text { Max: } & \\
\text { Such that: } & 0 \leq x \leq 2 \\
& 0 \leq y \leq 2 \\
& x, y \in \mathbb{Z}
\end{array}
$$

Infeasible

Feasible region is empty: it is impossible to satisfy all the constraints simultaneously.

Unbounded

Feasible region is unbounded, and furthermore, the objective function can be optimized indefinitely.

Unbounded region, but with optimal value
It is possible that the feasible region is unbounded, but there is a finite optimal value (unique or multiple):

$$
\begin{array}{rr}
\text { Min: } & x+y \\
\text { Such that: } & 0 \leq x \leq 1 \\
& x, y \in y \\
& x, \mathbb{Z}
\end{array}
$$

The Backpack Problem
Choose several items from a list, that fit into our backpack, and so

Item	Weight	Value
I_{1}	w_{1}	v_{1}
\ldots	\ldots	\ldots
I_{n}	w_{n}	v_{n}

Decision variables

$$
x_{j}= \begin{cases}1 & \text { put item } j \text { in backpack } \\ 0 & \text { do not put item } j \text { in backpack }\end{cases}
$$

Objetive

Maximize total value, only items in the backpack contribute:

$$
\operatorname{Max}: \sum_{j=1}^{n} x_{j} v_{j}
$$

Constraints

All x_{j} are either 0 or 1, and they fit in the backpack: $\begin{aligned} \sum_{j=1}^{n} x_{j} w_{j} & \leq \quad \text { backpack capacity } \\ 0 & \leq \quad x_{j}, \text { for } j=1, \ldots, n\end{aligned}$

$$
\begin{array}{rcl}
0 & \leq & x_{j}, \text { for } j=1, \ldots, n \\
x_{j} & \leq & 1, \text { for } j=1, \ldots, n \\
x_{j} & \in & \mathbb{Z}, \text { for } j=1, \ldots, n
\end{array}
$$

optlang
from optlang import Model, Variable, Constraint Objective
model $=$ Model (name $=$ 'optlang model')
\#\#\# Decision variables, positive (lb is lower bound)
\# x is real, y is interger
$\mathrm{x}=$ Variable(' x ', $\mathrm{lb}=0$, type='continuous')
$y=\operatorname{Variable}(' y$ ', lb $=0$, type=' integer')
\#\#\# Constraints, $x+2 * y<=4, \quad 5 * x-y>=8$

model.add ([

Constraint $(x+2 * y, u b=4)$,
Constraint ($5 * x-y, \quad l b=8$)
])
\#\#\# Objetive function to be maximixed
model.objective $=$ Objective($x+2 * y-2$, direction='max')
\#\#\# Solve
status $=$ model.optimize()
\#\#\# status can be "optimal", "infeasible", "unbounded
or "undefind" if the solver decides thereund
\# or "undefined", if the solver decides there is no print("status:", model.status)
\#\#\# optimal value
\# (only acceptable if status is "optimal")
print("objective value:", model.objective value) \#\#\# print the value of each \# for the optimal solution

* (only acceptable if status is "optimal")
for var_name, var in model.variables.iteritems() :
print(var_name, "=", var.primal)

