
Python and MILP Cheatsheet

Pablo Angulo for ESTIN@UPM.ES

python

Base types

bool booleans takes only two values: True and False.

int positive and negative integers, not bounded

float floating point numbers approximate any real number (e.g.

-1.25e-6 (−1.26 · 10−6))

str A string is a sequence of characters. Always represented with
quotes or double quotes (e.g. ’Hello, World’, or "Hello, World")

Variables

Identifiers start with a letter or , may contain numbers.

identifier = value binds the value to the identifier

my number = 1 Binds identifier my number to the integer 1.

my number += 10 Equivalent to my number = my number + 10.

a=b=1 Binds both identifiers a and b to the integer 1.

a,b = 1,2 Binds a to 1, and b to 2.

a,b = ["one", "two"] unpacks list ["one", "two"], binding a to "one",
and b to "two"

Inmutable container types

Inmutable types can not be modified, but new objects can be built
from the old ones.

str Can only hold characters (e.g. a = "Hello, World").

tuple May hold any data type (e.g. b = (12, True, "abc")).

Operations with containers

len(container) Returns the number of elements in container.

container[index] Access an element within the container. Index starts
at 0, last element has index -1: (e.g. b[0]⇒ 12, print(b[-1])⇒
"abc").

container[start:end] Get a subsequence, or slice. start index is
included, end index is excluded: (e.g. a[0:5]⇒ "Hello").

container1 + container2 concatenate compatible containers (e.g. a +
"!"⇒ "Hello, World!").

container*number repeat container (e.g. "abc"*3⇒ "abcabcabc").

Mutable container types

dict Holds (key, value) pairs (e.g. d = {1:"one", 2:"two"}).

d[1]="uno" Update an existing element d ⇒ {1:"uno", 2:"two"}).

d[4]="four" Adds a new (key,value) pair d ⇒ {1:"uno", 2:"two",
4:"four"}).

list May hold any data type (e.g. l = [12, True, "abc"]).

l[1:3]=[False, False] Updates a whole slice l ⇒ [12, False,
False]).

l.append(1e3) Add an element at the end of the list l ⇒ [12, False,
False, 1e3]).

Conversions
int(5.46) int() of a float truncates the decimal part.

int("14") returns the integer 14.

float("12.3") returns the float 12.3.

str(2.34) returns the string "2.34".

bool(x) return False if x is None, the boolean False, the number 0, or
an empty container.

Conditionals
Exactly one of the indented blocks of an “if/elif/else” statement will
be executed (or maybe none of them if there is no “else” clause):

if some_condition:
do_this()

elif other_condition:
do_that()

else:
do_whatever()

Combine conditions with and, or, and using parenthesis.

Lines that start with # are comments, and are not executed
if (a>0) and (a+b<=1):

do_this()
and_this()

One equal sign = for assignment, two of them == for comparison
!= for "not equal"
elif (len(d)!=1) or (a=="Hello, Planet"):

do_that()

next line is not indented, so it will be executed in any case
and_do_this_regardless()

Loops
for loops repeat some statements while one variable runs over the
elements of a container:

s = 0
when the loop starts, s is 0
for x in [1,2,3,4]:

s = s + x
when the loop ends, s is 1+2+3+4 = 10
the final value, 10, will be printed only once
print(s)

while loops repeat some statements while a certain condition is
satisfied

s = 0
when the loop starts, s is 0
while s < 5:

s = s + 1
when the loop ends, s is 5
the final value, 5, will be printed only once
print(s)

Functions
In the function definition, the body of the function is indented.
Statements in the function body are not executed when the function is
defined.

def suma(x,y):
’’’this text describes the purpose of the function’’’
s = x + y
return s

In a function call, the body of the function is executed.

#the identifier z is bound to the integer 3
z = suma(1,2)

python libraries

import modules
• Import a module

import numpy
my_array = numpy.zeros(10)

• Import a module using an alias

import numpy as np
x = np.pi/2

• Import specific functions from a module

from numpy import sin, arcsin
prints "1"
print(sin(arcsin(1)))

numpy
numpy provides arrays, which are mutable data structures, but with
fixed size. They are very efficient, and are designed for numerical
computation. Many famous libraries are built on top of numpy.

import numpy as np

• Build an array from a list

xs = np.array([1,10,100])

• Add a number to all elements of the array

xs + 1

⇒ array([1,11,101])

• Apply a function to all elements of the array

np.log10(xs)

⇒ array([0,1,2])

• Add two arrays

xs + np.log10(xs)

⇒ array([1,11,102])

• Fill a one dimensional array with numbers from 0 to n (n is not
included)

np.arange(3)

⇒ array([0, 1, 2])

• Fill a one dimensional array with n floating points equispaced
from a to b (both a and b are included)

np.linspace(1,2,5)

⇒ array([1, 1.25, 1.5, 1.75, 2])

• Fill a one dimensional array with n zeros

zs = np.zeros(n)

• Fill a two dimensional, n×m array (a.k.a. a matrix) with zeros.

A = np.zeros((n, m))

• Fill a 5× 5 array with the value 7.

B = 7*np.ones((5,5))

• * is the element-wise product of arrays, @ is the matrix “dot
product”.

B = 7*np.ones((5,5))
5x5 identity matrix
Id = np.eye(5)
D is diagonal, with ’7’ in the diagonal
D = Id*B
E = B
E = Id@B

matplotlib

matplotlib can build many types of graphics that represent
quantitative information. The submodule pyplot makes it easy to use.

import matplotlib.pyplot as plt

101 points: 0, 0.01 , 0.02... 0.99 , 1
xs = np.linspace(0, 1, 101)
sine and cosine are evaluated at each of those points
fs = np.sin (2*np.pi*xs)
gs = np.cos (2*np.pi*xs)

plt.figure(figsize =(10 ,5))
the graph of the sine is a dotted blue line
the graph of the cosine is a solid green line
plt.plot(xs , fs, "b.", label="graph of f")
plt.plot(xs , gs, "g-", label="graph of g")
plt.legend ()
plt.xlabel("x axis")
plt.ylabel("y axis")
plt.title("A graph that combines two plots")

Linear programming

optimization problems

Decision variables. Some variables x1, . . . , xn whose value we can
choose.

Constraints. The decision variables must satisfy all the constraints:

Equality constraint: g(x1, . . . , xn) = c, for a certain function g of
the decision variables.

Inequality constraint: h(x1, . . . , xn) ≤ b, for a certain function h
of the decision variables.

Objective. A function f(x1, . . . , xn) that we want to either minimize
(e.g. the less cost, the better) or maximize (e.g. the more welfare, the
better).

LP and MILP problems

An optimization problem where the objective function, and all the
constraints, are linear functions:

• In a Linear Programming (LP) problem, all decision
variables can take any real value, provided that all the
constraints are satisfied.

• In a Mixed Integer Linear Programming (MILP)
problem, some decision variables can take any real value
(continuous variables), but others may only take integer values
(integer variables).

The relaxed problem

For a given MILP problem, the relaxed problem is the LP program
with the same decision variables, objective and constraints, but the
requirement that some variables must be integer is removed.

Feasible region

If there are n decision variables x1, . . . , xn, the feasible region is the
subset of Rn consisting of the points of Rn that satisfy all the
constraints.

A feasible region can be bounded, unbounded or empty.

Classification of MILP problems

Unique optimal solution

Optimal value is attained at exactly one point of the feasible region.

Max: x + y
Such that: 0 ≤ x ≤ 2

0 ≤ y ≤ 2
x, y ∈ Z

Multiple optimal solution

Optimal value is attained at more than one point of the feasible region.

Max: y
Such that: 0 ≤ x ≤ 2

0 ≤ y ≤ 2
x, y ∈ Z

Infeasible

Feasible region is empty: it is impossible to satisfy all the constraints
simultaneously.

Max: x + y
Such that: 1 ≤ 4x ≤ 3

1 ≤ 4y ≤ 3
x, y ∈ Z

(the feasible region of the relaxed prob-
lem is shown in blue)

Unbounded

Feasible region is unbounded, and furthermore, the objective function
can be optimized indefinitely.

Max: x + y
Such that: 0 ≤ x ≤ 1

0 ≤ y
x, y ∈ Z

Unbounded region, but with optimal value

It is possible that the feasible region is unbounded, but there is a finite
optimal value (unique or multiple):

Min: x + y
Such that: 0 ≤ x ≤ 1

0 ≤ y
x, y ∈ Z

The Backpack Problem
Choose several items from a list, that fit into our backpack, and so

that their total value is maximized

Item Weight Value
I1 w1 v1

.
In wn vn

Decision variables

xj =

{
1 put item j in backpack
0 do not put item j in backpack

Objetive

Maximize total value, only items in the backpack contribute:

Max:

n∑
j=1

xjvj

Constraints

All xj are either 0 or 1, and they fit in the backpack:∑n
j=1 xjwj ≤ backpack capacity

0 ≤ xj , for j = 1, . . . , n
xj ≤ 1, for j = 1, . . . , n
xj ∈ Z, for j = 1, . . . , n

optlang

from optlang import Model , Variable , Constraint ,
Objective

model = Model(name=’optlang model’)

Decision variables , positive (lb is lower bound)
x is real , y is interger
x = Variable(’x’,lb=0,type=’continuous ’)
y = Variable(’y’,lb=0,type=’integer ’)

Constraints , x+2*y<=4, 5*x-y >=8
model.add([

Constraint(x+2*y, ub=4),
Constraint (5*x-y, lb=8)

])

Objetive function to be maximixed
model.objective = Objective(x+2*y-2, direction=’max’)

Solve
status = model.optimize ()

status can be "optimal", " infeasible ", " unbounded "
or "undefined ", if the solver decides there is no
optimal value , but cannot decide why
print("status:", model.status)

optimal value
(only acceptable if status is "optimal ")
print("objective value:", model.objective.value)
print the value of each decision variable
for the optimal solution
(only acceptable if status is "optimal ")
for var_name , var in model.variables.iteritems ():

print(var_name , "=", var.primal)

	python
	Base types
	Variables
	Inmutable container types
	Operations with containers
	Mutable container types
	Conversions
	Conditionals
	Loops
	Functions

	python libraries
	import modules
	numpy
	matplotlib

	Linear programming
	optimization problems
	LP and MILP problems
	The relaxed problem

	Feasible region
	Classification of MILP problems
	Unique optimal solution
	Multiple optimal solution
	Infeasible
	Unbounded
	Unbounded region, but with optimal value

	The Backpack Problem
	Decision variables
	Objetive
	Constraints

	optlang

