
Python Cheatsheet

Fabricio Macià and Pablo Angulo for ESTIN@UPM.ES

python

Comments

Lines that start with # are comments, and are not executed

a = 1
a = 2
=> a is still 1

Base types

bool booleans takes only two values: True and False.

int positive and negative integers, not bounded

float floating point numbers approximate any real number (e.g.

-1.25e-6 (−1.26 · 10−6))

str A string is a sequence of characters. Always represented with
quotes or double quotes (e.g. ’Hello, World’, or "Hello, World")

Variables

Identifiers start with a letter or , may contain numbers.

identifier = value binds the value to the identifier

my number = 1 Binds identifier my number to the integer 1.

my number += 10 Equivalent to my number = my number + 10.

a=b=1 Binds both identifiers a and b to the integer 1.

a,b = 1,2 Binds a to 1, and b to 2.

a,b = ["one", "two"] unpacks list ["one", "two"], binding a to "one",
and b to "two"

Inmutable container types

Inmutable types can not be modified, but new objects can be built
from the old ones.

str Can only hold characters (e.g. a = "Hello, World").

tuple May hold any data type (e.g. b = (12, True, "abc")).

Operations with containers

len(container) Returns the number of elements in container.

container[index] Access an element within the container. Index starts
at 0, last element has index -1: (e.g. b[0]⇒ 12, print(b[-1])⇒
"abc").

container[start:end] Get a subsequence, or slice. start index is
included, end index is excluded: (e.g. a[0:5]⇒ "Hello").

container1 + container2 concatenate compatible containers (e.g. a +
"!"⇒ "Hello, World!").

container*number repeat container (e.g. "abc"*3⇒ "abcabcabc").

Formatting strings
Old style formatting (I) Place one format code inside the string,
follow the string by a % sign, then a variable. The variable will replace
the format code.

nducks = 7
’... and %d ducks came’%nducks # => ’... and 7 ducks came

’

Old style formatting (II) Place more than one format code inside
the string, followed by a tuple with as many elements as format codes
in the string

animal = ’duck’
weight = 3.1416
mystring = ’The %s weights %.3f kg’%(animal , weight)
mystring : ’The duck weights 3.142 kg’

New style formatting An f-string may have references to any
variables defined before.

animal = ’duck’
weight = 3.1416
mystring = f’The {animal} weights {weight :.4} kg’
mystring : ’The duck weights 3.142 kg’

Mutable container types
list May hold any data type (e.g. l = [12, True, "abc"]).

l[1:3]=[False, False] Updates a whole slice ⇒ l is [12, False,
False]).

l.append(1e3) Add an element at the end of the list ⇒ l is [12,
False, False, 1e3]).

dict Holds (key, value) pairs (e.g. d = {1:"one", 2:"two"}).

d[1]="uno" Update an existing element d ⇒ {1:"uno", 2:"two"}).
d[4]="four" Adds a new (key,value) pair d ⇒ {1:"uno", 2:"two",
4:"four"}).

Conversions
1 + 1.0 sum of int and float automatically promotes to float.

int(5.56) (=> 5) int() of a float truncates the decimal part.

round(5.56) (=> 6) round() of a float rounds to the nearest int.

np.round(5.56) (=> 6.0) while method round() from numpy rounds to
the nearest integer, but the result is of type float.

int("14") returns the integer 14 (but int(’5.56’) throws an error!).

float("12.3") returns the float 12.3.

str(2.34) returns the string "2.34".

bool(x) return False if x is None, the boolean False, the number 0, or
an empty container.

Conditionals
Exactly one of the indented blocks of an “if/elif/else” statement will
be executed (or maybe none of them if there is no “else” clause):

if some_condition:
do_this ()

elif other_condition:
do_that ()

else:
do_whatever ()

Combine conditions with and, or, and using parenthesis.

if (a>0) and (a+b<=1):
do_this ()
and_this ()

One equal sign = for assignment , two == for
comparison , != for "not equal"

elif (len(d)!=1) or (a=="Hello , Planet"):
do_that ()

next line is not indented , so it will be executed in
any case

and_do_this_regardless ()

Loops

for loops

for loops repeat some statements while one variable runs over the
elements of an iterable:

s = 0
when the loop starts , s is 0
for x in [1,2,3,4]:

s = s + x
when the loop ends , s is 1+2+3+4 = 10
the final value , 10, will be printed only once
print(s)

while loops

while loops repeat some statements while a certain condition is
satisfied

s = 0
when the loop starts , s is 0
while s < 5:

s = s + 1
when the loop ends , s is 5
the final value , 5, will be printed only once
print(s)

break out of a loop

The keyword break stops execution of a loop.

s = 0
for i in range(1, 100):

s = s + i
if s==3:

break
s is 0 + 1 + 2 + 3 = 6

List comprehensions

� Transform a list

>>> [x**2 for x in range (4)]
[0, 1, 4, 9]

� Filter a list

>>> [x for x in range (4) if x%2==1]
[1, 3]

� Both things at once

>>> [x**2 for x in range (4) if x%2==1]
[1, 9]

Functions
In the function definition, the body of the function is indented.
Statements in the function body are not executed when the function is
defined.

def mysum(x,y):
’’’this text describes the purpose of the function

It is called the docstring .’’’
s = x + y
return s

In a function call, the body of the function is executed.

the identifier z is bound to the integer 3
z = mysum (1,2)

Default values for optional arguments

If a function argument has a default value, it is optional:

def sum_of_powers(x, y, p=2):
return x**p + y**p

>>> sum_of_powers (2, 2)
8
>>> sum_of_powers (2, 2, p=3)
16

python libraries

import modules
� Import a module

import numpy
my_array = numpy.zeros(10)

� Import a module using an alias

import numpy as np
x = np.pi/2

� Import specific functions from a module

>>> from numpy import sin, arcsin
>>> print(sin(arcsin(1)))
1

Anonymous functions

The lambda keyword gives an alternative way to define functions:

filter_multiples_of_3 = lambda x: (x % 3 == 0)

Any function that can be defined with lambda can also be defined with
def:

def filter_multiples_of_3(x):
return x % 4 == 0

numpy
numpy provides arrays, which are mutable data structures, but with
fixed size. They are very efficient, and are designed for numerical
computation. Many famous libraries are built on top of numpy.

import numpy as np

� Build an array from a list

>>> xs = np.array([1,10,100])

� Add a number to all elements of the array

>>> xs + 1
array([1,11,101])

� Apply a function to all elements of the array

>>> np.log10(xs)
array([0,1,2])

� Add two arrays

>>> xs + np.log10(xs)
array([1,11,102])

� Fill a one dimensional array with numbers from 0 to n (n is not
included)

>>> np.arange(3)
array([0, 1, 2])

� Fill a one dimensional array with n floating points equispaced
from a to b (both a and b are included)

>>> np.linspace(1,2,5)
array([1, 1.25, 1.5, 1.75, 2])

� Fill a one dimensional array with n zeros

zs = np.zeros(n)

� Fill a two dimensional, n×m array (a.k.a. a matrix) with zeros.

A = np.zeros((3, 4))

� Fill a 5 × 5 array with the value 7.

B = 7*np.ones((5,5))

� * is the element-wise product of arrays, @ is the matrix “dot
product”.

B = 7*np.ones((5,5))
5x5 identity matrix
Id = np.eye(5)
D is diagonal, with ’7’ in the diagonal
D = Id*B
E = B
E = Id@B

� reshape changes the dimensions of the array, as long as it keeps
the same number of elements.

>>> M = np.arange(12).reshape((3,4))
>>> M
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

� Sum elements of a matrix along different axis

>>> M.sum(axis=0)
array([12, 15, 18, 21])
>>> M.sum(axis=1)
array([6, 22, 38])

� Keep only first row, second to last column

>>> M[0, 1:]
array([1, 2, 3])

� An array of booleans can work as a slice

>>> v = np.arange(10,20)
>>> v[v%2 == 1]
array([11, 13, 15, 17, 19])

matplotlib
matplotlib can build many types of graphics that represent
quantitative information. The submodule pyplot makes it easy to use.

Line plot of a function

import matplotlib.pyplot as plt
def myfun(x):

return np.sin(x**2 + 1)

xmin , xmax = -3, 3 # plotting interval
N = 100 # number of subdivions
xs = np.linspace(xmin , xmax , N)
ys = myfun(xs)
plt.plot(xs , ys, ’g’) # ’g’ for green

Combine plots, with labels and titles

fun1 = np.exp
fun2 = lambda xs: np.exp(xs+1)

xmin , xmax = -1,8
N = 100
xs = np.linspace(xmin , xmax , N)
ys1 = fun1(xs)
plt.plot(xs , ys1 , ’g’, label=’exp(x)’)

ys2 = fun2(xs)
plt.plot(xs , ys2 , ’b*’, label=’exp(x+1)’)

plt.title(’Plot of two functions ’)
plt.xlabel(’x’)
plt.legend ()
plt.show()

	python
	Comments
	Base types
	Variables
	Inmutable container types
	Operations with containers
	Formatting strings
	Mutable container types
	Conversions
	Conditionals
	Loops
	for loops
	while loops
	break out of a loop
	List comprehensions

	Functions
	Default values for optional arguments

	python libraries
	import modules
	Anonymous functions

	numpy
	matplotlib
	Line plot of a function
	Combine plots, with labels and titles

