diferencias divididas

December 12, 2019

Diferencias divididas de sumas y productos

Apartado 1 1.1

Crea una función que: - Recibe como argumentos dos listas de valores: - una lista de ordenadas xs, de longitud n - otra lista ys de la misma longitud (que contiene el resultado de evaluar una cierta función f en cada punto de xs) - Devuelve un array Tf de dimensiones $n \times n$ con todas las diferencias divididas del tipo $f[x_{\nu},...,x_{\nu+j}]$, almacenadas en Tf de la forma siguiente: - En la entrada (i,j), si i > j, dejamos $T_f[i,j] = 0$. - En la diagonal principal aparecen los valores $T_f[j,j] = 0$ $f(x_i) = y_i$. - Sobre la diagonal i < j aparecen diferencias divididas en puntos consecutivos:

$$T_f[i,j] = f[x_i, x_{i+1}, \dots, x_j]$$

En otras palabras

$$T_{f} = \begin{pmatrix} f[x_{0}] & f[x_{0}, x_{1}] & f[x_{0}, x_{1}, x_{2}] & \cdots & f[x_{0}, x_{1}, x_{2}, \dots, x_{n}] \\ f[x_{1}] & f[x_{1}, x_{2}] & \cdots & f[x_{1}, x_{2}, \dots, x_{n}] \\ & f[x_{2}] & & f[x_{2}, \dots, x_{n}] \\ & & \ddots & \vdots \\ & & & f[x_{n}] \end{pmatrix}$$

In []:

1.2 Apartado 2

- Dadas dos funciones f y g, y una lista de ordenadas x_0, \ldots, x_n , creamos las matrices T_f y T_g definidas antes.
- ullet Creamos también la matriz T_{fg} que corresponde a la función producto x
 ightarrowf(x)g(x) y la matriz T_{f+g} que corresponde a la función suma $x \to f(x) + g(x)$.

Comprueba empíricamente las dos afirmaciones anteriores.

In []:

1.3 Apartado 3

Para un polinomio:

$$P(x) = a_0 + a_1 x + \dots + a_n x^n$$

las dos propiedades anteriores implican

$$T_P = a_0 \cdot Id + a_1 \cdot T_x + a_2 \cdot (T_x)^2 + \dots + a_n \cdot (T_x)^n.$$

- Utiliza esta identidad para encontrar los coeficientes del polinomio Q que interpola a otro polinomio P dado por la expresión

$$P(x) = 1 + 2x + 3x^2 + 4x^3$$

en los puntos $x_1 = 1$, $x_2 = 2$, $x_2 = 3$. - Comprueba tu solución construyendo el polinomio interpolador por otra técnica diferente, y dibujando ambos polinomios interpoladores.

In []:

1 Péndulo amortiguado

Un péndulo amortiguado sigue la ecuación:

$$m \cdot l \cdot \theta'' + k \cdot l \cdot \theta' + m \cdot g \cdot \sin(\theta) = 0$$

donde

- *l* longitud del péndulo (= 10 m).
- θ ángulo que forma la cuerda con la vertical.
- g aceleración de la gravedad ($\approx 10 \text{ m/sg}$).
- masa de la bola (= 20 kg).
- k coeficiente de fricción del medio (= 4 kg/sg).

1.1 Apartado 1

El péndulo comienza en la posición de reposo. Se imprime al péndulo una velocidad inicial de 1 rad/s.

• Resuelve de forma aproximada el PVI correspondiente al problema anterior, cuando $\theta(0) = 0$, $\theta'(0) = 1$, usando un método adaptativo, en el intervalo de tiempo [0,60]. Dibuja los puntos que ha utilizado el método adaptativo para aproximar la solución.

[]:

1.2 Apartado 2

• Interpola los valores obtenidos en el apartado anterior usando el polinomio de Lagrange, y la spline cúbica. Estima el máximo de la diferencia entre el resultado de interpolar con uno y otro método, en el intervalo [0,60].

[]:

1.3 Apartado 3

Fijamos los valores de

- *l* longitud del péndulo (= 10 m).
- k coeficiente de fricción del medio (= 4 kg/sg).

pero buscamos elegir el parámetro m de modo que al dejar caer el péndulo desde la posición inicial $\theta(t_0) = -\pi/2$, el péndulo rebote hasta una posición *máxima* de $\theta(t_0) = +\pi/4$. Para ello:

1. Escribe una función f que reciba como argumento la masa m del péndulo, y devuelva el ángulo máximo que alcanza el péndulo cuando parte de su posición inicial con $\theta'(t_0) = 0, \theta(t_0) = -\pi/2$.

- 2. Encuentra el valor de m para el que f (m) es igual a $+\pi/4$. Explica qué método has utilizado para encontrar ese valor de m.
- 3. Comprueba la solución dibujando la trayectoria con las condiciones iniciales del enunciado, y la masa m encontrada.

[]:

1.4 Apartado 4

Volvemos a fijar la masa m=20.

En nuestro modelo la masa se concentra en el extremo del péndulo:

- la velocidad de la masa situada en el extremo del péndulo es $l \cdot \theta'(t)$.
- el desplazamiento Δs es la distancia recorrida $\Delta s = l \cdot \Delta \theta = l \cdot \theta' : \Delta t$.

La fuerza de fricción en el instante t es k · velocity $= k \cdot l \cdot \theta'(t)$. El trabajo total de fricción durante todo el intervalo es la integral del producto de la fuerza por el desplazamiento.

Work =
$$\int$$
 Friction $ds = \int_{t_0}^{t_f}$ Friction $l\theta' dt = \int_{t_0}^{t_f} kl^2(\theta')^2 dt$

Aproxima la integral anterior para estimar la energía total disipada, usando algún método de cuadratura numérica. Explicita el método elegido, y explica tu elección de método.

Pista: Antes de llamar al método de cuadratura, es conveniente obtener valores de θ' en una serie de puntos equiespaciados, y para ello puedes usar cualquier método de interpolación, pero también los atributos t_eval en python, o tspan en matlab.

[]: