
Python Cheatsheet

Pablo Angulo and Fabricio Macià for ESTIN@UPM.ES (layout by
wzchen)

Errors

Types of error
Measurement error Noise, imprecision of measuring instrument, etc

Model error Our model is a simplification of the real word

Truncation error Replace a complicated or unknown function by a
polynomial, etc

Rounding error Represent real numbers with finite precision, and
perform computations with the approximations instead of the original
numbers.

Big O

f(x) = O(g(x)) when x → a

f(x) = O(g(x)) when x→ a ⇔ |f(x)| ≤M |g(x)| when |x− a| < δ, for
some δ,M > 0. If a = 0, ∆x is small, and:

f(∆x) = p(∆x) +O(∆x
n

)

g(∆x) = q(∆x) +O(∆x
m

)

r = min(n,m)

then

• f + g = p+ q +O(∆xr)

• f ·g = p·q+p·O(∆xm)+q·O(∆xn)+O(∆xn+m) = p·q+O(∆xr)

f(x) = O(g(x)) when x → ∞
f(x) = O(g(x)) when x→∞ ⇔ |f(x)| ≤M |g(x)| when x > K, for
some K,M > 0. If

f(x) = p(x) +O(x
n

)

g(x) = q(x) +O(x
m

)

k = max(n,m)

• f + g = p+ q +O(xk)

• f · g = p · q + pO(xm) + qO(xn) +O(xn+m) = p · q +O(xn+m)

Taylor theorem

f(x) =

N∑
n=0

f(n)(x0) · (x− x0)n

n!
+O(x

n+1
)

Horner’s nested evaluation
In order to evaluate f(x) = a0 + a1 x+ · · ·+ an x

n at x = x0, place
parenthesis like this:

f(x) = a0 + x · (a1 + x · (a2 + · · ·+ x · an))

This reduces computing time and rounding error.

coefs = [a0 ,a1 ,a2 ,... ,an]
def Horner(x0 , coefs):

r = coefs[-1]
for a in reversed(coefs [:-1]):

r = r*x0 + a
return r

Floating point numbers
32-bit floating point

• One bit for the sign

• 8 bits for exponent

• 23 bits for mantissa

Intuition:

• The exponent chooses a window between two consecutive
powers of 2: [2s, 2s+1].

• The mantissa choose one of 223 points regularly spaced in the
interval [2s, 2s+1]. [1]

Root finding with scipy.optimize

Goal: Given f : R→ R, find c ∈ R st f(c) = 0.

Plot a function and find a root

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import bisect
def f(x):

return x**3 - 4*np.sin(x) - 1
a, b = -2, 2
x0 = bisect(f, a, b)
xs = np.linspace(a-1,b+1 ,100) # regularly spaced points
plt.plot(xs ,f(xs)) # draw f
plt.axhline(color=’k’) # draw x axis
plt.plot([a, b], [0,0], ’o’) # initial interval
plt.plot([x0], [0], ’o’) # root

Bisection method
• A real-valued continuous function f defined on an interval [a, b]

• The signs of f(a) and f(b) are different ⇒ by Bolzano theorem
there is a root c ∈ [a, b] st f(c) = 0.

• Guaranteed to find one root, but may pick any if there is more
than one.

• Guaranteed to achieve precision b−a
2n after n iterations.

INIT Start with interval = [a,b]

REPEAT c=(a+b)/2. If sign(f(a))!=sign(f(c)), then set interval =
[a,c], otherwise it must hold that sign(f(c))!=sign(f(b)), and we set
interval = [c,b].

UNTIL Repeat until length of interval is smaller than xtol.

• Find an approximation to the root

x0 = bisect(f, a, b)

• Outputs information about convergence

x0, extra = bisect(f, a, b, full_output=True)

Secant method

• A function f with a simple root x0 (e.g. f ′(x0) 6= 0).

• Convergence is faster than the bisection method.

• Generalizes to higher dimensions (Broyden’s method).

• Needs a good initial approximation.

• Does not need the first derivative of f .

INIT Start with two approximations to the root x0,x1

REPEAT Compute a new point x2 = x1 -
f(x1)*(x1-x0)/(f(x1)-f(x0)) (root of the linear function through
(x0, f(x0)) and (x1, f(x1))). Then advance the indices x0,x1=x1,x2.

UNTIL Two stop criterion are common (choose one):

x-tolerance Repeat until np.abs(x1-x0) is smaller than xtol.

y-tolerance Repeat until np.abs(f(x1)) is smaller than ytol.

• Find an approximation to the root

from scipy.optimize import newton
xroot = newton(f, x0=xfirst , x1=xsecond)

• Find an approximation to the root, makes up xsecond if not
provided

xroot = newton(f, x0=xfirst)

• Outputs information about convergence

xroot , extra = newton(f, x0=xfirst , x1=xsecond ,
full_output=True)

http://github.com/wzchen/probability_cheatsheet
http://github.com/wzchen/probability_cheatsheet
https://fabiensanglard.net/floating_point_visually_explained/index.html

Newton method

• A function f with a simple root x0 (e.g. f ′(x0) 6= 0).

• Convergence is quadratic.

• Generalizes to higher dimensions.

• Needs a good initial approximation.

• Needs the first derivative of f .

INIT Start with one approximations to the root x0

REPEAT Compute a new point x1 = x0 - f(x0)/f’(x1) (root of the
linear function through (x0, f(x0)) with slope f ′(x1). Then advance
the indices x1=x0.

UNTIL Two stop criterion are common (choose one):

x-tolerance Repeat until np.abs(x1-x0) is smaller than xtol.

y-tolerance Repeat until np.abs(f(x1)) is smaller than ytol.

• Find an approximation to the root, fprime was computed by
hand :-/

xroot = newton(f, x0=xfirst , fp=fprime)

• Use sympy to compute derivative of f:

import sympy as sym
x = sym.symbols(’x’) # define a symbol
y is a symbolic function
y = 1 + (x**3 - 4*x) + sym.log (1+x**2)
derivative of y with respect to x
yder = sym.diff(y,x)
lambdify builds a python function that accepts

numpy arrays
f = sym.lambdify(x, y)
fp = sym.lambdify(x, yder)
xroot = newton(f, x0, fp=fp)

• Outputs information about convergence

x0, extra = newton(f, x0, fp , full_output=True)

Finding roots in higher dimension

from scipy.optimize import root
def F(xs):

x,y=xs
return y + np.log(x), x-np.sin(y)

output = root(F, [1,1]) # contains root and convergence
information

F(output[’x’]) # output[’x ’] is a root => F(output[’x
’]) is almost zero

Interpolation

Interpolating polynomial

Definition

The interpolating polynomial of f through points
(x0, y0), . . . (xn, yn), where the xi are all different, is the unique
polynomial P of degree ≤ n such that P (xi) = yi for i = 0, 1, . . . , n.

Error

When yi = f(xi) for a (N + 1)-times differentiable function:

Error = f(x)− P (x) =
(x− x0)(x− x1) . . . (x− xN)

(N + 1)!
f
(N+1)

(ξx),

for some unknown point ξx in the interval of the points (xi).

Vandermonde matrix

The coefficients a = (ai)
n
i=0 of P satisfy a linear system of equations:

a0 + a1 x0 + · · ·+ an x
n
0 = y0

a0 + a1 x1 + · · ·+ an x
n
1 = y1,

.

.

.
a0 + a1 xn + · · ·+ an x

n
n = yn.

or V · a = y, for the Vandermonde matrix V of the points (xi).

Lagrange form of the interpolating polynomial

P (x) := y0`0(x) + y1`1(x) + · · ·+ yN `N (x).

where

`j(x) :=
∏

0≤m≤N
m6=j

x− xm

xj − xm

;

Newton’s form

P (x) = f [x0] + f [x0, x1](x− x0) + . . .
+f [x0, . . . , xN](x− x0)(x− x1) . . . (x− xN−1).

where f [xm, . . . , xm+j] are the divided differences, defined for
j = 1, . . . , N and m = 0, . . . , N − j as:

f [xm, . . . , xm+j] :=
f [xm+1, . . . , xm+j]− f [xm, . . . , xm+j−1]

xm+j − xm

.

and for m = 0, . . . , N :

f [xm] := f(xm), m = 0, . . . , N

numpy’s polyfit and polyval

polyfit Returns the coefficients of the polynomial P of degree k that
minimizes squared error between f and P through points xs (an
approximation polynomial).

ys = f(xs)
coefs = np.polyfit(xs , ys, k)

polyfit If k is the number of points minus 1, then polyfit actually
computes the interpolating polynomial:

coefs = np.polyfit(xs , ys, len(xs) -1)

polyval Evals a polynomial on a set of points xeval, where the
polynomial is given by its coefficients coefs.

xeval = np.linspace (-1,1,100) # 100 evenly spaced
points , for plotting

yeval = np.polyval(coefs , xeval)

Chebyshev nodes

The interpolating polynomial does not need the points to be evenly
spaced. Indeed, evenly spaced points can lead to large errors
(Runge’s phenomenon). This can be avoided if nodes are chosen
carefully. For instance, Chebyshev nodes minimize the error. For the
interval [−1, 1], the nodes are:

xk = cos

(
(2k − 1)π

2N

)
for k = 1, . . . , N

Hermite interpolation

Given (n+ 1) different points x0, . . . , xn, we look for a polynomial
P (x) of degree ≤ 2n+ 1 satisfying:

P (x0) = y0, . . . , P (xn) = yn

P
′
(x0) = z0, . . . , P

′
(xn) = zn.

• Theory is analogous to that for interpolating polynomials.

• It is possible to define Hermite polynomial interpolators that fit
derivatives of degree higher than one.

Piecewise linear interpolation (Linear Splines)

The linear spline sn interpolating through (xj , yj)nj=0 is defined

piecewise: a linear (degree one polynomial) on each [xj , xj+1] that
interpolates the given values.

• This forces, for x in [xj , xj+1]:

sn(x) = yj +
yj+1 − yj
xj+1 − xj

(x− xj).

• When yj = f(xj) the error satisfies:

|f(x)− sn(x)| ≤
h2

8
max

[x0,xn]
|f ′′(x)|,

where
h = max

i=0,...,N−1
|xi+1 − xi|.

• Create an UnivariateSpline object interpolating piecewise
linearly points with x coordinates xs and y-coordinates ys:

from scipy.interpolate import UnivariateSpline
s = UnivariateSpline(xs , ys , k=1)

Cubic splines
The cubic spline interpolating through (xj , yj)nj=0 is defined piecewise:

a cubic polynomial Sj in each interval [xj , xj+1] such that:

• It interpolates the given values (this implies that S is
continuous)

Sj(xj) = yj , Sj(xj+1) = yj+1

• It has a continuous first derivative. It is sufficient to check at
the nodes:

S
′
j(xj) = S

′
j+1(xj)

• It has a continuous second derivative. It is sufficient to check at
the nodes:

S
′′
j (xj) = S

′′
j+1(xj)

The above amounts to 4n− 2 conditions, for a total of 4n degrees of
freedom (4 for each interval [xj , xj+1]). So there are two missing
conditions, and there are several alternatives:

Natural boundary conditions S′′0 (x0) = 0, S′′n(xn) = 0

Clamped boundary conditions S′0(x0) = 0, S′n(xn) = 0

‘Not-a-knot’ boundary conditions S′′′1 (x0) = S′′′1 (x1),
S′′′n−1(xn−1) = S′′′n (xn−1).

• Create a CubicSpline object interpolating points with
x-coordinates xs and y-coordinates ys:

from scipy.interpolate import CubicSpline
cs3 = CubicSpline(xs, ys)

• Use different boundary conditions (default is ’not-a-knot’)

from scipy.interpolate import CubicSpline
cs3 = CubicSpline(xs, ys , bc_type=’natural ’)

• Eval a CubicSpline on a set of points xeval.

200 evenly spaced points , for plotting
xeval = np.linspace(min(xs), max(xs), 200)
eval the cubic spline on xeval , and plot
plt.plot(xeval , cs3(xeval))

	Errors
	Types of error
	Big O
	f(x) = O(g(x)) when x a
	f(x) = O(g(x)) when x

	Taylor theorem
	Horner's nested evaluation
	Floating point numbers

	Root finding with scipy.optimize
	Plot a function and find a root
	Bisection method
	Secant method
	Newton method

	Finding roots in higher dimension
	Interpolation
	Interpolating polynomial
	Definition
	Error
	Vandermonde matrix
	Lagrange form of the interpolating polynomial
	Newton's form
	numpy's polyfit and polyval
	Chebyshev nodes

	Hermite interpolation
	Piecewise linear interpolation (Linear Splines)
	Cubic splines

