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Introduction

Riemannian manifold. Smooth nmanifoldM , with or without boundary, with an scalar
product gp at each TpM

Finsler manifold. Smooth n manifold M , with or without boundary, with a norm ϕp at
each TpM : convex, 1-homogeneous, (it may not satisfy ϕp(−v)= ϕp(v))

Lenght of a curve. length(α)=
∫

0

T
ϕp(α

′(t))

Distace on M induced by ϕ. d(p, q)= inf {lenght(α):α(0)= p, α(1)= q}.

Geodesic. An extremal of the lenght functional α→ lenght(α) with fixed endpoints . In

equations: ϕp(γ(t), γ
′(t))=

d

dt
( ϕv(γ(t), γ

′(t)))

Tip: a geodesic is unique if its starting point and speed are given.

Minimizing geodesic. lenght(γ) = d(γ(0), γ(T ))

Tip: every geodesic is minimizing when restricted to small enough interval.

Tip: every minimizing curve is a geodesic.

Exponential map at p. Send v ∈ TpM to the tip of the unit time geodesic with initial
speed v

Tip: it is a diffeomorphism from an injectivity set onto a normal neighborhood of p, but may develop
singularities later (related to conjugate points along geodesics).
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The Cut Locus

M : Finsler manifold with boundary. The cut locus Cut∂M with respect to ∂M

can be defined in several equivalent ways:

• For p∈∂M , let γp be the unit speed geodesic γ with initial point p and initial speed orthogonal to ∂M

(and inner-pointing). Define

tcut(p)= sup {t: d(γp(0), γp(t))= t}

Then

Cut= {γp(tcut(p)): p∈ ∂M }

• Cut= {p∈M : d∂M is singular} (the closure of the set of points where d∂M is singular)

• ...there are more definitions.
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Boundary Value Problems for Hamilton-Jacobi equations

Find H :M →R such that:

H(p, du(p))=1 p∈M

u(p)=g(p) p∈ ∂M
(1)

• H−1(1)∩Tp
∗M is convex for every p, and contains 0.

• M is a smooth and compact manifold with boundary, H and g are
smooth.

• The boundary data satisfies a compatibility condition (more about it
later)

|g(y)− g(z)|<d(y, z) (2)
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A geometrical interpretation

1. We can assume H is a norm in each vector space Tp
∗M (if necessary,

replace H with H̃ (p, w) = t, for the only t > 0 such that H(p,
1

t
w) = 1)

2. Define the dual norm ϕp in TpM

ϕp(v) = sup {〈v, α〉p : α∈Tp
∗M , H(p, α) = 1}

3. This is a Finsler metric, which induces a distance d in M

4. The metric is Riemannian iff H is quadratic in its second argument.
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Classical solution by characteristic curves

The HJ equations are first order PDEs, and thus there is a solution using
characteristic curves, defined only in a neighborhood of ∂M .

If x= γ(t) for a characteristic γ with γ(0) = y, then u(x) = t+ g(y)

The characteristic curves are geodesics of ϕ, whose initial condition at
y ∈ ∂M is the vector Vy satisfying:

ϕy(Vy) = 1 Vy |Ty(∂M)=dg Vy points inwards

In particular, if g is constant and ϕ Riemannian, V is perpendicular to ∂M .

For a vector V in a Finsler space, w= V̂ is its dual one-form, given by:

wj=
∂ϕ

∂V j
(p, V )

This is the usual definition of dual form if ϕ is a riemannian metric.

7



Viscosity solution

A viscosity solution is a solution in a weak sense, defined in all M . There is
a definition of viscosity solution, and a lot of literature. We only need the Lax-
Oleinik formula, which describes the viscosity solution in terms of the Finsler
distance and the boundary data:

u(p) = infq∈∂M {d(p, q) + g(q)}

Comments

• The compatibility condition |g(y)− g(z)|<d(y, z) is necessary and suf-
ficient for solutions to exist.

• If g=0, then u is the distance to the boundary .

• The solution is not C1 in all of M ⇒ It has a singular set

The solution obtained with characteristic curves coincides
with the viscosity solution where both are defined.
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The singular set

Characteristic curves from ∂M intersect each other if continued indefinitely.

The extra information required to get the viscosity solution from the classical
one is a criterion to decide which characteristic curve is used to compute the
value of u at a given point.

This extra information is the singular set of the solution u:

Let Sing be the closure of the singular set of u
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What do we know about this singular set?

If g=0: u is the distance to the boundary, Sing is the cut locus.

Theorem. (2.1.6) A solution with g � 0 in M is the restriction of the solution
with g=0 in a bigger set Γ⊃M:

H(p, dv(p))=1 p∈Γ
v(p)=0 p∈ ∂Γ

u=v |M
Sing(u)=Sing(v)

So Sing is always the cut locus of some Finsler manifold .
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Structure of the singular set

Cut loci (singular sets for HJBVP) are studied by PDE and geometry people

• The singular set is a deformation retract of M (obvious).

• It is the union of a (n− 1)-dimensional smooth manifold consisting
of “cleave points” with two minimizing geodesics and a set of Haus-
dorff dimension at most n− 2 (Hebda87, Itoh-Tanaka98, Barden-Le97,
Mantegazza-Menucci03 for the riemannian case).

• The singular set is stratified by the dimension of the subdifferential ∂u
(Alberti-Ambrosio-Cannarsa-Etcetera92-94).

• It has finite Hausdorff measure Hn−1 (Itoh-Tanaka00 for riemannian
manifolds, Li-Nirenberg05 for Finsler).

• If we add a generic perturbation to H or M , Sing becomes a stratified
smooth manifold (Buchner78).
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However, a cut locus can be pretty bad:

In Gluck-Singer78, the authors show

there are plenty of non-triangulable

cut loci.

Sing has the homotopy of M , but its topology may be non-trivial.

The cut locus of a ball in R
3 could be the house with two rooms:

This figure was taken from the book Algebraic Topology by Allen Hatcher
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Balanced split locus

Let’s start looking at the cut locus from scratch:

Definition. (2.2.1) We say S⊂M splits M iff every point p∈M \S belongs
to a unique normal geodesic from ∂M contained in M \S.

If S splits M , and p∈M \S, Rp is the speed of the normal geodesic from ∂M to p in M \S.
If p∈S, let Rp be the limit set of vectors Rq when q→ p.

Definition. (2.2.6) S is a split locus iff S = {p∈S: #Rp> 2}

An arbitrary split locus and the cut locus of M

Equivalently, S is a split locus iff S is closed, it splits M , and no closed S ′(S splits M .
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Definition. (2.2.8) A split locus S is balanced iff the following holds:

Let pn be a sequence of points and Xn∈Rpn be a sequence of vectors. If pn→ p, Xn→X,
and the vector from pn to p converges to v, then:

X̂ (v)> Ẑ (v) ∀Z ∈Rp

In riemannian geometry , X̂ (v) =<X, v >=|v‖X |cos (∠(X, v)), so the balanced property
means that the angle of the incoming vector with the limit vector X is smaller than the angle
it makes with any other vector of Rp.
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Our structure results

It turns out that most existing structure results for the cut locus also hold for balanced split
locus . Suspicious, uh?

To prove our results we first had to adapt the existing structure results to Finsler geometry
and/or to balanced split locus: (3.3.2), (3.3.3), (4.2.5), (4.2.6).

We also proved the following:

Theorem. (3.2.4)The set of points p∈M such that Rp contains a conjugate
geodesic of order >2 has Hausdorff dimension 6n− 3.

Proof. The set of conjugate points of order 2 is the union of two sets: Q2
1 and Q2

2.

The image of Q2
2 has Hausdorff dimension 6n− 3 (uses Morse-Sard-Federer),

and vectors in Q2
1 do not map to vectors in the sets Rp. �

Remark. In more standard terminology, this can be rephrased as “the set of
points that can be joined to ∂M with a minimizing geodesic conjugate of order
2 has Hausdorff dimension 6 n− 3”.

The restriction to minimizing geodesics is essential: the Hausdorff dimension
of F (Q2

1) may well be n− 2.
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Corollary. (3.1.2) A balanced split locus S consists of:

• Cleave points (Rp= {X1, X2}, each Xi is regular)(a smooth non-connected hypersurface)

• Edge points (Rp consists of one conjugate vector of order 1) (Hausdorff dimension n− 2)

• Degenerate cleave points (Rp={X1,X2}, Xi may be conjugate of order 1) (Hausdorff dimension
n− 2)

• Crossing points (Rp={X̂ :X ∈Rp} is contained in an affine 2D plane, Rp has regular and conjugate
vectors of order 1) ( rectifiable set of dimension n− 2)

• Remainder (Hausdorff dimension n− 3)

Comment: this is interesting to study brownian motion on manifolds .
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Characterization of the singular set for HJBVP

The singular set of the viscosity solution to a HJBVP is a balanced split locus (2.3.1, 2.3.2)

Is it the only balanced split locus?

M is simply connected and
∂M connected (4.2.1)

→
The singular set is the
unique balanced split locus

M is simply connected, ∂M
is not connected (4.2.2)

→

We can add a different con-
stant to g at each component
of ∂Mand get different bal-
anced split loci

General case (4.2.4) →
Balanced split loci are para-
metrized by a neighborhood
of 0 in Hn−1(M,R)
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Proof of main theorem: a current

Each characteristic curve carries a value for u. A point in M \S gets only
one value, but a point in S gets a possible value from each geodesic from ∂M

contained in M \S.

Let Cj be the connected components of the set of cleave points. Each cleave
point gets one candidate value for u from either side: ul and ur

We define a current T of dimension n− 1:

T (φ) =
∑

j

(

∫

Cj ,l

φul+

∫

Cj,r

φur

)

(3)

here Cj,i means Cj with the orientation induced by a fixed orientation in M , and the vector
tangent to the geodesic coming from side i= l, r.

If T = 0, then u can be defined unambiguously, and it’s continuous (4.3.7).
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The main step of the proof is to show ∂T =0

Once we have this, it is not hard to show that if two currents T1 and T2

obtained from two balanced split loci S1 and S2 represent the same homology
class in Hn−1(M ), then T1= T2.

For example, if M is simply connected and ∂M connected, and T is closed,
then T =dP , where P (φ)=

∫

φf for a density f ∈Ln. But d P |M \S=T |M \S=0
implies f is locally constant outside S. Under our hypothesis, f is constant
and T =0.

For φ with support in a neighborhood of a cleave point:

∂T (φ) = T (dφ) =
∫

Cj ,r
dφ(ur−ul) =

∫

Cj ,r
φd(ur−ul)

But dui=Xi for the incoming vector Xi (i= l, r).

By the balanced condition, TCj ⊂ ker (Xr −Xl ), so the integral is 0.

For φ with support in a neighborhood of a (generic) edge point:

Near a generic edge point q, S is a smooth hypersurface with boundary , with q a boundary

point. ur− ul is contant, and converges to zero as we approach the boundary.
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For φ in a neighborhood of a (generic) crossing point:

∂T (φ) = T (dφ)
=
∫

A1

dφu1+
∫

A2

dφu2+
∫

B1

dφu1+

+
∫

B3

dφu3+
∫

C2

dφu2+
∫

C3

dφu3

=
∫

A1

φd(u1− u2)+
∫

B3

φd(u3− u1)

+
∫

C2

φd(u2− u3)

+
∫

L
φ(u1− u1+ u2−u2+ u3−u3)

= 0

Proof for general points:

Non-generic edge and crossing points can be quite more complicated than that, with a
countable amount of components Cj in any neighborhood. Thanks to the structure results, we
only have to deal with non-conjugate geodesics and geodesics of order 1

However, this required further structure results (4.6.2-4.6.11).
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The Ambrose problem

An isometry between Riemannian manifolds is determined by its differential at any point:

M

p

V g

1

1

M

p

L(V) g

2

2

L(V)V

φ

ϕ:M1→M2 is an isometry between connected and complete manifolds st
ϕ(p1)= p2, L= dp1ϕ

• Fix a normal neighborhood U of p1.

• Any point q of U can be reached from p1 by a unique geodesic contained in U , with
speed V (parametrized by [0, 1]).

• ϕ(q) is the endpoint of the geodesic with initial conditions p2 and L(V ).
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Parallel transport of curvature

• We parallel displace along gV up to q= gV (1) and compute

R1(V, )=<RgV (1)(A,B)C,D >

• We apply L to the vectors: , parallel displace them along gL(V ) up

to ϕ(q) = gL(V )(1) and compute R2(V, )=<RgL(V )(1)
(A ′, B ′)C ′, D ′>

• If ϕ is an isommetry, R1(V, )=R2(V, ) for any V and .
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Cartan’s lemma

Let’s do the opposite thing:

let L: Tp1M1→ Tp2M2 be a
linear isometry

⇒
we get a map ϕ defined in a
convex neighborhood of p1

Cartan’s lemma

If R1(V, )=R2(V, )
for any A,B,C ,D, V , then

ϕ is a local isometry
from a convex neigborhood of p1 to one of p2
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Global version of Cartan’s lemma

(Cartan-)Ambrose(-Hicks)’ theorem
If parallel transport of the curvature of M1 y M2

along geodesics with one elbow coincide,
and both manifolds are simply connected ,

ϕ is an isometry from M1 onto M2

Ambrose Conjecture (1956)
If parallel transport of the curvature of M1 y M2

along smooth geodesics coincide,
and both manifolds are simply connected ,
then ϕ is an isometry from M1 onto M2
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History

• Up to 1987, Cartan’s lemma is generalized (Hicks59, Hicks66, O’Neill68,
AmiciCasciaro86, BlumenthalHebda87,PawelReckziegel02). The global
version (involving geodesics with one elbow), is automatic.

• In 1987, James Hebda proved the conjecture for surfaces, assuming that
the «distance to the cut locus» is an absolutely continuous function.

• J. Hebda (1994) and J-I Itoh (1996) prove independently that this func-
tion is indeed absolutely continuous for any smooth surface.

• J-I Itoh and M. Tanaka (2000) prove that it is indeed Lipschitz for a
manifold of any dimension, but Ambrose’s conjecture does not follow.

• J. Hebda (2010) proves the conjecture for generic riemannian manifolds.
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Quick review of 1987 James Hebda’s proof

• Notice that Cartan’s lemma actually provides an isometric immersion of M1 \C into
M2 (C is the cut locus of M1).

• A cleave point q= expp1 (Va)= expp1 (Vb) is connected to p1 by exactly two minimizing
geodesics , and both are non conjugate. There are two possible images: ϕ(q) can be
expp2 (L(Va)) or expp2 (L(Vb)). The goal is to prove that it’s the same point.

• If ϕ is defined at M1 \C and the cleave points, it extends to all of M1.

• A central part of the strategry is to find a path Y in TCutp that joins Va and Vb, and

maps by expp to a tree-formed curve (contained in Cutp):

q
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Tree-formed (or tree-like) paths

Definition. (∼J. Hebda) An absolutely continuous path u: [0, 1]→M is tree-formed (with
respect to T) iff u factors through a “tree” Γ: u= ū ◦T, for T : [0, 1]→Γ, ū: Γ→M.

In order to make the above idea precise, Hebda admits any identification map T : [0, 1]→Γ,
where Γ has the final topology given by T , but also asks that for any continuous 1-form along

Γ (ϕ(r)∈ Tū(r)
∗ M), we have

∫

t0

t1
ϕ(T (s))(u′(s))d s=0, if T (t0) =T (t1). If T (0)=T (1), we say

u is fully tree-formed .

Remark: Tree-formed paths reappeared later in the theory of Rough Path, where they play
a central role:

It is easy to find curves in TCut whose image by exp is
tree-formed in 2D (there is basically one choice)

but in 3D and higher, this is not possible...
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Our approach: synthesis of two manifolds

We allow that M1 and M2 be non-simply-connected.

TpM

e

��

L1
zz✉✉
✉✉
✉✉
✉✉
✉

L2
$$■

■■
■■

■■
■■

Tp1
M1

e1

��

L
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zztt
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π2

$$❏
❏❏

❏❏
❏❏

❏❏
❏

M1 M2

If the manifolds M1 y M2 have a
common covering space M
whose covering maps π1 y π2

are local isometries, then
M is a synthesis of M1 and M2.

If π1 and π2 are local isometries
and local homeomorphisms, then
M is a weak synthesis.

If M1 and M2 are simply connected, and they have a synthesis M , then M

is isometric to both M1 and M2 (by π1 and π2).

This idea is found in «Riemannian coverings» by B. O’Neill68.
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Examples of synthesis

The exponential of a circle of radius 6 The synthesis of two cylinders,
is a synthesis of the exponential maps whose maps e1 y e2 are rotated 90◦,

of two circles of radii 2 and 3. is a plane, with π1= e1 and π2= e2.
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An equivalence relation

Notation: e1= expp1 , e2= expp2 ◦L, V1= {x∈Tp1M1: |x|6λ1(
x

|x|
)}

Definition. We say x! y (x is linked to y) iff x= y, or:

e1(x)= e1(y) and e2(x)= e2(y)

and there are neighborhoods Ux and V y such that

∀z ∈U ,w ∈V : e1(z)= e1(w)⇒ e2(z)= e2(w)

Definition. We say that an open set O⊂Tp1M1 is unequivocal iff:

• e1(O∩ V1) is open

• e2(O∩ V1) is open

• ∃ an isometry ϕ: e1(O∩ V1)→ e2(O∩V1) such that ϕ ◦ e1|O∩V1
=e2|O∩V1

x∈V1 is unequivocal if it has a neighbourhood base of unequivocal sets

Theorem. (5.4.6) If M1= I ∪J, so that:

• all points in I are unequivocal

• every point in J is linked to some point in I

Then M = V1/! is a weak synthesis of M1 and M2.
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The conjecture for generic riemannian manifolds

For a generic set of riemannian metrics in a manifold, TpM admits the following
descomposition:

• An open set consisting of non-conjugate points (NC).

• Strata of dimension n− 1, of points of type A2 (fold singularities)

• Strata of dimension n−2, of points of type A3 (cusp singularities). We
further split them intoA3(I) andA3(II) (minima and maxima, roughly)

• Strata of dimension n− 3, of points of type A4, D4
+ and D4

−

• Strata of smaller dimension
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Conjugate flow at points of type A2

At points of type A2 the kernel of the exponential is transversal to the set of conjugate points
(which is a smooth hypersurface). The exponential e1 is given in adapted coordinates by:

(x1,
 , xn−1, xn)→ (x1,
 , xn−1, xn
2)

e1 is not a local homeomorphism at an A2 point, so ¿how can we link the A2 point x to an
unequivocal point y? The conjugate flow tells us how we can start:

Gauss’ lemma implies that the radial
vector rx is transversal to the kernel of the
exponential. The sum of both spaces is a
plane that we intersect with the tangent

to the set of conjugate points:
(kerDx e1⊕<rx> )∩T Conj=<Cx>

We choose Cx such that Cx · rx< 0
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Conjugate flow

We call conjugate flow curve (CDC) to a integral curve of the above vector
field Cx. The curve stays within the set of conjugate points, and can be continued
until it hits a point that is not A2.

The most simple and most important case is that the conjugate flow hits an
A3 point. For A3 points, e1 is given in adapted coordinates by:

(x1,
 , xn−1, xn)→ (x1,
 , xn−1, xn
3 + x1xn)
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Replying a CDC

Once we reach an A3 point, we can find a reply to the CDC: it is a curve of
NC points whose image by e1 is the same as the CDC, but run in the opposite
direction.

The concatenation of both segments is a curvewhose image is tree-formed.

A CDC α is unbeatable: |α(0)|−|α(t0)|> |β(t0)|−|β(0)| for any reply β.
(5.4.10)
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Building linking curves

Remember: our goal is to show our A2 point x is linked to an unequivocal point y

Starting at x, suppose we follow the CDC up to an A3 point. We can keep replying as long
as the reply stays within V1, but we may hit a singularity. If that happens, we descend
along the conjugate flow again, etcetera:

III

II

I

IV

V VI

I

II
III

IV

V

VI

1 2

3 4

5

1

2

3

4
5

Figure. Splitter (1), A3-join (2,4), hit(3), reprise(5)
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The algorithm

We summarize the procedure in this flow diagram:

Start

Start with the 

trivial curve {x}

Is x unequivocal?

Tip is A
2

Tip is A
3
 or NC:

Is there any

remaining

loose ACDC?

Descent

Descend along 

a GACDC up

to an A
3
 point

Yes

Retort

Add a retort to

the last ACDC.

Which type of 

point is the tip? Success!
No

Reprise

Reply the loose ACDC

that appears last.

Which type of point

is the new tip?

Yes
No
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Does it work?

• Do we always reach an A3 point? Yes, we can «dodge» other singularities
(5.4.29).

• How long can we keep replying? As long as the reply stays within V1. If
the reply hits an A2 point z, we plug in a linking curve from z to a NC
point w, and take on the job of replying to whatever is left.

• What if the reply hits a worse singularity? We can also dodge that
(5.4.22).

• How do you know the procedure will ever stop? Because every point in
a generic manifold has a «transient neighborhood»: if the algorithm
starts at a point on that neighborhood, after a finite number of ele-
mentary steps of the algorithm, the tip will never again be there (the
unbeatable property is key). (5.4.25)

We show that it works for generic metrics, in 3 dimensions. The algorithm can

also start at A3(II), A4, D4
+ and D4

− points.

Points of type A3(I) are unequivocal (5.4.3).
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Summary

• For a generic manifold, V1⊂NC∪A2∪A3(I)∪A3(II)∪A4∪D4
±

• I = V1∩ (NC∪A3(I)) J = V1∩ (A2∪A3(II)∪A4∪D4
±)

• Points in I are unequivocal, points in J are linked to points of I, of
smaller radius.

• Thus we have a weak synthesis M . We prove it is actually a synthesis
(5.4.11).
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Beyond

• The set of points in a Finsler manifold M that can be joined to ∂M with a minimizing
geodesic conjugate of order k has Hausdorff dimension 6 n− k− 1.

• Characterize the singular set for more first order PDEs

− HJ-equations with dependence on u

− Non-convex H?

− Sub-riemannian geometry?

• Ambrose in higher dimension, generic metric (easy)

• Ambrose for arbitrary metric (hard). We prove that it follows from the IJK conjecture,
where the points in TpM are classified into I ,J ,K depending on their behaviour with
respect to the conjugate flow. It would follow if we could bound the lenghts of the linking
curves in terms of numbers that depend continuously on the metric.

Theorem. (6.5.2) If M1= I ∪J ∪K, so that all points in I are unequivocal, all points in J
are linked to a point in I, and Hn−2(e1(K))= 0.

Then M0=(V1 \K)/∼ is a weak synthesis of M1 and M2 that extends to a weak synthesis
M of M1 and M2.
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FAQ #1 What is FAQ #1?

Answer: “What is FAQ #1?”

Remark: The answer to FAQ #1 is actually FAQ #1
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FAQ #2: Why a handshake picture at the beginning?

If you grab a ball of clay, insert both hands in an attempt to shake them, you
are doing the retraction frmo the ball onto a space toplogically equivalent to the
house with two rooms.

The house with two rooms lies at the heart of many of the difficulties in this
thesis.
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FAQ #3 Why can’t you extend the proof of James Hebda
to three dimensions?

Answer: You mean: Can we find the curve Y in dimension >3?

In dimension >3 there are many possible choices for Y , none of them is
canonical .

But it’s worse than that: the house with two rooms is the cut locus of a certain
manifold, and it doesn’t have edge points!

Weinstein showed that every manifold except S2 admits a metric such that
the cut locus wrta point doesn’t have edge points.
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FAQ #4 Are there many easy manifolds?

A
3

A
3

A
3

In 3 dimensions, there are many non-
simply connected easy manifolds , but for
example there are no easy metrics close
to the standard metric on the 3-sphere:

If a 3d manifold admits a metric with
positive curvature and no conjugate
points of order 2, then the set of first
conjugate points is diffeomorphic to the
sphere, but has a non-zero vector field.

If the metric is generic, there must be
some D4+ points, because it’s impossible
to «comb» the sphere of first conjugate
points with the singularities that arise
from D4- singularities.
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FAQ #5 Where did the idea to study split loci came from?

The idea was supposed to help in proving Ambrose conjecture.

The cut locus is a convenient tool in the proof of James Hebda for surfaces,
but any split locus could play the same role.

So I thought: is it possible to find a split locus, in an arbitrary riemannian
manifold, that is triangulable, and collapses simplicially to one point?

The answer is: if you can do that, you’d have a new, more topological proof
of the Poincaré conjecture.
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FAQ #6 Why didn’t you choose a simpler problem?

If you work in a hard problem, you may or may not succeed. If you don’t, you’re
out of the game. If you do, you can choose where you want to work (and live).

If you work in not-so-hard problem, your chances of failure are smaller, but
it’s more likely that you have to spend considerable time in remote places with
great uncertainty about your future.

In short: I chose a Schrödinger cat over a sick cat.

>
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FAQ #7 Is the synthesis the «minimal common covering
space»?

Yes, it satisfies a universal property (5.4.7): Let X be the synthesis of X1 and
X2. For any Riemannian manifold X ′, continuous surjective map e ′:A→X ′ and
local isometries π1

′:X ′→X1 and π2
′:X ′→X2, such that ei= πi

′ ◦ e ′, for i= 1, 2,
there is a local isometry π:X ′→X such that:

A

e1

��

e2

��

e′��

X ′

π′

1
~~ π′

2
!!

X1 X2

X ′

π′

1

��

π′

2

��

π
��

X

π1

}}④④
④④
④④
④④

π2

!!❈
❈❈

❈❈
❈❈

❈

X1 X2
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FAQ #8 How bad do crossing points get?

Lemma. (4.6.5-4.6.7) Let p∈S be a general crossing point. There is a finite amount

of univocal open sets Oi (see lemma 4.6.1) such that any X ∈Rp is of the form X = dxi
F (

∂

∂t
)

for some xi∈Oi.

• All Ai∩Aj are Lipschitz hypersurfaces

• Let Σ=∪(Ai∩Aj∩Ak). In certain coordinates, the intersections of Σ with coordinate
planes {x1= a1,
 , xn−2= an−2} are Lipschitz trees

• At general crossing points, we also have ∂T =0.
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FAQ #9 What is the motivation for studying Ambrose
Problem?

Ambrose’s motivation (roughly): to characterize a Riemannian manifold
by the parallel transport of its curvature: L:Rn×G2(R

n)→R

L(V , P ): parallel transport the plane P along the geodesic gV and compute
the sectional curvature of the plane.

My motivation: The Ambrose problem is similar to some inverse problems
in Riemannian geometry. Some of these problems come directly from applica-
tions like tomography. Some of those problems are easy to solve if there are no
singularities. I planned to build some muscle and try other such inverse problems
later.
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FAQ #10 Can you bound the lenght of the linking curves
and approximate an arbitrary metric by generic ones?

Not without new ideas. I’ve tried two things:

1. As the slack goes to 0, and an A2 point x becomes a worse singularity, the gain of
the CDC α through x decreases. It’s true that the lenght of its composition with the
exponential also decreases, but overall, nor the lenght of α neither that of e1 ◦α is not
bounded.

2. Try to put numbers to the algorithm: Let BR be the maximum lenght of a linking curve
through a point x of radius R. The algorithm starts with a CDC α of lenght l that leaves
a transient neighborhood U of x. Then a linking curve starting at the tip of α follows.
Its lenght is bounded by BR−l. And after that, we have to reply to α. If we can reply
to α at once:

BR< l+BR−l

but the reply might hit an A2 point, and then we have to reply to part of α, then
plug in another linking curve at the tip of the reply, then reply the rest... if there are
k interruptions:

BR< 2 l+ kBR−ε

where ε is the gain of the transient neighborhood. This is exponential growth.
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