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The team

Pure math You consider the topic interesting.

Applied math You consider the topic might be useful to others.

Industrial math Someone has asked you to work on that topic.

We are an industrial mathematics research group.

We come from different backgrounds.

We also do applied math, but not together.

We are part of a larger group mostly based at ICMAT.



The job

Annalect asesorates their customers on how to spend the
marketing budget (among other things).

In order to trade bulk agreements, decisions must often be
made quite in advance (tipically one year ahead).

They want a data-driven decision process that is replicable
for different customers and scenarios, with different regressors
and different levels of detail (among other things).

The final product must be flexible, robust and interactive.



Strategic budget allocation

Tipically once every year, a firm puts together all of its data, and
decides where to spend their marketing budget for the next period
in order to maximize conversions (sales).
A common approach in the industry:

1 Build an econometric model that fits the data well:

Conversions = C∗(a,b) + ε, ε ∼ N (0, σ2)

where a are the uncontrollable parameters, b are the
investment levels and σ2 is the unexplained variance.

2 Find the investment levels that maximize conversions:

b∗ = argmax
b

C∗(a,b)

3 Make “small” adjustments later, if necessary.
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Fit a model then follow the gradient

But this strategy fails: follow the gradient and you’ll always end up
far away from the data, where your model can not be trusted...



The solution: Bayesian regression

Conversions = Cθ(a,b)+ε, ε ∼ N (0, σ2)

There is uncertainty both in ε and in
the parameters θ.

If the data is better, we have less
uncertainty about θ.

If the data is better, we can do
with a smaller σ (we explain
more).

The uncertainty in ε is the same
for all (a,b), but Cθ(a,b) has
smaller uncertainty near the data
points.



The goal (I): One year-ahead predictions

We sample an ensemble of models and use them to compute
predictions of the sales in each week in the coming year.



The goal (II): Compare two strategies

For two different strategies we have different forecasts.



The goal (III): Compare many strategies

We can choose among many competing strategies in a simple way if
we only consider expected return and risk.

We plot them in a risk return spectrum, similar to the classical
ones in portfolio optimization:



The goal (IV): Find out the best strategies

A risk return spectrum, with the Pareto front highlighted,
simplifies the decision process.
Each point in the Pareto front corresponds to a single Pareto optimal
media plan (under suitable conditions).
There are many techniques for aproximating the set of Pareto
optimal estrategies...

If the model is linear, it can be
computed exactly and quickly.

Otherwise, it can be found as
a series of single-objective
optimization problems.

There are other techniques
based on swarms, GAs, etc,
but we didn’t use them.

Expectations are computed against the probability of each model.



The final goal: How bad is your data?

It is common in the media industry to work with datasets that have
some, or all, of the following problems:

Data is aggregated over weeks, even months.

Data is also aggregated spatially (national sales, national
temperature average ...).

Important data is missing. (promotions...)

Some variables are only activated for a few weeks (but they are
important: e.g., soccer world championship)

We can sometimes improve the dataset, but...

The final goal

Ultimately, the procedure must help decide if data-driven
decision making is possible at all!
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How?

Clean the data

Gather more data

Choose the model

Choose the explanatory variables

Choose the priors

Choose the computational tool and software library

Check performance on the test set

Choose your objectives (risk metrics)

Use the posterior to build visualizations

Show those around, discuss

Iterate



Data

Our first dataset (a franchise of restaurants) is typical in the
industry:

Data was aggregated over weeks and restaurants.

Important data is missing: e.g. is this advertisement a
promotion?

Some variables are only activated for a few weeks (but they are
important: e.g., soccer world championship)

Missing or wrong values, some important data is poorly
estimated: average temperature for the whole country....

We could improve this a little:

EDA (we use pandas).

Download data from AEMET or other official sources.

Ask for more detailed data (per day?, per restaurant?)
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A second dataset

Eventually asking worked, and they gave us more data: sales per
week and per restaurant.

So we move from ∼ 240 to ∼
100000 data points.

Not small data any more.



To select variables, or not to select variables

We got a huge list of regressors. Similar GOF metrics can be
obtained with less variables. But it’s worse than that:

Suppose two variables are highly correlated. One is a
control variable (e.g. investment in a certain channel), the
other is not (e.g. temperature).

Naturally, we get similar metrics if we use one or the other.

If we drop the control variable, we declare it has no effect.

If we drop the other variable, we overestimate the effect of the
control variable.

Bayesian Regression solves this problem without special effort:

If two variables are positively correlated, their weights in linear
bayesian regression are negatively correlated.
Interpretation: the model can explain some part of the variance
with either variable. The data doesn’t explain if the effect is
due to one or the other.

This can be shown using the conjugate prior...
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Priors

Did I mention some variables are only activated for a few weeks?
Look at week 41 for this prediction:



Priors

At week 41 for this prediction, a variable that had never been
activated in the training set became active, so the priors for the
coefficients of that variable are added to the posterior
unmodified (assume the model is linear).

If some variables are important,
but are only active during a few
weeks, or not at all during the
training set, the prior goes unmod-
ified onto the posterior, so a non-
informative prior does not work.

Some degree of expert ellicita-
tion is necessary:

possible impact of an
explanatory var.

positive correlation for the
weights for similar variables.



The model

For linear and nonlinear dense models, conjugate priors
exists and are very useful:

Interpretation of the priors
Speed up the computations
Understand some details on a higher level (like correlated
explanatory variables)

For aggregated datasets, linear models are just fine, possibly
with a few higher order terms (cherry picking).

For “matrix” data (e.g., sales per restaurant and week), we
used Factorization Machines. There is actually a conjugate
prior for this model too, but it needs extra work...
See also “Bayesian Dynamic Tensor Regression” (M. Billio, R.
Casarin, M. Iacopini)
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Factorization Machines

A Factorization Machine is a state-of-the-art machine learning
technique:

A nice trick makes it potentially very efficient.

First used for recommendation systems.

Designed to work with many predictor categorical variables,
which are codified as 0/1 variables, most of which are zero
(one-hot encoding).

Works with continuous variables too.
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Factorization Machines

A Factorization Machine is a quadratic model (can be of higher
order, but this is not common), but the quadratic part has low rank:

ŷFM(x) := w0 +

p∑
i=1

wixi +

p∑
i=1

p∑
j>i

〈vi, vj〉xixj

A bounded rank makes it cheaper to compute, and forces it to
generalize, instead of overfit, in abundance of predictor variables.



Factorization Machines

If we use a dense quadratic matrix, the coefficient for each
interaction restaurant× regressor will only be trained when that
regressor is active for that restaurant’s data.

If, for instance, a new restaurant opens in winter, we don’t have a
clue how it will perform in summer.

But its performance in winter may be enough to clasiffy it as a
“summer restaurant”.
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Computational approach

Split the data set into a train and a test set.

For linear and nonlinear dense models, conjugate priors
exists and are useful.

For Factorization Machines, we used Markov Chain Monte
Carlo (MCMC): a random walk is guided by the posterior
probability distribution so that the time spent in each region of
the parameter space is proportional to its probability.
We obtain an ensemble of models {Cθi}Ki=1 that is an
approximate sample from the posterior probability distribution.

We have also used Stochastic Variational Inference: the
posterior is approximated by a member of a parametric
family with finitely many parameters.
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Software libraries

Some software for bayesian regression and/or factorization
machines.

fastfm Oficially, it does "Bayesian Factorization Machines",
and it does MCMC walks, but is not really for bayesian
regression.

libfm The reference implementation, it also does "Bayesian
Factorization Machines". Allows for block
decompositions, not for bayesian regression.

polylearn Does higher order interactions, easy to use, not
bayesian.

vowpal wabbit Very fast, multicore, no python interface, not
bayesian.

fmpytorch FM on pytorch is a good idea, but it didn’t work for us.

pytorch + pyro Very promising, does Stochastic Variational
Inference, but still beta.
pyro also finds the optimal σ2 while training (max
likelihood).



Using the test set for validation

Using the test set, we can validate our predictions:

Compare the mean of the prediction with real sales in each
week of the test period.
But we also need to estimate risk!

Problem: each observed sales value must be compared to a
prediction from a different distribution.
Solution: the quantiles of the real sales within the MCMC sample
should come from a uniform distribution: we can test this with a P-P
plot.



Unexplained variance

The P-P plot can detect a prediction that:

underestimates risk The observed data will often be above, or
below, the predictions of all the ensemble.

overestimates risk The observed data will be in the mid
quantiles too often.

If uncertainty is underestimated, we can improve our predictions
adding an independent noise:

A P-P plot that A P-P plot with A P-P plot with
underestimates risk optimal noise too much noise

In other words, add the noise level that minimizes the
Kolmogorov-Smirnov statistic.



Predictions for each restaurant



Restaurants-at-risk

We can now enlarge our decision space.

The restaurant chain is a franchise

A plan with good total expected sales and good total variance could
be discarded if it upsets too many restaurant owners.

Restaurant’s Risk. RRi = P(Salesi < Qi(0.05;base);new)

Qi is the quantile function for restaurant i under
the base investment plan.
P(E;new) is the probability of E under the new
investment plan.

Restaurants at Risk : Expected number of restaurants whose
sales figure with the new plan will be below the 5%
quantile of the base plan.
It is also

∑
RRi.

The number of "Restaurants-At-Risk" is the expected number of
restaurant owners that will complain about the new strategy.
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Conclusions

FMs are non-linear, but #parameters is linear in #features.

FMs can mix continuous and categorical variables.

Some questions can be answered with confidence, others can’t.

The model has built-in risk estimation, but we can use the test
set to validate.

We can decide if a particular data set supports good decisions,
or not.

The model is general and can be adapted to very different
scenarios.

Annalect is already applying Linear Bayesian Regression, for
aggregated datasets.
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FAQs

Questions?



Quote from “Robust Portfolio Optimization and

Management”

FAQ #1: Is this special to the media industry?

There are fundamental differences between the media industry
and the financial industry, but this problem is common to both.

Although advanced optimization software is widely available, many asset managers
have problems applying optimization methodology or avoid it altogether. One reason
is that in practical applications portfolio optimization is very sensitive to the
inputs (e.g., expected returns of assets and their covariances), and “optimal”
portfolios frequently have extreme or non-intuitive weights for some assets.

Generally, the practitioner’s solution to this problem has been to add constraints to

the original optimization problem in order to limit nonintuitive results. However, as a

result, the constraints—instead of forecasts—often determine the portfolio, making

the risk-return optimization process pointless.

Fabozzi et al,Robust Portfolio Optimization and Management.

... but this is even more general.



Why bayesian?

FAQ #2: Why does it have to be bayesian?

We need a probability distribution for each possible strategy,
based on everything we have: data and modelling knowledge.

Most of the predictions are for situations that will never be
observed: subjective probability.

Thus we are subject to Bayes theorem, so even if we choose
bootstrap, we could look at the prior and critize it.

Why not use prior experience?
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Occam - Epicurus - Bayes

FAQ #3: How do you explain Bayesian Statistics to a Company?

Of all the possible explanations
of a phenomenon, choose the
simplest.

William of Ockham

Of all the possible explanations
of a phenomenon, keep them
all.

Epicurus

Of all the possible explanations
of a phenomenon, assign a
probability to each of them.

Bayes & Laplace



An ensemble of experts

Another way to think of Bayesian Regression: we do not ask our
questions to a single model, but to an ensemble.

Interpretation of Bayesian Regression

If all the models give similar answers, we are confident in our
predictions.
If the models give wildly different answers, the data does not
support any conclusion.
It may happen that some questions get precise answers, while
others do not.


