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The Ambrose problem

An isometry between Riemannian manifolds is determined by its di�erential at one point p1:
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':M1!M2 is an isometry between connected and complete manifolds st
'(p1)= p2, L= dp1'

� Fix a normal neighborhood U of p1.

� Any point q of U can be reached from p1 by a unique geodesic contained in U , with
speed V (parametrized by [0; 1]).

� '(q) is the endpoint of the geodesic with initial conditions p2 and L(V ).
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Parallel transport of curvature

� We parallel displace along gV up to q= gV (1) and compute

R1(V, )=<RgV (1)(A;B)C;D>

� We apply L to the vectors: , parallel displace them along gL(V ) up to '(q)=

gL(V )(1) and compute R2(V, )=<RgL(V )(1)(A
0; B 0)C 0; D 0>

� If ' is an isometry, R1(V, )=R2(V, ) for any V and .
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Cartan's lemma

Let's do the opposite thing:

let L:Tp1M1!Tp2M2 be a linear
isometry

) we get a map 'L de�ned in a
convex neighborhood of p1

Cartan's lemma

If R1(V, )=R2(V, )

for any A;B;C;D; V , then 'L is a local isometry
from a convex neigborhood of p1 to a neighborhood of p2
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Global version of Cartan's lemma

(Cartan-)Ambrose(-Hicks) theorem
If parallel transport of the curvature of M1 y M2

along geodesics with one elbow coincide,
and both manifolds are simply connected ,

'L is an isometry from M1 onto M2

Ambrose Conjecture (1956)
If parallel transport of the curvature of M1 y M2

along smooth geodesics coincide,
and both manifolds are simply connected ,
then 'L is an isometry from M1 onto M2

The proof of the Cartan lemma proves the Ambrose conjecture if there are no conjugate
points. The problem is: there may be many geodesics from p1 to q1: are the corresponding
points in M2 the same?
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History

� Up to 1987, Cartan's lemma is generalized (Hicks59, Hicks66, O'Neill68, Amici-
Casciaro86, BlumenthalHebda87,PawelReckziegel02). The global version (involving
geodesics with one elbow), is automatic.

� In 1987, James Hebda proved the conjecture for surfaces, assuming that the
�distance to the cut locus� is an absolutely continuous function.

� J. Hebda (1994) and J-I Itoh (1996) prove independently that this function is indeed
absolutely continuous for any smooth surface.

� J-I Itoh and M. Tanaka (2000) prove that it is indeed Lipschitz for a manifold of any
dimension, but they could not prove the conjecture from this, since Hebda's proof for
surfaces does not work in higher dimensions.

� J. Hebda (2010) proves the conjecture for generic riemannian manifolds . The proof
does not �pass to the limit�, so new strategies are needed.
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Quick review of 1987 James Hebda's proof

� Cartan's lemma provides an isometric immersion of M1 nCutp1= expp1(Op1) into M2

Injectivity set. Op1= fx2Tp1M1: dM1
(expp1(p1; t x))= tg

Tangent cut locus. TCutp1= @Op1

Cut locus. Cutp1= expp1(TCutp1)

Cutp1=
�
q 2M1:

there are at least twominimizing geodesics from p1 to q
or the uniqueminimizing geodesic is focal

�
� If a point q1= expp1(Va)= expp1(Vb) is connected to p1 by two minimizing geodesics ,

there are two possible images: '(q1) can be expp2(L(Va)) or expp2(L(Vb)). The goal is to
prove that it's the same point.
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Tree-formed (or tree-like) paths
A central part of the strategy is to �nd a path Y in TCutp that joins Va and Vb (for any point
q=expp(Va)=expp(Vb)2Cutp), and maps by expp to a tree-formed curve (contained in Cutp)

De�nition 1. Let u: [0; 1]!M be an absolutely continuous curve. It is fully tree formed if:

� 9T : [0; 1]!¡, a quotient map with T (0)=T (1)

� u factors through T (u=u��T for u�: ¡!M)

� for any continuous 1-form '(x)2Tu�(x)� M:Z
0

1

'(T (s))(u0(s)) d s=0

Remark: Tree-formed paths reappeared later in the theory of Rough Path.

It is easy to �nd curves in the tangent cut locus whose image by
exp is tree-formed in 2D (there are one or two choices, both work)

but in 3D and higher, this is not possible...
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Look for linking curves outside the cut locus

e1= expp1; e2=L� expp2

De�nition 2. A linking curve is an absolutely continuous curve Y : [0; l]!TpM such that
e1 �Y is a fully tree formed curve.

De�nition 3. Two points x; y 2TpM are strongly linked i� 9 linking curve Y, Y (0)= x,
Y (1)= y

x; y strongly linked ) e1(x)= e1(y), e2(x)= e2(y)

De�nition 4. O 2TpM is unequivocal i� e1(O) is open, and there is an isometry
'O: e1(O)! e2(O) such that 'O � e1jO=e2jO

De�nition 5. x2TpM is unequivocal if there is a sequence of sets Wn such that e1(Wn) is
a neighborhood basis of e1(x).

The idea is to link singularities of expp to unequivocal points
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Main theorem

Theorem 6. Let M1, M2 be simply connected Riemannian manifolds with L-related curvature,
such that every x2V1 is linked to some unequivocal y 2V1, with jy j6 jxj.

Then there is a strong synthesis of M1 and M2 through e1 and e2.

Proof. A manifold M is de�ned as a quotient of a subset of Tp1M1, identifying linked
points. The maps e1 and e2 induce maps �1 and �2.

A topology is de�ned ad-hoc, we prove that �1; �2 are local homeomorphisms, etc.

The condition jy j6 jxj is important to prove they are covering maps.

Thus �1 and �2 are covering maps and local isometries. We sayM is a synthesis of M1 andM2.

M1, M2 simply connected) �1 and �2 are global isometries. �

In other words, if we can �nd linking curves starting at conjugate points,
the Ambrose conjecture follows .

But can we �nd enough linking curves?
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Generic 3D riemannian manifolds

For a generic set of riemannian metrics in a 3D manifold, TpM admits the following descom-
position (canonical form of expp):

� An open set consisting of non-conjugate points (NC) ((x1; :::; xn)! (x1; :::; xn)).

� Strata of dimension 2, of points of type A2 (fold singularities)

(x1; x2:::; xn)! (x1
2; x2; :::; xn).

� Strata of dimension 1, of points of type A3 (cusp singularities). We further split them
into A3(I) and A3(II) (minima and maxima, roughly)

(x1; x2:::; xn)! (x1
3� x1x2; x2; :::; xn)

� Isolated points of type A4 ((x1; x2:::; xn)! (x1
4+x1

2x2+x1x3; x2; :::; xn))

� Isolated points of type D4
+ ((x1; x2:::; xn)! (

1

2
x1
2+x2x3;

1

2
x2
2+ x1x3; :::; xn))

� Isolated points of type D4
¡ ((x1; x2:::; xn)! (

1

2
x1
2¡ 1

2
x2
2+x1x3;¡x1x2+x2x3; :::; xn))
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Conjugate �ow at points of type A2

At points of type A2 the kernel of the exponential is transversal to the set of conjugate points
(which is a smooth hypersurface). The exponential e1 is given in adapted coordinates by:

(x1; :::; xn¡1; xn)! (x1; :::; xn¡1; xn
2)

e1 is not a local homeomorphism at an A2 point, so ¾how can we link the A2 point x to an
unequivocal point y? The conjugate �ow tells us how we can start:

Gauss' lemma implies that the radial
vector rx is transversal to the kernel of the
exponential. The sum of both spaces is a
plane that we intersect with the tangent

to the set of conjugate points:
(kerDx e1�<rx> )\T Conj=<Cx>

We choose Cx such that Cx � rx< 0
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Conjugate �ow

A conjugate descending curve (CDC) is an integral curve of the vector �eld Cx. The curve
stays within the set of conjugate points, and can be continued until it hits a point that is not A2.

The most simple and most important case is that the conjugate �ow hits an A3 point. For
A3 points, e1 is given in adapted coordinates by:

(x1; :::; xn¡1; xn)! (x1; :::; xn¡1; xn
3 + x1xn)
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Replying a CDC

Once the CDC reaches an A3 point, we can �nd a reply to the CDC: it is a curve of NC points
whose image by e1 is the same as the CDC, but run in the opposite direction.

The concatenation of both segments is a curve whose image is tree-formed.

A CDC � is unbeatable: suppose � replies to �:

j�(0)j ¡ j�(t0)j= length(exp ��)= length(exp � �)> j�(t0)j ¡ j�(0)j
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Building linking curves

Remember: our goal is to show our A2 point x is linked to an unequivocal point y

Starting at x, suppose we follow the CDC up to an A3 point. We can keep replying as long
as the reply stays within V1, but we may hit a singularity. If that happens, we descend
along the conjugate descending �ow again, etcetera:
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Figure. Splitter (1), A3-join (2,4), hit(3), reprise(5)
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The algorithm

We summarize the procedure in this �ow diagram:
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Does it work?

� Do we always reach an A3 point? Yes, we can �dodge� other singularities.

� How long can we keep replying? We can always reply to an A2 point, since the �linking
curve under construction� always stays within V1.

� What if the reply hits a worse singularity? We can also dodge that.

� How do you know the procedure will ever stop? Because every point in a generic man-
ifold has a �transient neighborhood�: if the algorithm starts at a point on that
neighborhood, after a �nite number of elementary steps of the algorithm, the tip will
never again be there (the unbeatable property is key).

We show that it works for generic metrics, in 3 dimensions. The algorithm can also start at
A3(II), A4, D4

+ and D4
¡ points.

Points of type A3(I) are unequivocal.

17



Summary

� For a generic manifold, V1�NC[A2[A3(I)[A3(II)[A4[D4
�

� I =V1\ (NC[A3(I)) J =V1\ (A2[A3(II)[A4[D4
�)

Theorem 7. A point in I is unequivocal; a point in J is linked to a point of I of smaller radius.

Corollary 8. Ambrose conjecture holds for a generic 3-manifold.

Thanks for your attention!

� Pablo Angulo. Linking curves, sutured manifolds and the Ambrose conjecture for generic
3-manifolds. arxiv.org/abs/1509.02125

#
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FAQ #1 Why can't you extend the proof of James Hebda to three
dimensions?

Answer: You mean: Can we �nd the curve Y in dimension >3?

In dimension >3 there are many possible choices for Y , none of them is canonical .

But it's worse than that: the house with two rooms is the cut locus of a certain manifold,
and it doesn't have edge points!

Weinstein showed that every manifold except S2 admits a metric such that the cut locus
wrta point doesn't have edge points.

There cannot be non-trivial linking curves contained in the cut locus of such manifolds.
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FAQ #2 Is the synthesis the �minimal common covering space�?

Yes, it satis�es a universal property (5.4.7): Let X be the synthesis of X1 and X2. For any
Riemannian manifoldX 0, continuous surjective map e0:A!X 0 and local isometries �1

0:X 0!X1

and �2
0:X 0!X2, such that ei=�i

0� e0, for i=1;2, there is a local isometry �:X 0!X such that:
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FAQ #3 What is the motivation for studying Ambrose Problem?

Ambrose's motivation (roughly): to characterize a Riemannian manifold by the parallel
transport of its curvature: L:Rn�G2(R

n)!R

L(V ; P ): parallel transport the plane P along the geodesic gV and compute the sectional
curvature of the plane.

My motivation: The Ambrose problem is similar to some inverse problems in Riemannian
geometry. Some of these problems come directly from applications like tomography. Some of
those problems are easy to solve if there are no singularities. I planned to build some muscle
and try other such inverse problems later.
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FAQ #4 Can you bound the lenght of the linking curves and approx-
imate an arbitrary metric by generic ones?

Not without new ideas. I've tried two things:

1. As the slack of an A2 point (the angle between the kernel of the exponential and
the tangent hyperplane to the conjugate points) goes to 0, and x becomes a worse
singularity, the gain of the CDC � through x decreases. It's true that the lenght of its
composition with the exponential also decreases, but overall, nor the lenght of � neither
that of e1 �� is bounded.

2. Try to put numbers to the algorithm: Let BR be the maximum lenght of a linking curve
through a point x of radius R. The algorithm starts with a CDC � of lenght l that leaves
a transient neighborhood U of x. Then a linking curve starting at the tip of � follows.
Its lenght is bounded by BR¡l. And after that, we have to reply to �. If we can reply
to � at once:

BR< l+BR¡l

but the reply might hit an A2 point, and then we have to reply to part of �, then
plug in another linking curve at the tip of the reply, then reply the rest... if there are
k interruptions:

BR< 2 l+ kBR¡"

where " is the gain of the transient neighborhood. This is exponential growth.
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FAQ #5 Why �strong synthesis�? Is there a �weak synthesis�?

Yes, if �1 and �2 are local isometries, but not covering maps:

The corresponding theorem is:

Theorem 9. Let M1, M2 be Riemannian manifolds with L-related curvature, such that
every x2V1 is linked to some unequivocal y 2V1.

Then there is a strong synthesis of M1 and M2 through e1 and e2.

In short: if we do not assume we can �nd y with jy j6 jxj, then �1 and �2 may not be covering
maps.
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FAQ #6 Why �strongly linked�? Are there �weakly linked� points?

Yes, but that is rather technical. Let me just say that there are other hypothesis that imply:

e1(x)= e1(y); e2(x)= e2(y)
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