Linking Curves, sutured manifolds and the Ambrose conjecture for generic 3-manifolds

Pablo Angulo (ECM7 Berlin, 2016)

The Ambrose problem

An isometry between Riemannian manifolds is determined by its differential at one point p_{1} :

$\varphi: M_{1} \rightarrow M_{2}$ is an isometry between connected and complete manifolds st

$$
\varphi\left(p_{1}\right)=p_{2}, L=d_{p_{1}} \varphi
$$

- Fix a normal neighborhood U of p_{1}.
- Any point q of U can be reached from p_{1} by a unique geodesic contained in U, with speed V (parametrized by $[0,1])$.
- $\varphi(q)$ is the endpoint of the geodesic with initial conditions p_{2} and $L(V)$.

Parallel transport of curvature

- We parallel displace along g_{V} up to $q=g_{V}(1)$ and compute

$D^{\prime}=L(D)$ $C^{\prime}=L(C)$

$C^{\prime}=L(C)$
$B^{\prime}=L(B)$

- We apply L to the vectors: $\begin{gathered} \\ A=L(A) \\ \text { - }\end{gathered}$, parallel displace them along $g_{L(V)}$ up to $\varphi(q)=$ $g_{L(V)}(1)$ and compute $R_{2}\left(\mathrm{~V}, \stackrel{B^{\prime}, C^{\prime} D^{\prime}}{A^{\prime}}\right)=<R_{g_{L(V)(1)}}\left(A^{\prime}, B^{\prime}\right) C^{\prime}, D^{\prime}>$
- If φ is an isometry, $R_{1}\left(\mathrm{~V}^{B^{C} \mathbb{N}^{D}}\right)=R_{2}\left(\mathrm{~V}^{B^{B^{\prime}} A^{\prime} \mathbb{N}^{D^{\prime}}}\right)$ for any V and ${ }^{B^{C}} \mathbb{N}^{D}$.

Cartan's lemma

Let's do the opposite thing:
let $L: T_{p_{1}} M_{1} \rightarrow T_{p_{2}} M_{2}$ be a linear
isometry $\Rightarrow \begin{aligned} & \text { we get a map } \varphi_{L} \text { defined in a } \\ & \text { convex neighborhood of } p_{1}\end{aligned}$ isometry $\quad \rightarrow$ convex neighborhood of p_{1}

Cartan's lemma

for any A, B, C, D, V, then φ_{L} is a local isometry from a convex neigborhood of p_{1} to a neighborhood of p_{2}

Global version of Cartan's lemma

> | (Cartan-)Ambrose(-Hicks) theorem |
| :---: |
| If parallel transport of the curvature of M_{1} y M_{2} |
| along geodesics with one elbow coincide, |
| and both manifolds are simply connected, |
| φ_{L} is an isometry from M_{1} onto M_{2} |

> | Ambrose Conjecture (1956) |
| :---: |
| If parallel transport of the curvature of M_{1} y M_{2} |
| along smooth geodesics coincide, |
| and both manifolds are simply connected, |
| then φ_{L} is an isometry from M_{1} onto M_{2} |

The proof of the Cartan lemma proves the Ambrose conjecture if there are no conjugate points. The problem is: there may be many geodesics from p_{1} to q_{1} : are the corresponding points in M_{2} the same?

History

- Up to 1987, Cartan's lemma is generalized (Hicks59, Hicks66, O'Neill68, AmiciCasciaro86, BlumenthalHebda87,PawelReckziegel02). The global version (involving geodesics with one elbow), is automatic.
- In 1987, James Hebda proved the conjecture for surfaces, assuming that the «distance to the cut locus» is an absolutely continuous function.
- J. Hebda (1994) and J-I Itoh (1996) prove independently that this function is indeed absolutely continuous for any smooth surface.
- J-I Itoh and M. Tanaka (2000) prove that it is indeed Lipschitz for a manifold of any dimension, but they could not prove the conjecture from this, since Hebda's proof for surfaces does not work in higher dimensions.
- J. Hebda (2010) proves the conjecture for generic riemannian manifolds. The proof does not "pass to the limit", so new strategies are needed.

Quick review of 1987 James Hebda's proof

- Cartan's lemma provides an isometric immersion of $M_{1} \backslash \operatorname{Cut}_{p_{1}}=\exp _{p_{1}}\left(O_{p_{1}}\right)$ into M_{2}

Injectivity set. $O_{p_{1}}=\left\{x \in T_{p_{1}} M_{1}: d_{M_{1}}\left(\exp _{p_{1}}\left(p_{1}, t x\right)\right)=t\right\}$
Tangent cut locus. $\operatorname{TCut}_{p_{1}}=\partial O_{p_{1}}$
Cut locus. $\operatorname{Cut}_{p_{1}}=\exp _{p_{1}}\left(\operatorname{TCut}_{p_{1}}\right)$

$$
\operatorname{Cut}_{p_{1}}=\left\{q \in M_{1}: \begin{array}{c}
\text { there are at least two minimizing geodesics from } p_{1} \text { to } q \\
\text { or the unique minimizing geodesic is focal }
\end{array}\right\}
$$

- If a point $q_{1}=\exp _{p_{1}}\left(V_{a}\right)=\exp _{p_{1}}\left(V_{b}\right)$ is connected to p_{1} by two minimizing geodesics, there are two possible images: $\varphi\left(q_{1}\right)$ can be $\exp _{p_{2}}\left(L\left(V_{a}\right)\right)$ or $\exp _{p_{2}}\left(L\left(V_{b}\right)\right)$. The goal is to prove that it's the same point.

Tree-formed (or tree-like) paths

A central part of the strategy is to find a path Y in TCut_{p} that joins V_{a} and V_{b} (for any point $q=\exp _{p}\left(V_{a}\right)=\exp _{p}\left(V_{b}\right) \in \operatorname{Cut}_{p}$), and maps by $\exp _{p}$ to a tree-formed curve (contained in Cut_{p})

Definition 1. Let $u:[0,1] \rightarrow M$ be an absolutely continuous curve. It is fully tree formed if:

- $\quad \exists T:[0,1] \rightarrow \Gamma$, a quotient map with $T(0)=T(1)$
- $\quad u$ factors through $T(u=\bar{u} \circ T$ for $\bar{u}: \Gamma \rightarrow M)$
- for any continuous 1 -form $\varphi(x) \in T_{\bar{u}(x)}^{*} M$:

$$
\int_{0}^{1} \varphi(T(s))\left(u^{\prime}(s)\right) d s=0
$$

Remark: Tree-formed paths reappeared later in the theory of Rough Path.
It is easy to find curves in the tangent cut locus whose image by exp is tree-formed in 2D (there are one or two choices, both work)
but in $3 D$ and higher, this is not possible...

Look for linking curves outside the cut locus

$$
e_{1}=\exp _{p_{1}} ; \quad e_{2}=L \circ \exp _{p_{2}}
$$

Definition 2. A linking curve is an absolutely continuous curve $Y:[0, l] \rightarrow T_{p} M$ such that $e_{1} \circ Y$ is a fully tree formed curve.

Definition 3. Two points $x, y \in T_{p} M$ are strongly linked iff \exists linking curve $Y, Y(0)=x$, $Y(1)=y$

$$
x, y \text { strongly linked } \Rightarrow e_{1}(x)=e_{1}(y), e_{2}(x)=e_{2}(y)
$$

Definition 4. $O \in T_{p} M$ is unequivocal iff $e_{1}(O)$ is open, and there is an isometry $\varphi_{O}: e_{1}(O) \rightarrow e_{2}(O)$ such that $\left.\varphi_{O} \circ e_{1}\right|_{O}=\left.e_{2}\right|_{O}$

Definition 5. $x \in T_{p} M$ is unequivocal if there is a sequence of sets W_{n} such that $e_{1}\left(W_{n}\right)$ is a neighborhood basis of $e_{1}(x)$.

$$
\text { The idea is to link singularities of } \exp _{p} \text { to unequivocal points }
$$

Main theorem

Theorem 6. Let M_{1}, M_{2} be simply connected Riemannian manifolds with L-related curvature, such that every $x \in V_{1}$ is linked to some unequivocal $y \in V_{1}$, with $|\boldsymbol{y}| \leqslant|x|$.

Then there is a strong synthesis of M_{1} and M_{2} through e_{1} and e_{2}.

Proof. A manifold M is defined as a quotient of a subset of $T_{p_{1}} M_{1}$, identifying linked points. The maps e_{1} and e_{2} induce maps π_{1} and π_{2}.

A topology is defined ad-hoc, we prove that π_{1}, π_{2} are local homeomorphisms, etc.
The condition $|y| \leqslant|x|$ is important to prove they are covering maps.
Thus π_{1} and π_{2} are covering maps and local isometries. We say M is a synthesis of M_{1} and M_{2}.
M_{1}, M_{2} simply connected $\Rightarrow \pi_{1}$ and π_{2} are global isometries.

In other words, if we can find linking curves starting at conjugate points, the Ambrose conjecture follows.

But can we find enough linking curves?

Generic 3D riemannian manifolds

For a generic set of riemannian metrics in a 3D manifold, $T_{p} M$ admits the following descomposition (canonical form of $\exp _{p}$):

- An open set consisting of non-conjugate points (NC) $\left(\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{1}, \ldots, x_{n}\right)\right)$.
- Strata of dimension 2, of points of type $\boldsymbol{A}_{\mathbf{2}}$ (fold singularities)

$$
\left(x_{1}, x_{2} \ldots, x_{n}\right) \rightarrow\left(x_{1}^{2}, x_{2}, \ldots, x_{n}\right)
$$

- Strata of dimension 1, of points of type $\boldsymbol{A}_{\boldsymbol{3}}$ (cusp singularities). We further split them into $\boldsymbol{A}_{\mathbf{3}}(\mathrm{I})$ and $\boldsymbol{A}_{\mathbf{3}}(\mathbf{I I})$ (minima and maxima, roughly)

$$
\left(x_{1}, x_{2} \ldots, x_{n}\right) \rightarrow\left(x_{1}^{3} \pm x_{1} x_{2}, x_{2}, \ldots, x_{n}\right)
$$

- Isolated points of type $\boldsymbol{A}_{\mathbf{4}}\left(\left(x_{1}, x_{2} \ldots, x_{n}\right) \rightarrow\left(x_{1}^{4}+x_{1}^{2} x_{2}+x_{1} x_{3}, x_{2}, \ldots, x_{n}\right)\right)$
- Isolated points of type $\boldsymbol{D}_{4}^{+}\left(\left(x_{1}, x_{2} \ldots, x_{n}\right) \rightarrow\left(\frac{1}{2} x_{1}^{2}+x_{2} x_{3}, \frac{1}{2} x_{2}^{2}+x_{1} x_{3}, \ldots, x_{n}\right)\right)$
- Isolated points of type $\boldsymbol{D}_{\mathbf{4}}^{-}\left(\left(x_{1}, x_{2} \ldots, x_{n}\right) \rightarrow\left(\frac{1}{2} x_{1}^{2}-\frac{1}{2} x_{2}^{2}+x_{1} x_{3},-x_{1} x_{2}+x_{2} x_{3}, \ldots, x_{n}\right)\right)$

Conjugate flow at points of type \boldsymbol{A}_{2}

At points of type A_{2} the kernel of the exponential is transversal to the set of conjugate points (which is a smooth hypersurface). The exponential e_{1} is given in adapted coordinates by:

$$
\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \rightarrow\left(x_{1}, \ldots, x_{n-1}, x_{n}^{2}\right)
$$

e_{1} is not a local homeomorphism at an A_{2} point, so ¿how can we link the A_{2} point x to an unequivocal point y ? The conjugate flow tells us how we can start:

Gauss' lemma implies that the radial vector r_{x} is transversal to the kernel of the exponential. The sum of both spaces is a plane that we intersect with the tangent to the set of conjugate points:
$\left(\right.$ ker $\left.D_{x} e_{1} \oplus<r_{x}>\right) \cap T$ Conj $=<C_{x}>$
We choose C_{x} such that $C_{x} \cdot r_{x}<0$

Conjugate flow

A conjugate descending curve ($\mathbf{C D C}$) is an integral curve of the vector field C_{x}. The curve stays within the set of conjugate points, and can be continued until it hits a point that is not A_{2}.

The most simple and most important case is that the conjugate flow hits an $\boldsymbol{A}_{\mathbf{3}}$ point. For A_{3} points, e_{1} is given in adapted coordinates by:

$$
\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \rightarrow\left(x_{1}, \ldots, x_{n-1}, x_{n}^{3}+x_{1} x_{n}\right)
$$

Replying a CDC

Once the CDC reaches an A_{3} point, we can find a reply to the CDC: it is a curve of NC points whose image by e_{1} is the same as the CDC, but run in the opposite direction.

The concatenation of both segments is a curve whose image is tree-formed.

A CDC α is unbeatable: suppose β replies to α :

$$
|\alpha(0)|-\left|\alpha\left(t_{0}\right)\right|=\text { length }(\exp \circ \alpha)=\text { length }(\exp \circ \beta)>\left|\beta\left(t_{0}\right)\right|-|\beta(0)|
$$

Building linking curves

Remember: our goal is to show our A_{2} point x is linked to an unequivocal point y
Starting at x, suppose we follow the CDC up to an A_{3} point. We can keep replying as long as the reply stays within V_{1}, but we may hit a singularity. If that happens, we descend along the conjugate descending flow again, etcetera:

Figure. Splitter (1), A_{3}-join (2,4), hit(3), reprise(5)

The algorithm

We summarize the procedure in this flow diagram:

Does it work?

- Do we always reach an A_{3} point? Yes, we can «dodge» other singularities.
- How long can we keep replying? We can always reply to an A_{2} point, since the «linking curve under construction» always stays within V_{1}.
- What if the reply hits a worse singularity? We can also dodge that.
- How do you know the procedure will ever stop? Because every point in a generic manifold has a «transient neighborhood»: if the algorithm starts at a point on that neighborhood, after a finite number of elementary steps of the algorithm, the tip will never again be there (the unbeatable property is key).

We show that it works for generic metrics, in 3 dimensions. The algorithm can also start at $\boldsymbol{A}_{3}(\mathrm{II}), \boldsymbol{A}_{4}, \boldsymbol{D}_{4}^{+}$and \boldsymbol{D}_{4}^{-}points.

Points of type $\boldsymbol{A}_{\mathbf{3}}(\mathrm{I})$ are unequivocal.

Summary

- For a generic manifold, $V_{1} \subset \mathrm{NC} \cup A_{2} \cup A_{3}(I) \cup A_{3}(\mathrm{II}) \cup A_{4} \cup D_{4}^{ \pm}$
- $\mathcal{I}=V_{1} \cap\left(\mathrm{NC} \cup A_{3}(I)\right) \quad \mathcal{J}=V_{1} \cap\left(A_{2} \cup A_{3}(\mathrm{II}) \cup A_{4} \cup D_{4}^{ \pm}\right)$

Theorem 7. A point in \mathcal{I} is unequivocal; a point in \mathcal{J} is linked to a point of \mathcal{I} of smaller radius.

Corollary 8. Ambrose conjecture holds for a generic 3-manifold.

Thanks for your attention!

- Pablo Angulo. Linking curves, sutured manifolds and the Ambrose conjecture for generic 3-manifolds. arxiv.org/abs/1509.02125
\#

FAQ \#1 Why can't you extend the proof of James Hebda to three dimensions?

Answer: You mean: Can we find the curve Y in dimension $\geqslant 3$?
In dimension $\geqslant \mathbf{3}$ there are many possible choices for Y, none of them is canonical.
But it's worse than that: the house with two rooms is the cut locus of a certain manifold, and it doesn't have edge points!

Weinstein showed that every manifold except S^{2} admits a metric such that the cut locus wrta point doesn't have edge points.

There cannot be non-trivial linking curves contained in the cut locus of such manifolds.

FAQ \#2 Is the synthesis the «minimal common covering space»?

Yes, it satisfies a universal property (5.4.7): Let X be the synthesis of X_{1} and X_{2}. For any Riemannian manifold X^{\prime}, continuous surjective map $e^{\prime}: A \rightarrow X^{\prime}$ and local isometries $\pi_{1}^{\prime}: X^{\prime} \rightarrow X_{1}$ and $\pi_{2}^{\prime}: X^{\prime} \rightarrow X_{2}$, such that $e_{i}=\pi_{i}^{\prime} \circ e^{\prime}$, for $i=1,2$, there is a local isometry $\pi: X^{\prime} \rightarrow X$ such that:

FAQ \#3 What is the motivation for studying Ambrose Problem?

Ambrose's motivation (roughly): to characterize a Riemannian manifold by the parallel transport of its curvature: $L: \mathbb{R}^{n} \times G_{2}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$
$L(V, P)$: parallel transport the plane P along the geodesic g_{V} and compute the sectional curvature of the plane.

My motivation: The Ambrose problem is similar to some inverse problems in Riemannian geometry. Some of these problems come directly from applications like tomography. Some of those problems are easy to solve if there are no singularities. I planned to build some muscle and try other such inverse problems later.

FAQ \#4 Can you bound the lenght of the linking curves and approximate an arbitrary metric by generic ones?

Not without new ideas. I've tried two things:

1. As the slack of an A_{2} point (the angle between the kernel of the exponential and the tangent hyperplane to the conjugate points) goes to 0 , and x becomes a worse singularity, the gain of the CDC α through x decreases. It's true that the lenght of its composition with the exponential also decreases, but overall, nor the lenght of α neither that of $e_{1} \circ \alpha$ is bounded.
2. Try to put numbers to the algorithm: Let B_{R} be the maximum lenght of a linking curve through a point x of radius R. The algorithm starts with a CDC α of lenght l that leaves a transient neighborhood U of x. Then a linking curve starting at the tip of α follows. Its lenght is bounded by B_{R-l}. And after that, we have to reply to α. If we can reply to α at once:

$$
B_{R}<l+B_{R-l}
$$

but the reply might hit an A_{2} point, and then we have to reply to part of α, then plug in another linking curve at the tip of the reply, then reply the rest... if there are k interruptions:

$$
B_{R}<2 l+k B_{R-\varepsilon}
$$

where ε is the gain of the transient neighborhood. This is exponential growth.

FAQ \#5 Why "strong synthesis"? Is there a "weak synthesis"?

Yes, if π_{1} and π_{2} are local isometries, but not covering maps:

The corresponding theorem is:
Theorem 9. Let M_{1}, M_{2} be Riemannian manifolds with L-related curvature, such that every $x \in V_{1}$ is linked to some unequivocal $y \in V_{1}$.
Then there is a strong synthesis of M_{1} and M_{2} through e_{1} and e_{2}.

In short: if we do not assume we can find y with $|y| \leqslant|x|$, then π_{1} and π_{2} may not be covering maps.

FAQ \#6 Why "strongly linked"? Are there "weakly linked" points?
Yes, but that is rather technical. Let me just say that there are other hypothesis that imply:

$$
e_{1}(x)=e_{1}(y), e_{2}(x)=e_{2}(y)
$$

