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Abstract When considering different allocations of the marketing budget of a firm,
some predictions, that correspond to scenarios similar to others observed in the past,
can be made with more confidence than others, that correspond to more innovative
strategies. Selecting a few relevant features of the predicted probability distribu-
tion leads to a multi-objective optimization problem, and the Pareto front contains
the most interesting media plans. Using expected return and standard deviation we
get the familiar two moment decision model, but other problem specific additional
objectives can be incorporated. Factorization Machines, initially introduced for rec-
ommendation systems, but later used also for regression, are a good choice for in-
corporating interaction terms into the model, since they can effectively exploit the
sparse nature of typical datasets found in econometrics.

1 Introduction

In the marketing industry, a batch of advertising slots is bought on a yearly basis, as
this allows better pricing from the media retailer. Our problem is to assist a one-time
decision that involves distributing a fixed advertising budget over a one year period.
On each week, advertising budget can go into several channels, such as TV, Radio
or Out-of-Home. A strategy is a choice of investment on each week and channel.
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The decision should be based on historic data: a time series of N observations
yt ∈ RR for time periods t = 1, ...,N, plus, for each time period, a set of predictor
variables xi

t that media specialists believe to be correlated with sales. For one par-
ticular customer, a chain of fast food restaurants, yr

t are the total sales of restaurant
r = 1 . . .R in week t = 1 . . .N, and the predictor variables represent the effect of
climate, sport events, special holidays, socioeconomic indicators such as unemploy-
ment or inflation, and of course the investments in advertisements during that week.
We split the predictor variables into two sets:

• the variables that we cannot control: weather, events, economic indicators, etc...
Some of them are real valued (unemployment, mean temperature, ...), while oth-
ers are binary (Christmas, Easter, major sport event, ...). The holiday type and
events variables are sparse, since most of them are zero at any given week.

• the variables that we control, i.e. the variables that specify an investment strategy.
All of them are real and positive.

We know the values of some of the predictor variables in the first set with certainty
(events and holidays variables), while for others we only have probabilistic fore-
casts (weather and socioeconomic variables). We are allowed to fix the investment
strategy, given some constraints such as total budget.

In [2], we predict sales for the next week, as a function of investmentes, with the
knowledge of all previous weeks, and adapt the control variables each week. This
setup is now being used at media analytics company Annalect, who ordered this
study.

2 Prediction

We are given a set of N observations, {(x1,y1), ...,(xN ,yN)}, where xt ∈ X is the
feature vector of the t-th week and yt ∈ RR is the target: the sales y j

t at each of the
j = 1 . . .R restaurants and each time t = N +1 . . .N + t.

Factorization Machines [6] use a quadratic function where the matrix for the
quadratic part has rank at most k:

g(x) := w0 +
p

∑
i=1

wixi +
p

∑
i=1

p

∑
j=i+1
〈vi,v j〉xix j (1)

• w0 is the global bias.
• wi captures the effect of the i−th feature.
• 〈vi,v j〉 captures the interaction effect between features i and j, but using one

latent factor vi ∈ Rk per feature.

FMs requires ∼ kp parameters, while the full-rank second order version needs
∼ p2/2. This is a critical aspect of FMs making it suitable for fitting small size
datasets that arise in many business contexts. Factorization machines in particular,
and factorization models in general, have been widely employed in tasks such as
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recommender systems or ad click prediction [6, 1, 4], problems characterised by
the prevalence of outrageously big datasets. We show that these models may also
be helpful for other kind of datasets in which observations are scarce and there are
sparse blocks in the data matrix X .

We add another block of predictor variables: xr are binary, and there is one for
each restaurant r = 1 . . .R, so that exactly one of them takes the value 1 at any data
point. The model identifies each restaurant with its mean wi and its feature vector
vi ∈ Rk, and this forces the model to generalize.

In Bayesian Parametric Regression, the mean of the target variable is a determin-
istic function of the predictor variables, but the function depends on a few unknown
parameters. We assume that the function belongs to the FM family and the distribu-
tion is a normal with fixed variance (that we estimate later).

y = w0 +
p

∑
i=1

wixi +
p

∑
i=1

p

∑
j=i
〈vi,v j〉xix j + ε, ε ∼N (0,σ2) (2)

In other words, the likelihood of y conditioned to the model parameters is

p(y|w0,wi,vi)∼ exp

(y−w0 +∑
p
i=1 wixi +∑

p
i=1 ∑

p
j=i〈vi,v j〉xix j

σ

)2
 (3)

Since the parameters are unknown, we model our uncertainty about them with a
prior probability distribution, and Bayes theorem gives the posterior belief about the
model parameters. For fixed values of the predictor variables and the model param-
eters, (2) gives the sales of the restaurants. We integrate our posterior probability
measure over the set of parameters and we also integrate over the distributions of
the predictor variables that we don’t known with certainty. If we add the sales of all
the restaurants, we get a probability distribution for a single real number.

A straightforward application of Bayes theorem leads to untractable integrals,
so we use the Markov Chain Monte Carlo (MCMC) method [3, ch 12]. MCMC
replaces the probability measure by a representative sample that is obtained by per-
forming a random walk on the feature space X , but one that is modulated by a
multiple of the posterior density, which can be computed as the product of the prior
distribution and the likelihood.

The optimal decision problem relies heavily on our ability to make good forecasts
of the sales in the future, not only of its expectation but also of the variance and other
features of its probability distribution. With the aim of measuring the quality of our
predictions, we follow the standard procedure of spliting the data set into a training
and a test set. The first one is used to learn the posterior probability distribution
whereas the test set is employed to estimate the performance of the model.

We can compare the posterior mean with the observed sales to get a first measure
of the quality of the predictions, but we must also calibrate our estimations of the
variance. For any week and restaurant in the test set, our prediction is a different
probability distribution, and we only get one sales value for each such distribution.
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In order to solve this, we apply the probability integral transform, that takes any
probability measure into the uniform distribution in the interval [0,1]. We get in
this way a sample that we can compare to the [0,1]-uniform distribution, both for
measuring goodness-of-fit and for selecting hyperparameters.

3 Multiobjective Optimization

With this predictive model we consider a multiobjective optimization problem over
the control variables. The typical choice for multiobjective optimization function in
financial settings is maximizing expected sales while minimizing expected variance,
but other problem specific additional objectives can be incorporated.

For the chain of fast food restaurants, we added the “restaurants at risk” met-
ric (RAR). An innovative strategy might increase total expected sales by increasing
sales in a few big restaurants, but at the same time dissapoint many restaurant own-
ers, who believe that the chosen strategy harms their restaurant in particular.

The RAR is the expected number of restaurants whose sales figure with the new
plan will be below the 5% quantile of the base plan. The RAR is not zero (but 5%!)
if the new plan is actually the same as the base plan.

In order to find the Pareto frontier, we use the technique of scalarization, in
which the different objectives are combined into a single function in different ways.
There are many alternative methods [5], but the simplest weighted sum method was
good enough: maximize a linear function of the multiple objectives with different
weights, and vary the weights to get new points in the Pareto frontier.

In the end, the outcome of our model is a representative set of Pareto optimal
investment strategies for the set of objective functions. The human decision maker
can choose among this small set of concrete strategies, which is more convenient
than ellicitation of the full utility function.
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