Necessary, and often sufficient, conditions for the existence of Conformal Factorizations

P.Angulo, D.Faraco, L.Guijarro, A.Ruiz

$$
\begin{gathered}
-\Delta_{g} u+q u=0, \quad u_{\mid \partial \Omega}=f \\
\Lambda_{g, q}(f)=(\nabla u \cdot n)_{\mid \partial \Omega}
\end{gathered}
$$

ECM, Berlin 2016

supported by ERC 301179

Geometric Calderón Problem (one version of it)

Let (M, g) be a Riemannian manifold and $\Omega \subset M$ an open set:

$$
-\Delta_{g} u+q u=0, \quad u_{\mid \partial \Omega}=f
$$

$$
\Lambda_{g, q}(f)=(\nabla u \cdot n)_{\mid \partial \Omega}
$$

If we know $\Lambda_{g, q}: H^{\frac{1}{2}} \rightarrow H^{-\frac{1}{2}}$. Can we recover the potential q ?

History

- 81 Calderón rediscovered the problem.
- $87 n=3$ Sylvester-UhImann $g=g_{E} \rho \in C^{2}$. Introduced Complex Geometric Optics (CGO) solutions.
- $2006 n=2$ Astala-Päivärinta: Ok for $\rho \in L^{\infty}$ (Scattering transform method plus quasiconformal maps)
- 2014 Caro-Rogers $n=3$: ρ Lipschitz (Sylvester-Uhlmann + Haberman Tatar)
- 2006 Dos Santos Ferreira-Kenig-Salo-UhIman. CGO method might work if (\sim and only if \sim) (M, g) admits a limiting Carleman weight (LCW).
- 2010 Liimatainen Salo: "generic" metrics do not admit LCWs.

Limiting Carleman weights

Let (M, g) a Riemannian metric. A limiting Carleman
weight is a function whose gradient is parallel in a conformally equivalent metric. A vector field X is parallel if for every $Y \in \mathfrak{X}(M)$

$$
\nabla_{X}(Y)=0
$$

g admits a limiting Carleman weight φ if and only if there exists local coordinates such that $\partial_{1}=\nabla \varphi$ and

$$
g(x)=e^{2 f(x)}\left(\begin{array}{cc}
1 & 0 \\
0 & g_{0}\left(x^{\prime}\right)
\end{array}\right)
$$

In other words, near each point, $g=e^{2 f}\left(e \oplus g_{0}\right)$ where g_{0} is the metric of an ($n-1$)-manifold, and e is the euclidean metric in \mathbf{R}.

Limiting Carleman weights

Let (M, g) a Riemannian metric. A limiting Carleman
weight is a function whose gradient is parallel in a conformally equivalent metric. A vector field X is parallel if for every $Y \in \mathfrak{X}(M)$

$$
\nabla_{X}(Y)=0
$$

g admits a limiting Carleman weight φ if and only if there exists local coordinates such that $\partial_{1}=\nabla \varphi$ and

$$
g(x)=e^{2 f(x)}\left(\begin{array}{cc}
1 & 0 \\
0 & g_{0}\left(x^{\prime}\right)
\end{array}\right)
$$

In other words, near each point, $g=e^{2 f}\left(e \oplus g_{0}\right)$ where g_{0} is the metric of an ($n-1$)-manifold, and e is the euclidean metric in \mathbf{R}.

Famous tensors

$\mathrm{R}=$ Curvature tensor, Ric=Ricci Tensor, $\mathrm{s}=$ Scalar Curvature, W=Weyl Tensor, C=Cotton tensor
Schouten Tensor

$$
\begin{equation*}
S=\frac{1}{n-2}\left(\operatorname{Ric}-\frac{1}{2(n-1)} s g\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
R=W+S \otimes g \tag{2}
\end{equation*}
$$

where \otimes is the Kulkarni-Nomizu product of two symmetric 2-tensors which is defined by

$$
(\alpha \oplus \beta)_{i j k l}=\alpha_{i k} \beta_{j l}+\beta_{i k} \alpha_{j l}-\alpha_{i l} \beta_{j k}-\alpha_{j k} \beta_{i l}
$$

and R and W are understood as $(0,4)$ tensors. The Cotton tensor:

$$
\begin{equation*}
C_{i j k}=\left(\nabla_{i} S\right)_{j k}-\left(\nabla_{j} S\right)_{i k} \tag{3}
\end{equation*}
$$

Conformally invariant tensors

- If $n=3$, then $W=0$.
- If $n=4$, then $(n-3) C=\operatorname{div}(W)$.
- The $(1,3)$ version of the Weyl tensor is conformally invariant.
- If $n=3$, and \tilde{g} is a multiple of g, the Cotton tensor of \tilde{g} is a multiple of the Cotton tensor of g.
- If $n \geq 4, W=0$ implies g is conformally flat.
- If $n=3, C=0$ implies g is conformally flat.

Curvature operators

Simmetries of Curvature allow to interpret Curvature as Curvature Operators. i, e elements of $S^{2}\left(\Lambda^{2}(T M)\right)$:

$$
R(x \wedge y, z \wedge t)=R(x, y, z, t)
$$

- Curvature Operators: $\mathcal{R}=\operatorname{ker}(b) .\left(b: S^{2}\left(\Lambda^{2}(T M)\right) \rightarrow \Lambda^{4}(T M)\right.$ is the Bianchi Operator).
- Weyl Operators: $\mathcal{W}=\mathcal{R} \cap \operatorname{ker}(r)\left(r: S^{2}\left(\Lambda^{2}(T M)\right) \rightarrow S^{2}(T M)\right.$ is the Ricci Operator).

Curvature operators

Simmetries of Curvature allow to interpret Curvature as Curvature Operators. i, e elements of $S^{2}\left(\Lambda^{2}(T M)\right)$:

$$
R(x \wedge y, z \wedge t)=R(x, y, z, t)
$$

- Curvature Operators: $\mathcal{R}=\operatorname{ker}(b) .\left(b: S^{2}\left(\Lambda^{2}(T M)\right) \rightarrow \Lambda^{4}(T M)\right.$ is the Bianchi Operator).
- Weyl Operators: $\mathcal{W}=\mathcal{R} \cap \operatorname{ker}(r)\left(r: S^{2}\left(\Lambda^{2}(T M)\right) \rightarrow S^{2}(T M)\right.$ is the Ricci Operator).

Definition

W satisfies the Eigenflag property with eigenflag direction $v \in T M$ if

$$
W\left(v \wedge v^{\perp}\right) \subset v \wedge v^{\perp}
$$

$$
\mathcal{E} \mathcal{W}=\{W \in \mathcal{W}: W \text { satisfy Eigenflag for some } v\}
$$

Theorem

Let (M, g) be a Riemannian manifold of dimension $n \geq 4$ which admits a LCW. Then

$$
W_{g}(p) \in \mathcal{E} \mathcal{W}
$$

The parallel vector field is an eigenflag direction.

Proof: Show that this is true if g admits a parallel vector field and use the conformal invariance of the Weyl Tensor.

- A bivector $\omega \in \Lambda^{2}(T M)$ is simple if $\omega=v \wedge w$ for $v, w \in T M$. $e_{1} \wedge e_{2}+e_{3} \wedge e_{4}$ is not simple.
- (M, g) be a 4 dimensional Riemannian manifold such that some $\tilde{g} \in[g]$ admits a parallel vector field. Then all the eigenvectors of the Weyl operator of g are simple.

Theorem

The complex projective plane $\left(C P^{2}\right)$ with its canonical metric does not have a limiting Carleman weight.

Consider the following basis of non simple eigenvectors.
$\phi_{1}=e_{1} \wedge e_{2}+e_{3} \wedge e_{4}, \quad \phi_{2}=e_{1} \wedge e_{3}-e_{2} \wedge e_{4}, \quad \phi_{3}=e_{1} \wedge e_{4}+e_{2} \wedge e_{3}$,
for its self-dual component, $\Lambda^{+}=\left\langle\phi_{1}, \phi_{2}, \phi_{3}\right\rangle$ and
$\psi_{1}=e_{1} \wedge e_{2}-e_{3} \wedge e_{4}, \quad \psi_{2}=e_{1} \wedge e_{3}+e_{2} \wedge e_{4}, \quad \psi_{3}=e_{1} \wedge e_{4}-e_{2} \wedge e_{3}$,
$\Lambda^{-}=\left\langle\psi_{1}, \psi_{2}, \psi_{3}\right\rangle$
Then W diagonalize in this basis with eigenvalues
$(4,-2,-2,0,0,0)$ i.e the eigenspaces have no simple bivectors !!

In dimension 3 we should try to read the result from the Cotton tensor. By its simetries the Cotton tensor is equivalent to a new $(2,0)$ tensor called the Cotton York tensor (By the Hodge Operator)

$$
\begin{equation*}
C Y_{i j}=\frac{1}{2} C_{k l i} g_{j m} \frac{\epsilon^{k l m}}{\sqrt{\operatorname{det} g}}=g_{j m}\left(\nabla_{k} S\right)_{l i} \frac{\epsilon^{k l m}}{\sqrt{\operatorname{det} g}} \tag{6}
\end{equation*}
$$

In dimension 3 we should try to read the result from the
Cotton tensor. By its simetries the Cotton tensor is equivalent to a new $(2,0)$ tensor called the Cotton York tensor (By the Hodge Operator)

$$
\begin{equation*}
C Y_{i j}=\frac{1}{2} C_{k l i} g_{j m} \frac{\epsilon^{k l m}}{\sqrt{\operatorname{det} g}}=g_{j m}\left(\nabla_{k} S\right)_{l i} \frac{\epsilon^{k l m}}{\sqrt{\operatorname{det} g}} \tag{6}
\end{equation*}
$$

Theorem

Let $n=3$. If a metric $\tilde{g} \in[g]$ admits a parallel vector field, then for any $p \in M$, there is a tangent vector $v \in T_{p} M$ such that

$$
C Y_{p}(v, v)=C Y_{p}\left(w_{1}, w_{2}\right)=0
$$

for any pair of vectors $w_{1}, w_{2} \in v^{\perp}$.
This is equivalent to $\operatorname{det}\left(C Y_{p}\right)=0$.
Hint: the parallel vector field is v.

Theorem

Among the eight Thurston geometries, only Nil and SL(2, R) do not admit limiting Carleman weights while the other six are locally conformal to products of \mathbf{R} and a surface.

Example: SL(2,R) with its left invariant metric, Iwasawa decomposition

$$
\begin{gathered}
A=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
e^{t / 2} & 0 \\
0 & e^{-t / 2}
\end{array}\right)\left(\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right) \\
C Y_{(\theta, 0,0)}=\left(\begin{array}{ccc}
0 & 0 & -2 \\
0 & -4 & 0 \\
-2 & 0 & 4
\end{array}\right)
\end{gathered}
$$

with non-zero determinant. Since the metric is left invariant, the same happens at any other point.

Size of Eigenflag Weyl Operators

Theorem

The set $\mathcal{E W}$ of Weyl tensors that satisfy the eigenflag condition is a semialgebraic subset of the space of Weyl tensors with codimension

$$
\frac{1}{3} n^{3}-n^{2}-\frac{4}{3} n+2
$$

In particular, the codimension is 2 for $n=4$ and 12 for $n=5$.

Metrics whose Weyl operator has the eigenflag property

Theorem

The set of metrics which are not locally conformal to a product at any point in M contains and open and dense set.

Proof: the set of all Weyl tensors with the eigenflag property is a stratified bundle. The set of metrics for which the map $p \rightarrow W_{p}$ is transverse to this bundle is open and dense.

Is it a sufficient Condition?

More careful analysis of dimension 4.

Lema

$n=4 W \in \mathcal{E} \mathcal{W}$. Then there are at most three eigenvalues of multiplicity at least 2 which add up to 0

- If the three eigenvalues are distinct then there are exactly four orthogonal eigenflag directions.
- If two eigenvalues coincide we have two orthogonal planes of eigenflag directions.
- otherwise $W=0$

If (M, g) is conformal to a product of surfaces, the Weyl tensor has two planes of eigenflag directions.

Criteria for being conformal to a product, given the candidate distributions

Theorem

Let (M, g) be a Riemannian metric, and D_{1} and D_{2} be two orthogonal integral distributions. The following are equivalent:

- g is locally conformal to the product of a metric on an integral leave of D_{1} and an integral leave of D_{2}
- D_{1}, D_{2} are umbilical with mean curvature normals η_{1}, η_{2} and

$$
d\left(\eta_{1}+\eta_{2}\right)^{b}=0
$$

Product of Surfaces

Theorem

$\left(S 1, g_{1}\right) \times\left(S_{2}, g_{2}\right)$ is conformally flat iff S_{1} has contant curvature c and S_{2} has constant curvature -c.
If $\left(S 1, g_{1}\right) \times\left(S_{2}, g_{2}\right)$ is not flat, it admits a LCW if and only if $\left(S_{1}, g_{1}\right)$ or $\left(S_{2}, g_{2}\right)$ is locally isometric to a surface of revolution.

Ex: The product of two scalene ellipsoids with the metric induced by \mathbb{R}^{3} does no admit LCWs but has the eigenflag property.

A curious example

On $U \subset\left\{(t, x, y, z) \in \mathbf{R}^{4}: x>0\right\}$, define:

$$
g=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{7}\\
0 & 1 & 0 & 0 \\
0 & 0 & x & 0 \\
0 & 0 & 0 & x^{2}
\end{array}\right)
$$

- The Weyl tensor of g has the eigenflag property at every point, with three different eigenvalues. Hence, the metric is not locally conformal to a product of surfaces.
- The eigenflag directions of the Weyl tensor are spanned by the coordinate vector fields.
- The functions t, y, z are the only LCWs.

Another curious example

On $U \subset\left\{(t, x, y, z) \in \mathbf{R}^{4}: x>0\right\}$, define:

$$
g=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{8}\\
0 & 1 & 0 & 0 \\
0 & 0 & x^{3} & 0 \\
0 & 0 & 0 & 1 / x
\end{array}\right)
$$

- The Weyl tensor of g has the eigenflag property at every point, with only two different eigenvalues. However, the metric is not locally conformal to a product of surfaces.
- The functions t, y, z are the only LCWs.

Proof: The Weyl tensor identifies the distributions D_{1} and D_{2}. Apply the criteria for being conformal to a product to find out M is not a product along D_{1} and D_{2}. Then a more careful analysis is required to find out the LCWs.

Thanks!

- Pablo Angulo, Daniel Faraco, Luis Guijarro: Sufficient conditions for the existence of limiting Carleman weights. http://arxiv.org/abs/1603.04201
- Pablo Angulo: On the set of metrics without local limiting Carleman weights. http://arxiv.org/abs/1509.02127
- Pablo Angulo, Daniel Faraco, Luis Guijarro and Alberto Ruiz: Obstructions to the existence of limiting Carleman weights. http://arxiv.org/abs/1411.4887 (Analysis and PDE 9-3 (2016), 575-59)
- This can be done using SageManifolds or some other Computer Algebra Software.

