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Geometric Calderón Problem (one version of it)

Let (M,g) be a Riemannian manifold and Ω ⊂ M an open set:

−∆gu + qu = 0, u|∂Ω = f

Λg,q(f) = (∇u · n)|∂Ω

If we know Λg,q : H
1
2 → H−

1
2 . Can we recover the potential q?
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History

81 Calderón rediscovered the problem.

87 n = 3 Sylvester-Uhlmann g = gE ρ ∈ C2. Introduced
Complex Geometric Optics (CGO) solutions.

2006 n = 2 Astala-Päivärinta: Ok for ρ ∈ L∞ (Scattering
transform method plus quasiconformal maps)

2014 Caro-Rogers n = 3: ρ Lipschitz (Sylvester-Uhlmann
+ Haberman Tatar)

2006 Dos Santos Ferreira-Kenig-Salo-Uhlman. CGO
method might work if (∼ and only if ∼) (M,g) admits a
limiting Carleman weight (LCW).

2010 Liimatainen Salo: “generic” metrics do not admit
LCWs.
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Limiting Carleman weights

Let (M,g) a Riemannian metric. A limiting Carleman
weight is a function whose gradient is parallel in a
conformally equivalent metric. A vector field X is parallel if for
every Y ∈ X(M)

∇X(Y) = 0

g admits a limiting Carleman weight ϕ if and only if there
exists local coordinates such that ∂1 = ∇ϕ and

g(x) = e2f(x)
( 1 0

0 g0(x′)

)
In other words, near each point, g = e2f (e⊕ g0) where g0 is
the metric of an (n− 1)-manifold, and e is the euclidean
metric in R.

how can I know if a conformal multiple of the metric is a product?
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Famous tensors

R=Curvature tensor, Ric=Ricci Tensor, s=Scalar Curvature,
W=Weyl Tensor, C=Cotton tensor
Schouten Tensor

S =
1

n− 2

(
Ric− 1

2(n− 1)
sg

)
(1)

and
R = W + S ? g (2)

where ? is the Kulkarni-Nomizu product of two symmetric
2-tensors which is defined by

(α? β)ijkl = αikβjl + βikαjl − αilβjk − αjkβil

and R and W are understood as (0,4) tensors. The Cotton
tensor:

Cijk = (∇iS)jk − (∇jS)ik (3)
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Conformally invariant tensors

If n = 3, then W = 0.

If n = 4, then (n− 3)C = div(W).

The (1,3) version of the Weyl tensor is conformally
invariant.

If n = 3, and g̃ is a multiple of g, the Cotton tensor of g̃ is
a multiple of the Cotton tensor of g.

If n ≥ 4, W = 0 implies g is conformally flat.

If n = 3, C = 0 implies g is conformally flat.
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Curvature operators

Simmetries of Curvature allow to interpret Curvature as
Curvature Operators. i,e elements of S2(Λ2(TM)):

R(x ∧ y, z ∧ t) = R(x, y, z, t)

- Curvature Operators: R = ker(b). (b : S2(Λ2(TM))→ Λ4(TM)

is the Bianchi Operator).
- Weyl Operators: W = R∩ ker(r) (r : S2(Λ2(TM))→ S2(TM) is
the Ricci Operator).

Definition

W satisfies the Eigenflag property with eigenflag direction
v ∈ TM if

W(v ∧ v⊥) ⊂ v ∧ v⊥

EW = {W ∈ W : W satisfy Eigenflag for some v}

.
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Theorem

Let (M,g) be a Riemannian manifold of dimension n ≥ 4 which
admits a LCW. Then

Wg(p) ∈ EW

The parallel vector field is an eigenflag direction.
———
Proof: Show that this is true if g admits a parallel vector field
and use the conformal invariance of the Weyl Tensor.

A bivector ω ∈ Λ2(TM) is simple if ω = v ∧ w for v,w ∈ TM.
e1 ∧ e2 + e3 ∧ e4 is not simple.

(M,g) be a 4 dimensional Riemannian manifold such that
some g̃ ∈ [g] admits a parallel vector field. Then all the
eigenvectors of the Weyl operator of g are simple.



beamer-tu-logo

Theorem

The complex projective plane (CP2) with its canonical metric
does not have a limiting Carleman weight.

Consider the following basis of non simple eigenvectors.

φ1 = e1∧e2+e3∧e4, φ2 = e1∧e3−e2∧e4, φ3 = e1∧e4+e2∧e3,

(4)
for its self-dual component, Λ+ = 〈φ1, φ2, φ3〉 and

ψ1 = e1∧e2−e3∧e4, ψ2 = e1∧e3+e2∧e4, ψ3 = e1∧e4−e2∧e3,

(5)
Λ− = 〈ψ1, ψ2, ψ3〉
Then W diagonalize in this basis with eigenvalues
(4,−2,−2,0,0,0) i.e the eigenspaces have no simple
bivectors !!
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In dimension 3 we should try to read the result from the
Cotton tensor. By its simetries the Cotton tensor is equivalent
to a new (2,0) tensor called the Cotton York tensor (By the
Hodge Operator)

CYij =
1

2
Ckligjm

εklm

√
det g

= gjm (∇kS)li

εklm

√
det g

(6)

Theorem

Let n = 3. If a metric g̃ ∈ [g] admits a parallel vector field, then
for any p ∈ M, there is a tangent vector v ∈ TpM such that

CYp(v, v) = CYp(w1,w2) = 0

for any pair of vectors w1,w2 ∈ v⊥.
This is equivalent to det(CYp) = 0.

Hint: the parallel vector field is v.
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Theorem

Among the eight Thurston geometries, only Nil and SL(2,R)

do not admit limiting Carleman weights while the other six are
locally conformal to products of R and a surface.

Example: SL(2,R) with its left invariant metric, Iwasawa
decomposition

A =

(
cos θ sin θ
− sin θ cos θ

)(
et/2 0
0 e−t/2

)(
1 s
0 1

)

CY(θ,0,0) =

 0 0 −2
0 −4 0
−2 0 4


with non-zero determinant. Since the metric is left invariant,
the same happens at any other point.
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Size of Eigenflag Weyl Operators

Theorem

The set EW of Weyl tensors that satisfy the eigenflag
condition is a semialgebraic subset of the space of Weyl
tensors with codimension

1

3
n3 − n2 − 4

3
n + 2.

In particular, the codimension is 2 for n = 4 and 12 for n = 5.
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Metrics whose Weyl operator has the eigenflag

property

Theorem

The set of metrics which are not locally conformal to a product
at any point in M contains and open and dense set.

Proof: the set of all Weyl tensors with the eigenflag property is
a stratified bundle. The set of metrics for which the map
p→ Wp is transverse to this bundle is open and dense.
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Is it a sufficient Condition?

More careful analysis of dimension 4.

Lema

n = 4 W ∈ EW. Then there are at most three eigenvalues of
multiplicity at least 2 which add up to 0

If the three eigenvalues are distinct then there are
exactly four orthogonal eigenflag directions.

If two eigenvalues coincide we have two orthogonal
planes of eigenflag directions.

otherwise W = 0

If (M,g) is conformal to a product of surfaces, the Weyl tensor
has two planes of eigenflag directions.
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Criteria for being conformal to a product, given

the candidate distributions

Theorem

Let (M,g) be a Riemannian metric, and D1 and D2 be two
orthogonal integral distributions. The following are
equivalent:

g is locally conformal to the product of a metric on an
integral leave of D1 and an integral leave of D2

D1,D2 are umbilical with mean curvature normals η1, η2

and
d(η1 + η2)[ = 0
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Product of Surfaces

Theorem

(S1,g1)× (S2,g2) is conformally flat iff S1 has contant
curvature c and S2 has constant curvature −c.
If (S1,g1)× (S2,g2) is not flat, it admits a LCW if and only if
(S1,g1) or (S2,g2) is locally isometric to a surface of
revolution.

Ex: The product of two scalene ellipsoids with the metric
induced by R3 does no admit LCWs but has the eigenflag
property.
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A curious example

On U ⊂ {(t, x, y, z) ∈ R4 : x > 0}, define:

g =


1 0 0 0
0 1 0 0
0 0 x 0
0 0 0 x2

 (7)

The Weyl tensor of g has the eigenflag property at every
point, with three different eigenvalues. Hence, the metric
is not locally conformal to a product of surfaces.

The eigenflag directions of the Weyl tensor are spanned
by the coordinate vector fields.

The functions t, y, z are the only LCWs.
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Another curious example

On U ⊂ {(t, x, y, z) ∈ R4 : x > 0}, define:

g =


1 0 0 0
0 1 0 0
0 0 x3 0
0 0 0 1/x

 (8)

The Weyl tensor of g has the eigenflag property at every
point, with only two different eigenvalues. However, the
metric is not locally conformal to a product of surfaces.

The functions t, y, z are the only LCWs.

Proof: The Weyl tensor identifies the distributions D1 and D2.
Apply the criteria for being conformal to a product to find out
M is not a product along D1 and D2. Then a more careful
analysis is required to find out the LCWs.
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Thanks!

Pablo Angulo, Daniel Faraco, Luis Guijarro: Sufficient
conditions for the existence of limiting Carleman weights.
http://arxiv.org/abs/1603.04201

Pablo Angulo: On the set of metrics without local limiting
Carleman weights. http://arxiv.org/abs/1509.02127

Pablo Angulo, Daniel Faraco, Luis Guijarro and Alberto
Ruiz: Obstructions to the existence of limiting Carleman
weights. http://arxiv.org/abs/1411.4887 (Analysis and
PDE 9-3 (2016), 575–59)

This can be done using SageManifolds or some other
Computer Algebra Software.


