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Geometric Calderon Problem (one version of it)

Let (M, g) be a Riemannian manifold and Q C M an open set:

—AgU +qu =0, Upa = f

Ngq(f) = (Vu-n)an

If we know Ag g : Hz — H™2 . Can we recover the potential g?



@ 81 Calderdn rediscovered the problem.

@ 87 n = 3 Sylvester-Uhlmann g = g¢ p € C2. Introduced
Complex Geometric Optics (CGO) solutions.

@ 2006 n = 2 Astala-Paivarinta: Ok for p € L* (Scattering
transform method plus quasiconformal maps)

@ 2014 Caro-Rogers n = 3: p Lipschitz (Sylvester-Uhlmann
+ Haberman Tatar)

@ 2006 Dos Santos Ferreira-Kenig-Salo-Uhlman. CGO
method might work if (~ and only if ~) (M, g) admits a
limiting Carleman weight (LCW).

@ 2010 Liimatainen Salo: “generic” metrics do not admit
LCWs.



Limiting Carleman weights

Let (M, g) a Riemannian metric. A limiting Carleman
weight is a function whose gradient is parallel in a
conformally equivalent metric. A vector field X is parallel if for
every Y € X(M)

Vx(Y) =0

g admits a limiting Carleman weight ¢ if and only if there
exists local coordinates such that 9; = Vy and

_ 2f(x)< 1 0 )
xX)=e
9(x) 0 go(x')
In other words, near each point, g = e’ (e @ go) where gy is
the metric of an (n — 1)-manifold, and e is the euclidean
metric in R.
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Famous tensors

R=Curvature tensor, Ric=Ricci Tensor, s=Scalar Curvature,
W=Weyl Tensor, C=Cotton tensor
Schouten Tensor

) 1
S — n— 2 (RIC - 2([‘)_1)59) (1)

and
R=W+S®g (2)

where @ is the Kulkarni-Nomizu product of two symmetric
2-tensors which is defined by

(o ® B)iji = i Bji + Bikoyr — cinBik — aeBir

and R and W are understood as (0, 4) tensors. The Cotton
tensor:



Conformally invariant tensors

@ If n =3, then W = 0.

@ If n =4, then (n — 3)C = div(W).

@ The (1, 3) version of the Weyl tensor is conformally
invariant.

@ If n = 3, and g is a multiple of g, the Cotton tensor of g is
a multiple of the Cotton tensor of g.

@ Ifn>4, W = 0 implies g is conformally flat.
@ If n =3, C =0 implies g is conformally flat.



Curvature operators

Simmetries of Curvature allow to interpret Curvature as
Curvature Operators. i,e elements of S2(A%(TM)):

R(x ANy,zAt)=R(x,y,zt)
- Curvature Operators: R = ker(b). (b : S2(A?(TM)) — A*(TM)
is the Bianchi Operator).
- Weyl Operators: W = R N ker(r) (r : S>(A*(TM)) — S2(TM) is
the Ricci Operator).
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W satisfies the Eigenflag property with eigenflag direction
veTMif

W(vAvt) Cvavt

EW = {W € W : W satisfy Eigenflag for some v}




Theorem

Let (M, g) be a Riemannian manifold of dimension n > 4 which
admits a LCW. Then
Wy(p) € EW

The parallel vector field is an eigenflag direction.

Proof: Show that this is true if g admits a parallel vector field
and use the conformal invariance of the Weyl Tensor.

@ A bivector w € A2(TM) is simple if w = v A w for v,w € TM.
e1 Ney + ez Aegisnotsimple.

@ (M, g) be a 4 dimensional Riemannian manifold such that
some § € [g] admits a parallel vector field. Then all the
eigenvectors of the Weyl operator of g are simple.



The complex projective plane (CP?) with its canonical metric
does not have a limiting Carleman weight.

Consider the following basis of non simple eigenvectors.

1 = e1NextesNes, ¢z =ei1Nes—exNes, ¢3 = ei1Nestees,

(4)
for its self-dual component, AT = (¢1, ¢, ¢3) and

Y1 = e1Nex—esNey, Yy = ei1Nest+erNey, Y3z = ei1Nes—erNes,
(5)

N~ = (Y1,92,¢3)

Then W diagonalize in this basis with eigenvalues

(4,—-2,-2,0,0,0) i.e the eigenspaces have no simple

bivectors !!



In dimension 3 we should try to read the result from the
Cotton tensor. By its simetries the Cotton tensor is equivalent
to a new (2,0) tensor called the Cotton York tensor (By the

Hodge Operator)

kIm Eklm
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1 kIm 6klm
CYjj = =Cui9jm—=——= = Ijim (VS), 6
i > kllgjm\/m gjm( k )/1 \/@ (6)

Theorem

Let n = 3. If a metric g € [g] admits a parallel vector field, then
for any p € M, there is a tangent vector v € T,M such that

CYp(v,v) = CYp(wi,wz) =0

for any pair of vectors wy,wy € vt
This is equivalent to det(CYp) = 0.

Hint: the parallel vector field is v.



Among the eight Thurston geometries, only Nil and SL(2,R)
do not admit limiting Carleman weights while the other six are
locally conformal to products of R and a surface.

Example: SL(2,R) with its left invariant metric, lwasawa
decomposition

A_ (cost sind et’2 0 1 s
“ \—sing cosfd)\ 0 e¥?2)\0 1

0 0 -2
CY(97070) - 0 —4 0
-2 0 4

with non-zero determinant. Since the metric is left invariant,
the same happens at any other point.



Size of Eigenflag Weyl Operators

Theorem

The set EW of Weyl tensors that satisfy the eigenflag
condition is a semialgebraic subset of the space of Weyl
tensors with codimension

4

3 2
—n- —n°——=n-+ 2.
3 3 i

In particular, the codimension is 2 for n = 4 and 12 for n = 5.

<




Metrics whose Weyl operator has the eigenflag
property

The set of metrics which are not locally conformal to a product
at any point in M contains and open and dense set.

Proof: the set of all Weyl tensors with the eigenflag property is
a stratified bundle. The set of metrics for which the map
p — Wy is transverse to this bundle is open and dense.



Is it a sufficient Condition?

More careful analysis of dimension 4.

n =4 W € EW. Then there are at most three eigenvalues of
multiplicity at least 2 which add up to 0

@ If the three eigenvalues are distinct then there are
exactly four orthogonal eigenflag directions.

@ If two eigenvalues coincide we have two orthogonal
planes of eigenflag directions.

@ otherwise W =0 )

If (M, g) is conformal to a product of surfaces, the Weyl tensor
has two planes of eigenflag directions.



Criteria for being conformal to a product, given
the candidate distributions

Theorem

Let (M, g) be a Riemannian metric, and D1 and D, be two
orthogonal integral distributions. The following are
equivalent:

@ g is locally conformal to the product of a metric on an
integral leave of D, and an integral leave of D,

@ Dy,D; are umbilical with mean curvature normals n1,n>
and

d(m +m) =0




Product of Surfaces

(51,91) x (S2,92) is conformally flat iff S; has contant
curvature c and S, has constant curvature —c.
If (S1,91) x (S2,92) is not flat, it admits a LCW if and only if

(S1,91) or (S2,92) is locally isometric to a surface of
revolution.

IEXi| The product of two scalene ellipsoids with the metric
induced by R3 does no admit LCWs but has the eigenflag
property.



A curious example

OnU C {(t,x,y,z) € R*: x > 0}, define:

100 0
0100

9 100 x 0 7
0 0 0 x2

@ The Weyl tensor of g has the eigenflag property at every
point, with three different eigenvalues. Hence, the metric
is not locally conformal to a product of surfaces.

@ The eigenflag directions of the Weyl tensor are spanned
by the coordinate vector fields.

@ The functions t,y, z are the only LCWSs.



Another curious example

On U C {(t,x,y,z) € R*: x > 0}, define:

0 0
0 0
8
x> 0 (
/

o O O+
O O O

0 1/x

@ The Weyl tensor of g has the eigenflag property at every
point, with only two different eigenvalues. However, the
metric is not locally conformal to a product of surfaces.

@ The functions t,y, z are the only LCWs.
Proof: The Weyl tensor identifies the distributions D1 and D,.
Apply the criteria for being conformal to a product to find out

M is not a product along D; and D,. Then a more careful
analysis is required to find out the LCWs.



@ Pablo Angulo, Daniel Faraco, Luis Guijarro: Sufficient
conditions for the existence of limiting Carleman weights.
http://arxiv.org/abs/1603.04201

@ Pablo Angulo: On the set of metrics without local limiting
Carleman weights. http://arxiv.org/abs/1509.02127

@ Pablo Angulo, Daniel Faraco, Luis Guijarro and Alberto
Ruiz: Obstructions to the existence of limiting Carleman
weights. http://arxiv.org/abs/1411.4887 (Analysis and
PDE 9-3 (2016), 575-59)

@ This can be done using SageManifolds or some other
Computer Algebra Software.



