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Abstract: In this paper we address the problem of interpolating a spline developable patch bounded by a given
spline curve and the first and the last rulings of the developable surface. To complete the boundary of the patch, a
second spline curve is to be given. Up to now this interpolation problem could be solved, but without the possibility
of choosing both endpoints for the rulings. We circumvent such difficulty by resorting to degree elevation of the
developable surface. This is useful for solving not only this problem, but also other problems dealing with triangular
developable patches.
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1 Introduction

Developable surfaces have been used extensively
in industry for modelling sheets of steel. These sur-
faces are plane patches that have been curved by iso-
metric transformations, preserving lengths of curves,
angles, and areas. They mimic the properties of thin
steel plates that are transformed by cutting, rolling,
or folding, but not by stretching or application of
heat, which would raise manufacturing costs.

Their inclusion in the NURBS formalism, how-
ever, has not been easy. The condition of devel-
opability is a non-linear differential equation which
translates into non-linear equations for the vertices
of the control net of the surface.

To our knowledge the first reference to NURBS
developable surfaces arose in technical reports at
General Motors (Mancewicz and Frey, 1992; Frey
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and Bindschadler, 1993). One approach has been
dealing with the developability condition for low de-
grees (Lang and Röschel, 1992; Chu and Séquin,
2002; Chu et al., 2008).

Another approach to developable surfaces con-
sists in resorting to projective dual geometry. In this
geometry ‘points’ are planes and ‘planes’ are points,
and this is useful for dealing with the developability
condition (Bodduluri and Ravani, 1993; Pottmann
and Farin, 1995; Hu et al., 2012).

One can also construct surfaces which are
approximately developable instead (Chalfant and
Maekawa, 1998; Pottmann and Wallner, 1999;
Leopoldseder, 2001; Peternell, 2004; Liu et al., 2011;
Zeng et al., 2012). A nice review may be found in
Pottmann and Wallner (2001). Applications to ship
hull design may be found in Kilgore (1967), Pérez-
Arribas et al. (2006), and Pérez and Suárez (2007).

A large family of Bézier developable surfaces
was obtained in Aumann (2003; 2004) defining affine
transformations between cells of the control net.
This result has been extended to spline (Fernández-
Jambrina, 2007) and Bézier triangular (Farin, 1986)
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developable patches. A characterisation of Bézier
ruled surfaces can be found in Juhász and Róth
(2008).

In this paper we use the latter constructions
to find solutions to interpolation problems with de-
velopable surfaces. For instance, in Fernández-
Jambrina (2007), we were able to draw a developable
surface through a given boundary curve and two rul-
ings, but we could not choose both endpoints for
these rulings. We would like to solve such an issue
and also apply the solution to new problems.

2 Developable surfaces

A ‘ruled surface’ patch fills the space between
two parametrised curves c(u) and d(u),

b(u, v) = (1− v)c(u) + vd(u), u ∈ [a, b], (1)

for v ∈ [0, 1], by linking with segments, named ‘rul-
ings’, the points on both curves with the same pa-
rameter u.

In general, the tangent plane to the ruled surface
on a ruling is different for each point on the segment.
‘Developable surfaces’ are the subcase of ruled sur-
faces for which the tangent plane is constant along
each ruling (Postnikov, 1979; Struik, 1988).

Let us compute a normal vector at each point of
a ruled surface with the derivatives of the parametri-
sation in Eq. (1):

bu(u, v) = (1− v)c′(u) + vd′(u),

bv(u, v) = d(u)− c(u),

(bu × bv) (u, v) = ((1− v)c′(u) + vd′(u))

× (d(u)− c(u)) ,

which is linear in the parameter v. If we calculate it
on both ends of the rulings,

(bu × bv) (u, 0) = c′(u)× (d(u)− c(u)) ,

(bu × bv) (u, 1) = d′(u)× (d(u)− c(u)) ,

we learn that the three vectors c′(u), d′(u), d(u) −
c(u) are to be coplanar to have a constant tangent
plane along each ruling of the surface.
Proposition 1 A ruled surface parametrised as
in Eq. (1) is developable if and only if the vector
w(u) = d(u) − c(u), linking the points d(u), c(u),
and the velocities c′(u), d′(u) of the curves at these
points are coplanar for every value of u.

3 B-spline curves

In this section we review the formalism of B-
spline curves and their main properties to fix the
notation, which follows closely the one in Farin
(2002). We may define a B-spline curve c(u) of
degree n and N pieces on interval [un−1, un+N−1],
so that the Ith piece of the curve is defined
on interval [un+I−2, un+I−1]. For this we re-
quire an ordered list of values of the parameter u

(named ‘knots’), {u0, u1, . . . , u2n+N−2}. The ac-
tual knots defining the intervals for each piece are
the ‘inner’ knots {un−1, un, . . . , un+N−1}, whereas
the knots {u0, u1, . . . , un−2} at the beginning of
the list (usually taken to be equal to un) and
{un+N , un+N+1, . . . , u2n+N−2} at the end (usually
taken to be equal to un+N−1) are auxiliary.

Points on B-spline curves can be computed using
the de Boor algorithm, c(u) = c

n)
0 (u), consisting

on linear interpolations between consecutive vertices.
For a curve of just one piece, we have

c
r)
i (u) :=

ui+n − u

ui+n − ui+r−1
c
r−1)
i (u)

+
u− ui+r−1

ui+n − ui+r−1
c
r−1)
i+1 (u),

(2)

for i = 0, 1, . . . , n− r and r = 1, 2, . . . , n.
A useful construction, named ‘polarisation’ or

‘blossom’ of the parametrisation of the curve, con-
sists of interpolating in each step with a different
value vi of the parameter u, c[v1, v2, . . . , vn] :=

c
n)
0 [v1, v2, . . . , vn],

c
r)
i [v1, v2, . . . , vr]

:=
ui+n − vr

ui+n − ui+r−1
c
r−1)
i [v1, v2, . . . , vr−1]

+
vr − ui+r−1

ui+n − ui+r−1
c
r−1)
i+1 [v1, v2, . . . , vr−1].

(3)

With this notation, u<i> = u, u, . . . , u
︸ ︷︷ ︸

i times

, we have

c(u) = c[u<n>]. Vertices are recovered from the
polarisation as ci = c[ui, ui+1, . . . , ui+n−1].

These expressions are valid for B-spline curves
with an arbitrary number of pieces, replacing the
interval [un−1, un] of the first piece by the interval of
the piece under consideration.

We may summarise some properties of the de
Boor algorithm and the polarisation which are rele-
vant for our purposes:
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1. The velocity of the curve is

c′(u) =
n

un − un−1

(

c
n−1)
1 (u)− c

n−1)
0 (u)

)

=
n
(

c[u<n−1>, un]− c[u<n−1>, un−1]
)

un − un−1
.

(4)

2. The polarisation c[v1, v2, . . . , vn] of the spline
curve c(u) is multiaffine and symmetric. That is, if
λ+ μ = 1,

c[λv1 + μṽ1, . . . , vn] = λc[v1, v2, . . . , vn]

+ μc[ṽ1, . . . , vn].

Finally, we review two operations with B-spline
curves which we shall need later on:

Insertion of knots: Given a B-spline curve of
degree n with vertices {c0, c1, . . . , cL} and knots
{u0, u1, . . . , uK}, we can split the interval [uI , uI+1]

by inserting a new knot ũ, uI < ũ < uI+1. The new
list of knots is then obviously {ũ0, ũ1, . . . , ũK+1},
with

ũi =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

ui, i = 0, 1, . . . , I,

ũ, i = I + 1,

ui−1, i = I + 2, I + 3, . . . ,K + 1,

and, since the curve has not changed, the
blossom provides the new sequence of vertices
{c̃0, c̃1, . . . , c̃L+1}, with

c̃i = c[ũi, ũi+1, . . . , ũi+n−1], i = 0, 1, . . . , L+ 1.

Degree elevation: Formally we may express a
B-spline curve c(u) of degree n as a curve of degree
n + 1. The blossom c1 of the degree-elevated curve
is related to the original one in a simple form (Farin,
2002),

c1[v1, v2, . . . , vn+1]

=
1

n+ 1

n+1
∑

i=1

c[v1, v2, . . . , vi−1, vi+1, . . . , vn+1],
(5)

and in the list of knots {u0, u1, . . . , uK} the multiplic-
ity of inner knots, from un−1 to un+N−1, is increased
by one, without modifying the auxiliary knots.

4 Spline developable surfaces

The developability condition in Proposition 1
may be readily adapted to spline curves (Fernández-
Jambrina, 2007).

To start, let us consider two B-spline curves
of degree n and one segment over a common list
of knots {u0, u1, . . . , u2n−1}, defined on the interval
[un−1, un]. Their respective B-spline polygons are
{c0, c1, . . . , cn}, {d0,d1, . . . ,dn}.

We may draw a simple conclusion using the de
Boor algorithm. Using Eq. (4) and the last iteration
of Eq. (2), it is clear that the vectors c′(u), d′(u), and
d(u)−c(u) are coplanar if and only if the four points
c
n−1)
0 (u), cn−1)

1 (u), dn−1)
0 (u), dn−1)

1 (u) are coplanar
(Fig. 1).

c(u)

d′(u)
d(u)

c′(u)
cn−1)(u)c0

d 

n−1)(u)d1

d 

n−1)(u)d0

cn−1)(u)c1

Fig. 1 Characterisation of developable surfaces

The developability condition is then equivalent
to the possibility of writing one of the points as
a barycentric combination of the other ones. For
instance,

d
n−1)
1 (u) = μ0(u)d

n−1)
0 (u) + λ0(u)c

n−1)
0 (u)

+ λ1(u)c
n−1)
1 (u),

with coefficients λ0(u), λ1(u), μ0(u) = 1 − λ0(u) −
λ1(u).

We may rewrite this combination in another
form, separating the terms related to each curve,
also in a barycentric fashion,

(1− Λ(u))c
n−1)
0 (u) + Λ(u)c

n−1)
1 (u)

= (1−M(u))d
n−1)
0 (u) +M(u)d

n−1)
1 (u),

(6)

Λ(u) =
λ1(u)

λ0(u) + λ1(u)
, M(u) =

1

λ0(u) + λ1(u)
,

which just excludes the case of parallel vectors
d
n−1)
1 (u)−d

n−1)
0 (u), cn−1)

1 (u)−c
n−1)
0 (u), which cor-

responds to a cone. In this sense we use the word
‘generic’, since the following results will be valid for
all developable surfaces, except this type of cone.

Using blossoms and taking into account the fact
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that these are multiaffine (Eq. (5)),

(1− Λ(u))c
n−1)
0 (u) + Λ(u)c

n−1)
1 (u)

= (1− Λ(u))c[u<n−1>, un−1] + Λ(u)c[u<n−1>, un]

= c
[

u<n−1>, (1− Λ(u))un−1 + Λ(u)un

]

,

the coplanarity condition (Eq. (6)) may be written
in a more compact expression:

c[u<n−1>, Λ∗(u)] = d[u<n−1>,M∗(u)], (7)

Λ∗(u) = (1− Λ(u))un−1 + Λ(u)un,

M∗(u) = (1−M(u))un−1 +M(u)un.

This expression is valid for B-spline curves with
an arbitrary number of pieces, replacing the interval
[un−1, un] of the first piece by the interval of the piece
under consideration.

The higher the degree of Λ∗(u) and M∗(u), the
larger the number of conditions imposed by Eq. (7).
Hence, we restrict to the case with constant Λ∗, M∗,
which produces the families of developable surfaces
in Aumann (2003) and Fernández-Jambrina (2007).
In this case, expressions on both sides of Eq. (7) may
be viewed as parametrisations of curves of degree
n − 1 and therefore this condition is equivalent to
the same one for their blossoms, since a blossom is
uniquely determined by its parametrisation:
Theorem 1 Two B-spline curves of degree
n and N pieces with the same list of knots
{u0, u1, . . . , uK} define a developable surface on the
interval [un−1, un+N−1] if their blossoms are related
by

c[v1, v2, . . . , vn−1, Λ
∗] = d[v1, v2, . . . , vn−1,M

∗],

for some values Λ∗, M∗.
We may obtain relationships between the B-

spline polygons of both curves by applying the
previous expression to lists of correlative knots,
{ui+1, ui+2, . . . , ui+n−1}, taking into account the
fact that blossoms are multiaffine,

c[ui+1, ui+2, . . . , ui+n−1, Λ
∗]

= c

[

ui+1, ui+2, . . . , ui+n−1,
ui+n − Λ∗

ui+n − ui
ui

+
Λ∗ − ui

ui+n − ui
ui+n

]

=
ui+n − Λ∗

ui+n − ui
c [ui, ui+1, . . . , ui+n−1]

+
Λ∗ − ui

ui+n − ui
c [ui+1, ui+2, . . . , ui+n]

=
ui+n − Λ∗

ui+n − ui
ci +

Λ∗ − ui

ui+n − ui
ci+1,

since ci = c[ui, ui+1, . . . , ui+n−1].
Corollary 1 Two B-spline curves of degree n with
the same list of knots {u0, u1, . . . , uK} and B-spline
polygons {c0, c1, . . . , cL}, {d0,d1, . . . ,dL} define a
developable surface if the cells of the B-spline net of
the surface are plane and their vertices are related
by

(ui+n − Λ∗)ci + (Λ∗ − ui)ci+1

= (ui+n −M∗)di + (M∗ − ui)di+1,
(8)

for some values Λ∗, M∗ and i = 0, 1, . . . , L− 1.
This family of spline developable surfaces has

the advantage of being defined by linear relationships
between vertices, in spite of the non-linearity of the
condition of null Gaussian curvature.

The data for this construction are the B-
spline polygon {c0, c1, . . . , cL}, the list of knots
{u0, u1, . . . , uK} and, for instance, the first plane cell
of the net, given by either d0 and d1 or d0 and the
parameters Λ∗, M∗.

Since this construction is based on blossoms
of curves, it is compatible with algorithms for B-
spline curves, grounded on blossoms, such as the
knot insertion algorithm for subdivision of B-spline
curves. That is, if we split into two pieces the interval
[uI , uI+1] by inclusion of a new knot ũ, so that the
new list is {u0, . . . , uI , ũ, uI+1, . . . , uK} and we com-
pute the new B-spline polygons {c̃0, c̃1, . . . , c̃L+1}
and {d̃0, d̃1, . . . , d̃L+1}, these new vertices satisfy
Eq. (8). Fig. 2 shows an example of this construction.

However, this construction is not compatible
with degree elevation of B-spline curves. The degree-
elevated B-spline developable surface through two B-
spline curves does not coincide with the B-spline de-
velopable surface through the corresponding degree-
elevated curves. Fig. 3 shows a developable sur-
face and the control polygons of the degree-elevated
boundary curves (denoted by tildes). The central
cell of the degree-elevated surface is not even planar.

We show it explicitly with a simple example:
Example 1 Find a developable surface patch of de-
gree two and just one piece, bounded by two curves,
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d0

c0

c1

c2

c3

c4

c5 d1

d2

d3

d5

d4

Fig. 2 Developable B-spline surface of four pieces of
degree 2

Fig. 3 Degree-elevated developable surface of one
piece of degree 2

c(u) and d(u), with polygons

c0 = (0, 0, 0), c1 = (3, 3, 0), c2 = (4, 3, 0),

d0 = (0, 0, 2), d1 = (2, 2, 3),

and knots {0, 0, 1, 1}.
From Eq. (8) applied to the first cell of the B-

spline net, i = 0,

(u2−Λ∗)c0+(Λ∗−u0)c1 = (u2−M∗)d0+(M∗−u0)d1,

with n = 2, u0 = 0, u2 = 1, we obtain

(1− Λ∗)(0, 0, 0) + Λ∗(3, 3, 0) = (1−M∗)(0, 0, 2)

+M∗(2, 2, 3),

and hence Λ∗ = −4/3 and M∗ = −2.
We lack vertex d2, but for the second cell of the

net,

(u3−Λ∗)c1+(Λ∗−u1)c2 = (u3−M∗)d1+(M∗−u1)d2,

7

3
(3, 3, 0)− 4

3
(4, 3, 0) = 3(2, 2, 3)− 2d2,

we conclude d2 = (13/6, 3/2, 9/2).
If we formally elevate the degree of both curves

to three, the list of knots extends to {0, 0, 0, 1, 1, 1}

and the new polygons obtained with Eq. (5),

c̃0 = c̃[0, 0, 0] = c[0, 0] = c0 = (0, 0, 0),

c̃1 = c̃[0, 0, 1] =
c[0, 0] + 2c[0, 1]

3
=

c0 + 2c1
3

= (2, 2, 0),

c̃2 = c̃[0, 1, 1] =
2c[0, 1] + c[1, 1]

3
=

2c1 + c2
3

= (10/3, 3, 0),

c̃3 = c̃[1, 1, 1] = c[1, 1] = c2 = (4, 3, 0),

d̃0 = d̃[0, 0, 0] = d[0, 0] = d0 = (0, 0, 2),

d̃1 = d̃[0, 0, 1] =
d[0, 0] + 2d[0, 1]

3
=

d0 + 2d1

3

= (4/3, 4/3, 8/3),

d̃2 = d̃[0, 1, 1] =
2d[0, 1] + d[1, 1]

3
=

2d1 + d2

3

= (37/18, 11/6, 7/2),

d̃3 = d̃[1, 1, 1] = d[1, 1] = d2 = (13/6, 3/2, 9/2),

correspond to a developable surface with non-
constant Λ∗(u) = −2 − u/2, M∗(u) = −3 − u/2,
and it is easy to check that the four points that form
the second cell, c̃1, c̃2, d̃1, and d̃2, do not lie on a
plane.

This feature, however, will be shown to be useful
for solving interpolation problems, as demonstrated
in the following sections.

5 Interpolation of B-spline developable
surfaces

Consider the following interpolation problem:
Problem 1 Given a spline curve c(u) of degree
n, N pieces, B-spline polygon {c0, c1, . . . , cL} and a
list of knots {u0, u1, . . . , uK}, u ∈ [a, b], a = un−1,
b = un+N−1, and two straight lines la and lb through
the endpoints of c(u) with respective director vectors
v and w, find a developable surface b(u, v) such that
c(u, 0) = c(u) and la and lb are the first and last
rulings of the surface respectively, that is, la : c(a, v)

and lb : c(b, v).
The special case of Bézier curves of degree n

was solved by Aumann (2003), using his family of
developable surfaces. His solution was extended to
spline curves by Fernández-Jambrina (2007), solving
the recursion in Eq. (8) for the B-spline net. We
review here this construction in order to extend it to
solve new problems in the following sections.
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We focus on the general case of crossing rulings
la and lb, since the particular cases of parallel or in-
tersecting rulings may be solved in a simpler fashion
resorting to cylinders and cones, respectively.

As in Fernández-Jambrina (2007), the last rul-
ing of the developable surface can be written in terms
of the B-spline net of the curve c(u), the list of knots,
and the coefficients Λ∗, M∗:

dL − cL =

L−1
∏

i=0

M∗ − ui+n

M∗ − ui
(d0 − c0)

+
Λ∗ −M∗

M∗ − uL−1

(

cL − a(M∗)
)

,

a(M∗) =
M∗ − uL−1

M∗ − u0

L−1
∏

i=1

M∗ − ui+n

M∗ − ui
c0

+
L−1
∑

i=1

ui+n − ui−1

M∗ − ui−1

⎛

⎝

L−2
∏

j=i

M∗ − un+j+1

M∗ − uj

⎞

⎠ ci.

(9)
From this expression we learn that the vec-

tors along the first and last rulings, d0 − c0 = σv,
dL − cL = τw, and the vector cL − a(M∗), have to
be linearly dependent, and this will happen for any
solution M∗

0 of the algebraic equation

det(a(M∗)− cL,v,w) = 0. (10)

This allows us to write the linear combination
in terms of a basis {v,w,n}, n = v ×w,

a(M∗
0 ) = cL + αv + βw + 0n,

where the coefficients are readily obtained by
Cramer’s rule,

α =
det(a(M∗

0 )− cL,w,n)

det(v,w,n)
,

β =
det(v,a(M∗

0 )− cL,n)

det(v,w,n)
.

Since M∗ is fixed by the coplanarity condition in
Eq. (10), if we wish, we can modify the length of the
rulings through either σ or τ just with the parameter
Λ∗, which remains free so far,

σ = α
Λ∗ −M∗

0

M∗
0 − uL−1

L−1
∏

i=0

M∗
0 − ui

M∗
0 − ui+n

,

τ = β
M∗

0 − Λ∗

M∗
0 − uL−1

.

(11)

Hence, we have solved the interpolation problem
and can use Λ∗ to fix either d0 or dL, but we cannot

lb

la

v

w

d0

d2
d3

c0

c1

c2c3

Fig. 4 Developable surface of degree 2 and two pieces

choose both ends of the rulings. An example of this
construction is shown in Fig. 4.

The procedure for solving the problem is clear:
1. Write the algebraic equation (10) with the B-

spline polygon for c(u), vectors v, w, and the list of
knots, and obtain a solution M∗

0 . For any value of
Λ∗, the resulting developable surface will have c(u)

as part of the boundary and the first and last rulings
will be straight lines with respective directions v, w.

2. Fix Λ∗
0 by choosing either d0 or dL in Eq. (11).

3. Use the recursivity relation in Eq. (8) to com-
pute the vertices di for d(u).

4. The B-spline polygons {c0, c1, . . . , cL} and
{d0,d1, . . . ,dL} form the B-spline net for the devel-
opable patch complying with the prescription.

We illustrate this with an example, which will
be useful as a first step for the following sections:
Example 2 Consider a spline curve of degree three
and three pieces with B-spline polygon

c0 = (0, 0, 0), c1 = (2, 3, 0), c2 = (4, 3, 0),

c3 = (5, 0, 0), c4 = (7, 2, 1), c5 = (9,−1, 3),

and a list of knots {0, 0, 0, 0.3, 0.7, 1, 1, 1}, which is
not uniformly spaced. For the first ruling we choose
direction v = (0, 0, 2) and for the last ruling we
choose w = (−1, 0, 1). Find a developable surface
patch bounded by c(u) and the rulings defined by v,
w.

We calculate the determinant in Eq. (10),

det(a(M∗)− cL,v,w)

=
2(M∗4 + 6.2M∗3 − 12.3M∗2 + 9.3M∗ − 2.1)

M∗3(M∗ − 0.3)(M∗ − 0.7)
,

and ensure developability by choosing parameter M∗

as one of the real solutions of

M∗4 + 6.2M∗3 − 12.3M∗2 + 9.3M∗ − 2.1 = 0,
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which are M∗ = −7.91, 0.37.
We further choose d0 = c0 + v = (0, 0, 2) along

the first ruling, which amounts to choosing σ = 1 in
Eq. (11), to obtain the respective values of parameter
Λ∗ = −6.18, 0.61. We perform the calculations for
the first pair of parameters, Λ∗ = −6.18, M∗ =

−7.91.
Now we may use Corollary 1 to obtain the

B-spline polygon of the other boundary curve of
the developable patch through c(u) with prescribed
rulings:

di+1=
(ui+n − Λ∗)ci + (Λ∗− ui)ci+1 + (M∗− ui+n)di

M∗ − ui

for i = 0, 1, . . . , L− 1,

d1 =
(u3 − Λ∗)c0 + (Λ∗ − u0)c1 + (M∗ − u3)d0

M∗ − u0

= (1.56, 2.34, 2.08),

d2 =
(u4 − Λ∗)c1 + (Λ∗ − u1)c2 + (M∗ − u4)d1

M∗ − u1

= (3.09, 2.29, 2.26),

d3 =
(u5 − Λ∗)c2 + (Λ∗ − u2)c3 + (M∗ − u5)d2

M∗ − u2

= (3.75,−0.15, 2.55),

d4 =
(u6 − Λ∗)c3 + (Λ∗ − u3)c4 + (M∗ − u6)d3

M∗ − u3

= (5.22, 1.42, 3.55),

d5 =
(u7 − Λ∗)c4 + (Λ∗ − u4)c5 + (M∗ − u7)d4

M∗ − u4

= (6.76,−1.00, 5.24),

and check that in fact d5 lies on the last ruling since

d5 − c5 = (−2.24, 0.00, 2.24),

which is a vector proportional to w. The resulting
patch is shown in Fig. 5.

d4
d2

d0

c3 c0

c1
c2 v

w

c4

c5

d5

d1

Fig. 5 Developable surface of degree 3 and three
pieces

Another way to look at this developable surface
would be to split the spline curve into three cubic

Bézier curves, {C0,C1,C2,C3}, {C3,C4,C5,C6},
and {C6,C7,C8,C9}, by knot insertion, with

C0 = (0, 0, 0), C1 = (2, 3, 0), C2 = (2.86, 3, 0),

C3 = (3.48, 2.61, 0), C4 = (4.3, 2.1, 0),

C5 = (4.7, 0.9, 0), C6 = (5.52, 1.04, 0.33),

C7 = (6.14, 1.14, 0.57), C8 = (7, 2, 1),

C9 = (9,−1, 3).

If we also split by knot insertion
the other boundary curve in three cubic
pieces, {D0,D1,D2,D3}, {D3,D4,D5,D6},
{D6,D7,D8,D9}, with

D0 = (0, 0, 2), D1 = (1.56, 2.34, 2.08),

D2 = (2.21, 2.32, 2.15), D3 = (2.67, 1.99, 2.24),

D4 = (3.29, 1.56, 2.35), D5 = (3.55, 0.58, 2.46),

D6 = (4.15, 0.68, 2.84), D7 = (4.59, 0.75, 3.12),

D8 = (5.22, 1.42, 3.55), D9 = (6.76,−1.00, 5.24),

it is easy to check that the three pieces of the com-
posite ruled surface are in fact independent devel-
opable surfaces on their respective intervals [0, 0.3],
[0.3, 0.7], [0.7, 1], with the same parameters Λ∗ =

−6.18, M∗ = 0.61. The boundary rulings of these
Bézier developable surfaces have been marked in
Fig. 5.

6 Degree elevation of developable
surfaces

We have seen how to interpolate a spline devel-
opable surface bounded by a spline curve and two
rulings, but we cannot choose both endpoints for
such rulings. This is a limitation of the procedure
in Fernández-Jambrina (2007) described in the pre-
vious sections. A way to deal with this problem is to
try to find a solution of higher degree.

As pointed out in Aumann (2004), degree ele-
vation may be used to enlarge a developable patch
by modifying the length of the ruling segments of
the patch. The idea is simple. We may modify the
length of the director vector

w(u) = d(u)− c(u)

of each ruling by multiplication by a function f(u),

w̃(u) = f(u)w(u) = d̃(u)− c(u),
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and as a consequence, the boundary of the surface
patch changes. For instance, the new second curve
d̃(u) starts at d̃0 = c0 + f(un−1)(d0 − c0) and ends
at d̃L = cL + f(un+N−1)(dL − cL).

It is clear that this transformation just changes
the patch of the developable surface that is cov-
ered by the parametrisation and that it allows us
to change the endpoints d0 and dL of the first and
last rulings. The only problem is that the curve d̃(u)
is no longer a spline of degree n. The simplest choice
for the factor is an affine function f(u) = au+ b, and
in this case the new surface patch

b̃(u, v) = (1− u)c(u) + vd̃(u)

will be of degree (n+ 1, 1). An example is shown in
Fig. 6.

Fig. 6 Developable surface of degree 2 and two pieces
stretched to a patch of degree 3

The next step will be the calculation of the B-
spline polygon of the new boundary of the extended
surface patch.

First, we obtain the blossom of the new
parametrised curve,

d̃(u) = (1− f(u)) c(u) + f(u)d(u).

The blossom is an (n+1)-affine symmetric form
d̃[u0, u1, . . . , un] for which

d̃(u) = d̃[u<n+1>].

Since f(u) is an affine function, it is already its
own blossom, f [u] = f(u). For the product h(u) =

f(u)d(u), it is simple to produce an (n + 1)-affine
form ĥ satisfying ĥ[u<n+1>] = h(u),

ĥ[u0, u1, . . . , un] = f(u0)d[u1, u2, . . . , un],

but this form is clearly non-symmetric.

However, we may obtain a symmetric form just
by permuting the argument of the function f ,

h[u0, u1, . . . , un]

=
1

n+ 1

n
∑

i=0

f(ui)d[u0, u1, . . . , ui−1, ui+1, . . . , un].

This form h is (n + 1)-affine, symmetric, and
clearly h[u<n+1>] = h(u). Hence, it is the blossom
of the parametrisation h(u).

We may use this result to conclude that the blos-
som of d̃(u) is given by

d̃[u0, u1, . . . , un]

=
1

n+ 1

n
∑

i=0

f(ui)d[u0, . . . , ui−1, ui+1, . . . , un]

+
1

n+ 1

n
∑

i=0

(

1− f(ui)
)

c[u0, . . . , ui−1, ui+1, . . . , un].

(12)
The degree of the curve c(u) must be formally

elevated to n+ 1 to complete the B-spline net of the
surface patch of degree (n+1, 1). It can be computed
by taking f ≡ 1 in the previous formula for d̃. The
degree-elevated blossom for c(u) is

c̃[u0, u1, . . . , un]

=
1

n+ 1

n
∑

i=0

c[u0, u1, . . . , ui−1, ui+1, . . . , un].

The list of knots of the degree-elevated curves
(Farin, 2002) is also modified by increasing by one the
multiplicity of the inner knots un−1, un, . . . , un+N−1,

{u0, . . . , un−1, un−1, . . . , un+N−1, un+N−1, . . . , uK}.

Then the new B-spline polygons of the
curves c(u) and d̃(u) will be {c̃0, c̃1, . . . , c̃L′},
{d̃0, d̃1, . . . , d̃L′}, with

c̃i = c̃[ũi, ũi+1, . . . , ũi+n], d̃i = d̃[ũi, ũi+1, . . . , ũi+n]

(13)
for i = 0, 1, . . . , L′. The list of knots has been renum-
bered as {ũ0, ũ1, . . . , ũK′} to have correlative indices.

This construction is useful for solving the fol-
lowing interpolation problem:
Problem 2 Given a spline curve c(u) of degree n,
N pieces, B-spline polygon {c0, c1, . . . , cL} and a list
of knots {u0, u1, . . . , uK}, u ∈ [a, b], a = un−1, b =

un+N−1, and two points d0, dL, find a developable
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surface b(u, v) such that c(u, 0) = c(u), c(a, 1) = d0,
c(b, 1) = dL.

The procedure for solving this problem is clear:
1. Write the algebraic equation (10) with the B-

spline polygon for c(u), the list of knots and vectors
for the rulings c0d0, cLdL and obtain a solution M∗

0 .
2. Fix Λ∗

0 by choosing d0 in Eq. (11) (σ = 1, but
τ �= 1 in general).

3. Use the recursivity relation in Eq. (8) to com-
pute the vertices of d(u).

4. Increase by one the multiplicity of the inner
knots of the boundary curves.

5. Formally raise the degree of c(u) and compute
the new B-spline vertices c̃i with Eq. (5).

6. Choose f(u) so that f(a) = 1, f(b) = 1/τ :

f(u) =
b− u

b− a
+

1

τ

u− a

b− a
. (14)

7. Use this function to compute the B-spline
vertices d̃i for the new boundary curve d̃(u) with
Eqs. (12) and (13).

8. The B-spline polygons {c̃0, c̃1, . . . , c̃L′} and
{d̃0, d̃1, . . . , d̃L′} form the B-spline net for the devel-
opable patch complying with the prescription.

We go back now to Example 2:
Example 3 Consider a spline curve of degree three
and three pieces with B-spline polygon

c0 = (0, 0, 0), c1 = (2, 3, 0), c2 = (4, 3, 0),

c3 = (5, 0, 0), c4 = (7, 2, 1), c5 = (9,−1, 3),

and a list of knots {0, 0, 0, 0.3, 0.7, 1, 1, 1}. For the
first ruling we choose direction v = (0, 0, 2) and for
the last ruling we choose w = (−1, 0, 1). Find a
developable surface patch bounded by c(u), an un-
known curve d̃(u), and the rulings defined by v, w,
such that d̃(0) = c0 + v = (0, 0, 2), d̃(1) = c5 +w =

(8,−1, 4).
We have already obtained the spline curve with

B-spline polygon

d0 = (0, 0, 2), d1 = (1.56, 2.34, 2.08),

d2 = (3.09, 2.29, 2.26), d3 = (3.75,−0.15, 2.55),

d4 = (5.22, 1.42, 3.55), d5 = (6.76,−1.00, 5.24),

and the same list of knots provides a developable
surface patch with the required prescription except
that d5 lies on the final ruling, but it is not (8,−1, 4).
In fact, d5 = c5 + τw with τ = 2.24.

To shorten the surface patch so that the final
vertex of the new boundary curve d̃(u) is (8,−1, 4),
we have to raise the degree of the curves from three
to four.

Increasing the multiplicity of the inner knots 0,
0.3, 0.7, 1, we obtain the new list of knots for the
degree-elevated curves:

{0, 0, 0, 0, 0.3, 0.3, 0.7, 0.7, 1, 1, 1, 1}.

We calculate first the B-spline polygon for c(u)

as a curve of formal degree four with Eq. (5). The
auxiliary points are computed in Appendix A.

c̃0 = c̃[0, 0, 0, 0] = c[0, 0, 0] = (0, 0, 0),

c̃1 = c̃[0, 0, 0, 0.3] =
c[0, 0, 0] + 3c[0, 0, 0.3]

4

= (1.5, 2.25, 0),

c̃2 = c̃[0, 0, 0.3, 0.3] =
c[0, 0, 0.3] + c[0, 0.3, 0.3]

2

= (2.43, 3, 0),

c̃3 = c̃[0, 0.3, 0.3, 0.7]

=
c[0, 0.3, 0.3] + 2c[0, 0.3, 0.7] + c[0.3, 0.3, 0.7]

4

= (3.79, 2.78, 0),

c̃4 = c̃[0.3, 0.3, 0.7, 0.7]

=
c[0.3, 0.3, 0.7] + c[0.3, 0.7, 0.7]

2
= (4.5, 1.5, 0),

c̃5 = c̃[0.3, 0.7, 0.7, 1]

=
c[0.3, 0.7, 0.7] + 2c[0.3, 0.7, 1] + c[0.7, 0.7, 1]

4

= (5.21, 0.51, 0.14),

c̃6 = c̃[0.7, 0.7, 1, 1] =
c[0.7, 0.7, 1] + c[0.7, 1, 1]

2

= (6.57, 1.57, 0.79),

c̃7 = c̃[0.7, 1, 1, 1] =
3c[0.7, 1, 1] + c[1, 1, 1]

4

= (7.5, 1.25, 1.5),

c̃8 = c̃[1, 1, 1, 1] = c[1, 1, 1] = (9,−1, 3).

Now we have to move the curve d(u) over the
developable surface patch so that the new boundary
curve d̃(u) goes through the endpoints of both rul-
ings, shortening the director vector w(u) by a factor
f(u) as in Eq. (14):

f(u) = (1− u) +
u

2.24
.
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Finally, we use Eq. (12) to compute the B-spline
polygon of the new boundary curve of degree four
that goes through the endpoints of both rulings:

d̃0 = d̃[0, 0, 0, 0] = f(0)d[0, 0, 0]

+ (1 − f(0))c[0, 0, 0]

= d0 = (0, 0, 2),

d̃1 = d̃[0, 0, 0, 0.3]

=
f(0.3)d[0, 0, 0] + 3f(0)d[0, 0, 0.3]

4

+
(1 − f(0.3))c[0, 0, 0] + 3(1− f(0))c[0, 0, 0.3]

4

= (1.17, 1.76, 1.97),

d̃2 = d̃[0, 0, 0.3, 0.3]

=
f(0.3)d[0, 0, 0.3] + f(0)d[0, 0.3, 0.3]

2

+
(1− f(0.3))c[0, 0, 0.3] + (1− f(0))c[0, 0.3, 0.3]

2

= (1.93, 2.39, 1.94),

d̃3 = d̃[0, 0.3, 0.3, 0.7] =
f(0.7)d[0, 0.3, 0.3]

4

+
2f(0.3)d[0, 0.3, 0.7] + f(0)d[0.3, 0.3, 0.7]

4

+
(1 − f(0.7))c[0, 0.3, 0.3]

4

+
(1 − f(0.3))c[0, 0.3, 0.7]

2

+
(1 − f(0))c[0.3, 0.3, 0.7]

4
= (3.06, 2.24, 1.86),

d̃4 = d̃[0.3, 0.3, 0.7, 0.7] =
f(0.3)d[0.3, 0.7, 0.7]

2

+
f(0.7)d[0.3, 0.3, 0.7]+ (1 − f(0.3))c[0.3, 0.7, 0.7]

2

+
(1− f(0.7))c[0.3, 0.3, 0.7]

2
= (3.71, 1.20, 1.74),

d̃5 = d̃[0.3, 0.7, 0.7, 1] =
f(1)d[0.3, 0.7, 0.7]

4

+
2f(0.7)d[0.3, 0.7, 1] + f(0.3)d[0.7, 0.7, 1]

4

+
(1 − f(1))c[0.3, 0.7, 0.7]

4

+
(1 − f(0.7))c[0.3, 0.7, 1]

2

+
(1 − f(0.3))c[0.7, 0.7, 1]

4
= (4.38, 0.35, 1.73),

d̃6 = d̃[0.7, 0.7, 1, 1] =
f(1)d[0.7, 0.7, 1]

2

+
f(0.7)d[0.7, 1, 1] + (1− f(1))c[0.7, 0.7, 1]

2

+
(1− f(0.7))c[0.7, 1, 1]

2
= (5.68, 1.30, 2.14),

d̃7 = d̃[0.7, 1, 1, 1]

=
3f(1)d[0.7, 1, 1] + f(0.7)d[1, 1, 1]

4

+
3(1− f(1))c[0.7, 1, 1] + (1− f(0.7))c[1, 1, 1]

4

= (6.56, 1.05, 2.70),

d̃8 = d̃[1, 1, 1, 1] = f(1)d[1, 1, 1]

+ (1− f(1))c[1, 1, 1] = (8,−1, 4).

The degree-elevated B-spline net for the new
surface patch, complying with the requirements of
the example, can be seen in Fig. 7.

Fig. 7 Degree-elevation and restriction of the devel-
opable surface patch in Fig. 5

We could also split the original curve c(u) into
three cubic Bézier pieces, raise the degree of each
of them to obtain curves of formal degree four with
control points,

C̃0 = (0, 0, 0), C̃1 = (1.5, 2.25, 0), C̃2 = (2.43, 3, 0),

C̃3 = (3.01, 2.90, 0), C̃4 = (3.48, 2.61, 0),

C̃5 = (4.09, 2.23, 0), C̃6 = (4.5, 1.5, 0),

C̃7 = (4.91, 0.93, 0.08), C̃8 = (5.52, 1.04, 0.33),

C̃9 = (5.99, 1.12, 0.51), C̃10 = (6.57, 1.57, 0.79),

C̃11 = (7.5, 1.25, 1.5), C̃12 = (9,−1, 3),

and use the construction in Aumann (2004) to extend
each Bézier developable surface patch to comply with
the prescription of endpoints, by multiplication by
the same factor f(u). One reaches the same result
as applying insertion of knots 0, 0.3, 0.7, 1 to d̃(u):

D̃0 = (0, 0, 2), D̃1 = (1.17, 1.76, 1.97),

D̃2 = (1.93, 2.39, 1.94), D̃3 = (2.41, 2.32, 1.91),

D̃4 = (2.81, 2.10, 1.87), D̃5 = (3.34, 1.79, 1.81),

D̃6 = (3.71, 1.20, 1.74), D̃7 = (4.09, 0.71, 1.74),
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D̃8 = (4.68, 0.82, 1.86), D̃9 = (5.12, 0.89, 1.96),

D̃10 = (5.68, 1.30, 2.14), D̃11 = (6.56, 1.05, 2.70),

D̃12 = (8,−1, 4).

The boundary rulings of the quartic Bézier de-
velopable surfaces have been marked in Fig. 7.

7 Triangular developable surfaces

We may pose another interpolation problem in
which the first ruling collapses to a point, c(a) =

d(a),

b(u, v) = (1− v)c(u) + vd(u), u ∈ [a, b].

The resulting developable patch is triangular in the
sense that it is bounded by two curves and just one
straight segment. Instead of the first point of the un-
known curve of the boundary, we may give as datum
its initial velocity d′(a).
Problem 3 Given a spline curve c(u) of degree
n, N pieces, B-spline polygon {c0, c1, . . . , cL} and a
list of knots {u0, u1, . . . , uK}, u ∈ [a, b], a = un−1,
b = un+N−1, a point dL and a vector d′(a), find a
triangular developable surface b(u, v) through c(u),
such that c(u, 0) = c(u), c(a, v) = c0 for all v,
c(b, 1) = dL, cu(a, 1) = d′(a).

We do not know the first ruling of the surface,
but we may use previous constructions to compute a
spline developable patch through the curve c(u) and
use dL to fix the last ruling:

b(u, v) = c(u) + vw(u), w(u) = d(u)− c(u).

To collapse the first ruling to a point, we shorten
the patch along the rulings,

b̂(u, v) = c(u) + vf(u)w(u), f(u) =
u− a

b− a
, (15)

so that ĉ(a, v) = c0 for all v.
We compute the velocity

b̂u(u, v) = c′(u) +
v

b − a
w(u) + vf(u)w′(u)

of the boundary curve d(u) at u = a, making use of
Eq. (4):

d̂′(a) = ĉu(a, 1) = c′(a) +
w(a)

b− a

= n
c1 − c0

un − un−1
+

d0 − c0
b− a

.

From this expression we obtain the vertex d0 that is
necessary for obtaining the velocity d̂′(a):

d0 = c0 + (b− a)

(

d̂′(a)− n
c1 − c0

un − un−1

)

. (16)

Since we need to fix both d0 and dL to obtain the
developable patch b(u, v), the construction from the
previous section is required and hence such a patch
must be of degree n+ 1. Since c(u) is still of degree
n, the calculation done in Eq. (16) is nonetheless
valid, whereas we keep the original vertices c0 and c1.
Finally, shortening the surface patch as in Eq. (15)
with f(u) produces a triangular patch of degree n+2.

To summarise, the solution of this problem is
reduced to the one of Problem 2:

1. Calculate the vertex d0 and v = d0−c0 using
Eq. (16).

2. Write the algebraic equation (10) with the B-
spline polygon for c(u), the list of knots and vectors
for the rulings c0d0, cLdL and obtain a solution M∗

0 .
3. Fix Λ∗

0 by choosing d0 in Eq. (11) (σ = 1, but
τ �= 1 in general).

4. Use the recursivity relation in Eq. (8) to com-
pute the vertices of d(u).

5. Increase by one the multiplicity of the inner
knots of the boundary curves.

6. Formally raise the degree of c(u) and compute
the new B-spline vertices c̃i with Eq. (5).

7. Choose f(u) so that f(a) = 1, f(b) = 1/τ :

f(u) =
b− u

b− a
+

1

τ

u− a

b− a
.

8. Use this function to compute the B-spline
vertices d̃i for the new boundary curve d̃(u) with
Eqs. (12) and (13).

9. Increase by one the multiplicity of the inner
knots of the boundary curves.

10. Formally raise the degree of c̃(u) and com-
pute the new B-spline vertices ĉi with Eq. (5).

11. Use a function f̂(u) = u to shrink the first
ruling to a point and compute the B-spline vertices
d̂i for the new boundary curve d̂(u) with Eqs. (12)
and (13).

12. The B-spline polygons {ĉ0, ĉ1, . . . , ĉL′} and
{d̂0, d̂1, . . . , d̂L′} form the B-spline net for the
triangular developable patch complying with the
prescription.
Example 4 Consider a spline curve of degree three
and three pieces with B-spline polygon

c0 = (0, 0, 0), c1 = (2, 3, 0), c2 = (4, 3, 0),
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c3 = (5, 0, 0), c4 = (7, 2, 1), c5 = (9,−1, 3),

and a list of knots {0, 0, 0, 0.3, 0.7, 1, 1, 1}. For the
last ruling we choose direction w = (−1, 0, 1). Find
a triangular developable surface patch bounded by
c(u), an unknown curve d̂(u), and the ruling defined
by w, such that d̂(0) = c0, d̂′(0) = (20, 30.5, 2),
d̂(1) = c5 +w = (8,−1, 4).

First of all, we calculate the first ruling of the
developable surface. According to Eq. (16) we need

v = d0 − c0 = d̂′(0) +
3

0.3
(c0 − c1) = (0, 0.5, 2),

and we calculate the determinant in Eq. (10),

det(a(M∗)− cL,v,w)

=
8M∗4 + 2.6M∗3 − 16M∗2 + 14.5M∗ − 3.5

M∗3(M∗ − 0.3)(M∗ − 0.7)
,

so that developability is granted by choosing param-
eter M∗ as a real solution of

8M∗4 + 2.6M∗3 − 16M∗2 + 14.5M∗ − 3.5 = 0.

That is, M∗ = −1.92, 0.38. The other two solutions
are complex.

For having d0 = (0, 0.5, 2) on the first ruling,
we need to take σ = 1 in Eq. (11). The respective
values of parameter Λ∗ are −1.16, 0.59. We choose
the first pair of parameters for our calculations as
Λ∗
0 = −1.16, M∗

0 = 0.59.
We calculate next the B-spline polygon for the

second boundary curve according to Corollary 1:

di+1=
(ui+n − Λ∗)ci+(Λ∗ − ui)ci+1+(M∗ − ui+n)di

M∗ − ui

for i = 0, 1, . . . , L− 1,

d0 = (0, 0.5, 2),

d1 =
(u3 − Λ∗)c0 + (Λ∗ − u0)c1 + (M∗ − u3)d0

M∗ − u0

= (1.21, 2.39, 2.31),

d2 =
(u4 − Λ∗)c1 + (Λ∗ − u1)c2 + (M∗ − u4)d1

M∗ − u1

= (2.13, 2.17, 3.16),

d3 =
(u5 − Λ∗)c2 + (Λ∗ − u2)c3 + (M∗ − u5)d2

M∗ − u2

= (1.77,−0.07, 4.80),

d4 =
(u6 − Λ∗)c3 + (Λ∗ − u3)c4 + (M∗ − u6)d3

M∗ − u3

= (2.07, 1.22, 6.97),

d5 =
(u7 − Λ∗)c4 + (Λ∗ − u4)c5 + (M∗ − u7)d4

M∗ − u4

= (2.92,−1.00, 9.08).

Hence, d5 − c5 = τw, with τ = 6.08. We show
the surface patch in Fig. 8.

d4
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Fig. 8 Developable surface of degree 3 and three
pieces

Next we shorten the surface patch so that the
new boundary curve d̂(u) ends up at (8,−1, 4). From
the previous example we know that we are to increase
the multiplicity of the inner knots by one,

{0, 0, 0, 0, 0.3, 0.3, 0.7, 0.7, 1, 1, 1, 1},
formally raise the degree of c(u) to four,

c̃0 = (0, 0, 0), c̃1 = (1.5, 2.25, 0), c̃2 = (2.43, 3, 0),

c̃3 = (3.79, 2.78, 0), c̃4 = (4.5, 1.5, 0),

c̃5 = (5.21, 0.51, 0.14), c̃6 = (6.57, 1.57, 0.79),

c̃7 = (7.5, 1.25, 1.5), c̃8 = (9,−1, 3),

and shorten the director vectorw(u) by a factor f(u)
as in Eq. (14),

f(u) = (1− u) +
u

6.08
,

so that the new boundary curve d̃(u) has degree four
and B-spline polygon using Eq. (12), given by

d̃0 = d̃[0, 0, 0, 0] = f(0)d[0, 0, 0] + (1 − f(0))c[0, 0, 0]

= d0 = (0, 0.5, 2),

d̃1 = d̃[0, 0, 0, 0.3] =
f(0.3)d[0, 0, 0] + 3f(0)d[0, 0, 0.3]

4

+
(1− f(0.3))c[0, 0, 0] + 3(1− f(0))c[0, 0, 0.3]

4

= (0.91, 1.89, 2.11),
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d̃2 = d̃[0, 0, 0.3, 0.3]

=
f(0.3)d[0, 0, 0.3] + f(0)d[0, 0.3, 0.3]

2

+
(1 − f(0.3))c[0, 0, 0.3] + (1 − f(0))c[0, 0.3, 0.3]

2

= (1.51, 2.42, 2.20),

d̃3 = d̃[0, 0.3, 0.3, 0.7] =
f(0.7)d[0, 0.3, 0.3]

4

+
2f(0.3)d[0, 0.3, 0.7] + f(0)d[0.3, 0.3, 0.7]

4

+
(1− f(0.7))c[0, 0.3, 0.3] + 2(1− f(0.3))c[0, 0.3, 0.7]

4

+
(1 − f(0))c[0.3, 0.3, 0.7]

4
= (2.39, 2.24, 2.37),

d̃4 = d̃[0.3, 0.3, 0.7, 0.7] =
f(0.3)d[0.3, 0.7, 0.7]

2

+
f(0.7)d[0.3, 0.3, 0.7]+ (1 − f(0.3))c[0.3, 0.7, 0.7]

2

+
(1 − f(0.7))c[0.3, 0.3, 0.7]

2
= (2.97, 1.26, 2.37),

d̃5 = d̃[0.3, 0.7, 0.7, 1] =
f(1)d[0.3, 0.7, 0.7]

4

+
2f(0.7)d[0.3, 0.7, 1] + f(0.3)d[0.7, 0.7, 1]

4

+
(1 − f(1))c[0.3, 0.7, 0.7]

4

+
2(1− f(0.7))c[0.3, 0.7, 1] + (1− f(0.3))c[0.7, 0.7, 1]

4

= (3.64, 0.39, 2.34),

d̃6 = d̃[0.7, 0.7, 1, 1]

=
f(1)d[0.7, 0.7, 1] + f(0.7)d[0.7, 1, 1]

2

+
(1 − f(1))c[0.7, 0.7, 1] + (1 − f(0.7))c[0.7, 1, 1]

2

= (5.20, 1.37, 2.48),

d̃7 = d̃[0.7, 1, 1, 1] =
3f(1)d[0.7, 1, 1] + f(0.7)d[1, 1, 1]

4

+
3(1− f(1))c[0.7, 1, 1] + (1 − f(0.7))c[1, 1, 1]

4

= (6.26, 1.15, 2.87),

d̃8 = d̃[1, 1, 1, 1] = f(1)d[1, 1, 1] + (1− f(1))c[1, 1, 1]

= (8,−1, 4),

where the auxiliary points are computed with blos-
soms in Appendix B. The result of this restriction of
the surface patch is shown in Fig. 9.

Finally, following Eq. (15), we further trim the
surface patch bounded by c(u) and d̃(u) to shrink
the first ruling to vertex c0.

Fig. 9 Restriction of the developable surface patch in
Fig. 8

Since we are raising the degree of the curves
from four to five, we have to increase the multiplicity
of the inner knots by one:

{0, 0, 0, 0, 0, 0.3, 0.3, 0.3, 0.7, 0.7, 0.7, 1, 1, 1, 1, 1}.

The curve c(u) becomes formally of degree five
using Eq. (5) with B-spline polygon:

ĉ0 = ĉ[0, 0, 0, 0, 0] = c̃[0, 0, 0, 0] = (0, 0, 0),

ĉ1 = ĉ[0, 0, 0, 0, 0.3] =
c̃[0, 0, 0, 0] + 4c̃[0, 0, 0, 0.3]

5

= (1.20, 1.80, 0.0),

ĉ2 = ĉ[0, 0, 0, 0.3, 0.3] =
2c̃[0, 0, 0, 0.3]

5

+
3c̃[0, 0, 0.3, 0.3]

5
= (2.06, 2.70, 0.0),

ĉ3 = ĉ[0, 0, 0.3, 0.3, 0.3] =
3c̃[0, 0, 0.3, 0.3]

5

+
2c̃[0, 0.3, 0.3, 0.3]

5
= (2.66, 2.96, 0.0),

ĉ4 = ĉ[0, 0.3, 0.3, 0.3, 0.7] =
c̃[0, 0.3, 0.3, 0.3]

5

+
3c̃[0, 0.3, 0.3, 0.7] + c̃[0.3, 0.3, 0.3, 0.7]

5

= (3.69, 2.69, 0.0),

ĉ5 = ĉ[0.3, 0.3, 0.3, 0.7, 0.7] =
2c̃[0.3, 0.3, 0.3, 0.7]

5

+
3c̃[0.3, 0.3, 0.7, 0.7]

5
= (4.34, 1.79, 0.0),

ĉ6 = ĉ[0.3, 0.3, 0.7, 0.7, 0.7] =
3c̃[0.3, 0.3, 0.7, 0.7]

5

+
2c̃[0.3, 0.7, 0.7, 0.7]

5
= (4.66, 1.27, 0.03),

ĉ7 = ĉ[0.3, 0.7, 0.7, 0.7, 1] =
c̃[0.3, 0.7, 0.7, 0.7]

5

+
3c̃[0.3, 0.7, 0.7, 1] + c̃[0.7, 0.7, 0.7, 1]

5

= (5.31, 0.72, 0.20),
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ĉ8 = ĉ[0.7, 0.7, 0.7, 1, 1] =
2c̃[0.7, 0.7, 0.7, 1]

5

+
3c̃[0.7, 0.7, 1, 1]

5
= (6.34, 1.39, 0.68),

ĉ9 = ĉ[0.7, 0.7, 1, 1, 1] =
3c̃[0.7, 0.7, 1, 1]

5

+
2c̃[0.7, 1, 1, 1]

5
= (6.94, 1.44, 1.07),

ĉ10 = ĉ[0.7, 1, 1, 1, 1] =
4c̃[0.7, 1, 1, 1] + c̃[1, 1, 1, 1]

5

= (7.80, 0.80, 1.80),

ĉ11 = ĉ[1, 1, 1, 1, 1] = c̃[1, 1, 1, 1] = (9,−1, 3),

and following Eq. (15), we shrink the rulings with
a factor f̂(u) = u. The auxiliary points are com-
puted using the multiaffinity property of blossoms in
Appendix C.

Using Eq. (12), we obtain the B-spline polygon
of the final boundary curve d̂(u) of degree five:

d̂0 = d̂[0, 0, 0, 0, 0] = f̂(0)d̃[0, 0, 0, 0]

+ (1 − f̂(0))c̃[0, 0, 0, 0] = c̃0 = (0, 0, 0),

d̂1 = d̂[0, 0, 0, 0, 0.3] =
f̂(0.3)d̃[0, 0, 0, 0]

5

+
4f̂(0)d̃[0, 0, 0, 0.3] + (1− f̂(0.3))c̃[0, 0, 0, 0]

5

+
4(1− f̂(0))c̃[0, 0, 0, 0.3]

5

= (1.20, 1.83, 0.12),

d̂2 = d̂[0, 0, 0, 0.3, 0.3] =
2f̂(0.3)d̃[0, 0, 0, 0.3]

5

+
3f̂(0)d̃[0, 0, 0.3, 0.3] + 2(1− f̂(0.3))c̃[0, 0, 0, 0.3]

5

+
3(1− f̂(0))c̃[0, 0, 0.3, 0.3]

5
= (1.99, 2.66, 0.25),

d̂3 = d̂[0, 0, 0.3, 0.3, 0.3] =
3f̂(0.3)d̃[0, 0, 0.3, 0.3]

5

+
2f̂(0)d̃[0, 0.3, 0.3, 0.3]+3(1−f̂(0.3))c̃[0, 0, 0.3, 0.3]

5

+
2(1− f̂(0))c̃[0, 0.3, 0.3, 0.3]

5
= (2.50, 2.86, 0.40),

d̂4 = d̂[0, 0.3, 0.3, 0.3, 0.7] =
f̂(0.7)d̃[0, 0.3, 0.3, 0.3]

5

+
3f̂(0.3)d̃[0, 0.3, 0.3, 0.7] + f̂(0)d̃[0.3, 0.3, 0.3, 0.7]

5

+
(1 − f̂(0.7))c̃[0, 0.3, 0.3, 0.3]

5

+
3(1− f̂(0.3))c̃[0, 0.3, 0.3, 0.7]

5

+
(1− f̂(0))c̃[0.3, 0.3, 0.3, 0.7]

5
= (3.29, 2.52, 0.75),

d̂5 = d̂[0.3, 0.3, 0.3, 0.7, 0.7] =
2f̂(0.7)d̃[0.3, 0.3, 0.3, 0.7]

5

+
3f̂(0.3)d̃[0.3, 0.3, 0.7, 0.7]

5

+
2(1− f̂(0.7))c̃[0.3, 0.3, 0.3, 0.7]

5

+
3(1− f̂(0.3))c̃[0.3, 0.3, 0.7, 0.7]

5

+ (3.65, 1.64, 1.09),

d̂6 = d̂[0.3, 0.3, 0.7, 0.7, 0.7] =
3f̂(0.7)d̃[0.3, 0.3, 0.7, 0.7]

5

+
2f̂(0.3)d̃[0.3, 0.7, 0.7, 0.7]

5

+
3(1− f̂(0.7))c̃[0.3, 0.3, 0.7, 0.7]

5

+
2(1− f̂(0.3))c̃[0.3, 0.7, 0.7, 0.7]

5

+ (3.83, 1.15, 1.30),

d̂7 = d̂[0.3, 0.7, 0.7, 0.7, 1] =
f̂(1)d̃[0.3, 0.7, 0.7, 0.7]

5

+
3f̂(0.7)d̃[0.3, 0.7, 0.7, 1] + f̂(0.3)d̃[0.7, 0.7, 0.7, 1]

5

+
(1− f̂(1))c̃[0.3, 0.7, 0.7, 0.7]

5

+
3(1− f̂(0.7))c̃[0.3, 0.7, 0.7, 1]

5

+
(1− f̂(0.3))c̃[0.7, 0.7, 0.7, 1]

5
= (4.25, 0.62, 1.70),

d̂8 = d̂[0.7, 0.7, 0.7, 1, 1] =
2f̂(1)d̃[0.7, 0.7, 0.7, 1]

5

+
3f̂(0.7)d̃[0.7, 0.7, 1, 1] + 2(1− f̂(1))c̃[0.7, 0.7, 0.7, 1]

5

+
3(1− f̂(0.7))c̃[0.7, 0.7, 1, 1]

5
= (5.18, 1.24, 2.15),

d̂9 = d̂[0.7, 0.7, 1, 1, 1] =
3f̂(1)d̃[0.7, 0.7, 1, 1]

5

+
2f̂(0.7)d̃[0.7, 1, 1, 1] + 3(1− f̂(1))c̃[0.7, 0.7, 1, 1]

5

+
2(1− f̂(0.7))c̃[0.7, 1, 1, 1]

5
= (5.77, 1.30, 2.47),

d̂10 = d̂[0.7, 1, 1, 1, 1] =
4f̂(1)d̃[0.7, 1, 1, 1]

5

+
f̂(0.7)d̃[1, 1, 1, 1] + 4(1− f̂(1))c̃[0.7, 1, 1, 1]

5

+
(1− f̂(0.7))c̃[1, 1, 1, 1]

5
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= (6.67, 0.72, 3.03),

d̂11 = d̂[1, 1, 1, 1, 1] = f̂(1)d̃[1, 1, 1, 1]

+ (1− f̂(1))c̃[1, 1, 1, 1] = d̃11 = (8,−1, 4).

The triangular B-spline net for the surface patch
which satisfies the requirements of the example is
shown in Fig. 10.

Fig. 10 Restriction to a triangular patch of the de-
velopable surface patch in Fig. 9

We check that in fact the velocity of the bound-
ary curve d̂(u) of degree n = 5 is

d̂′(0) = n
d̂1 − d̂0

ûn − ûn−1
=

5

0.3
(1.20, 1.83, 0.12)

= (20.00, 30.50, 2.00).

8 Conclusions

We have used a procedure of degree elevation
to obtain spline developable surfaces, from which we
know the segments of the first and last rulings and
one of the curves of the boundary. It consists of first
solving the problem with free endpoints of the rulings
and then moving the resulting boundary curve along
the rulings to match the endpoints and increase the
degree of the curves by one. This solution is also
used to find a triangular spline developable patch
from which we know the last ruling, one of the curves
of the boundary, and the initial velocity of the other
curve.
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Appendix A: Auxiliary points for c(u)
and d(u)

We perform here calculations of auxiliary
points for the curve c(u) over the list of knots
{0, 0, 0, 0.3, 0.7, 1, 1, 1} which are needed for Exam-
ple 3, taking into account the fact that blossoms are
multiaffine (Eq. (5)):

c[0, 0, 0] = c0 = C0 = (0, 0, 0),

c[0, 0, 0.3] = c1 = C1 = (2, 3, 0),

c[0, 0.3, 0.3] = C2 =
0.7− 0.3

0.7− 0
c[0, 0, 0.3]

+
0.3− 0

0.7− 0
c[0, 0.7, 0.3] =

0.4c1 + 0.3c2
0.7

= (2.86, 3, 0),

c[0, 0.3, 0.7] = c2 = (4, 3, 0),

c[0.3, 0.3, 0.3] = C3 =
0.7− 0.3

0.7− 0
c[0, 0.3, 0.3]

+
0.3− 0

0.7− 0
c[0.3, 0.3, 0.7] =

0.4C2 + 0.3C4

0.7

= (3.48, 2.61, 0),

c[0.3, 0.3, 0.7] = C4 =
1− 0.3

1− 0
c[0, 0.3, 0.7]

+
0.3− 0

1− 0
c[1, 0.3, 0.7]

= 0.7c2 + 0.3c3 = (4.3, 2.1, 0),

c[0.3, 0.7, 0.7] = C5 =
1− 0.7

1− 0
c[0, 0.3, 0.7]

+
0.7− 0

1− 0
c[1, 0.3, 0.7] = 0.3c2 + 0.7c3

= (4.7, 0.9, 0),

c[0.3, 0.7, 1] = c3 = (5, 0, 0),

c[0.7, 0.7, 0.7] = C6 =
1− 0.7

1− 0.3
c[0.3, 0.7, 0.7]

+
0.7− 0.3

1− 0.3
c[0.7, 0.7, 1]

=
0.3C5 + 0.4C7

0.7

= (5.52, 1.04, 0.33),

c[0.7, 0.7, 1] = C7 =
1− 0.7

1− 0.3
c[0.3, 0.7, 1]

+
0.7− 0.3

1− 0.3
c[1, 0.7, 1] =

0.3c3 + 0.4c4
0.7

= (6.14, 1.14, 0.57),

c[0.7, 1, 1] = c4 = C8 = (7, 2, 1),

c[1, 1, 1] = c5 = C9 = (9,−1, 3).

Similarly, for d(u),

d[0, 0, 0] = d0 = D0 = (0, 0, 2),

d[0, 0, 0.3] = d1 = D1 = (1.56, 2.34, 2.08),

d[0, 0.3, 0.3] = D2 =
0.7− 0.3

0.7− 0
d[0, 0, 0.3]

+
0.3− 0

0.7− 0
d[0, 0.7, 0.3] =

0.4d1 + 0.3d2

0.7

= (2.21, 2.32, 2.15),

d[0.3, 0.3, 0.3] = D3 =
0.7− 0.3

0.7− 0
d[0, 0.3, 0.3]

+
0.3− 0

0.7− 0
d[0.3, 0.3, 0.7]

=
0.4D2 + 0.3D4

0.7

= (2.67, 1.99, 2.24),

d[0, 0.3, 0.7] = d2 = (3.09, 2.29, 2.26),

d[0.3, 0.3, 0.7] = D4 =
1− 0.3

1− 0
d[0, 0.3, 0.7]

+
0.3− 0

1− 0
d[1, 0.3, 0.7] = 0.7d2 + 0.3d3

= (3.29, 1.56, 2.35),

d[0.3, 0.7, 0.7] = D5 =
1− 0.7

1− 0
d[0, 0.3, 0.7]

+
0.7− 0

1− 0
d[1, 0.3, 0.7] = 0.3d2 + 0.7d3

= (3.55, 0.58, 2.46),

d[0.3, 0.7, 1] = d3 = (3.75,−0.15, 2.55),

d[0.7, 0.7, 0.7] = D6 =
1− 0.7

1− 0.3
d[0.3, 0.7, 0.7]

+
0.7− 0.3

1− 0.3
d[0.7, 0.7, 1]

=
0.3D5 + 0.4D7

0.7

= (4.15, 0.68, 2.84),

d[0.7, 0.7, 1] = D7 =
1− 0.7

1− 0.3
d[0.3, 0.7, 1]

+
0.7− 0.3

1− 0.3
d[1, 0.7, 1] =

0.3d3 + 0.4d4

0.7

= (4.59, 0.75, 3.12),
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d[0.7, 1, 1] = d4 = D8 = (5.22, 1.42, 3.55),

d[1, 1, 1] = d5 = D9 = (6.76,−1.00, 5.24).

Appendix B: Auxiliary points for d(u)

We compute here auxiliary points for the curve
d(u) over the list of knots {0, 0, 0, 0.3, 0.7, 1, 1, 1}
which are needed for Example 4, using the property
of multiaffinity (Eq. (5)) for blossoms:

d[0, 0, 0] = d0 = (0, 0.5, 2),

d[0, 0, 0.3] = d1 = (1.21, 2.39, 2.31),

d[0, 0.3, 0.3]=
0.7−0.3

0.7− 0
d[0, 0, 0.3]+

0.3−0

0.7−0
d[0, 0.7, 0.3]

=
0.4d1 + 0.3d2

0.7
= (1.61, 2.30, 2.67),

d[0, 0.3, 0.7] = d2 = (2.13, 2.17, 3.16),

d[0.3, 0.3, 0.7] =
1− 0.3

1− 0
d[0, 0.3, 0.7]

+
0.3− 0

1− 0
d[1, 0.3, 0.7] = 0.7d2 + 0.3d3

= (2.02, 1.50, 3.65),

d[0.3, 0.7, 0.7] =
1− 0.7

1− 0
d[0, 0.3, 0.7]

+
0.7− 0

1− 0
d[1, 0.3, 0.7] = 0.3d2 + 0.7d3

= (1.88, 0.60, 4.31),

d[0.3, 0.7, 1] = d3 = (1.77,−0.07, 4.80),

d[0.7, 0.7, 1] =
1− 0.7

1− 0.3
d[0.3, 0.7, 1]

+
0.7− 0.3

1− 0.3
d[1, 0.7, 1] =

0.3d3 + 0.4d4

0.7

= (1.94, 0.67, 6.04),

d[0.7, 1, 1] = d4 = (2.07, 1.22, 6.97),

d[1, 1, 1] = d5 = (2.92,−1.00, 9.08).

Appendix C: Auxiliary points for c̃(u)

and d̃(u)

Finally we calculate the auxiliary points
which are necessary to formally raise the de-
gree of the curve c̃(u) with the list of knots
{0, 0, 0, 0, 0.3, 0.3, 0.7, 0.7, 1, 1, 1, 1} from four to five
using the property of multiaffinity (Eq. (5)) for

blossoms:

c̃[0, 0, 0, 0] = c̃0 = (0, 0, 0),

c̃[0, 0, 0, 0.3] = c̃1 = (1.50, 2.25, 0.00),

c̃[0, 0, 0.3, 0.3] = c̃2 = (2.43, 3.00, 0.00),

c̃[0, 0.3, 0.3, 0.3] =
0.7− 0.3

0.7− 0
c̃[0, 0, 0.3, 0.3]

+
0.3− 0

0.7− 0
c̃[0, 0.7, 0.3, 0.3]

=
0.4c̃2 + 0.3c̃3

0.7
= (3.01, 2.90, 0.00),

c̃[0, 0.3, 0.3, 0.7] = c̃3 = (3.79, 2.78, 0.00),

c̃[0.3, 0.3, 0.3, 0.7] =
0.7− 0.3

0.7− 0
c̃[0, 0.3, 0.3, 0.7]

+
0.3− 0

0.7− 0
c̃[0.7, 0.3, 0.3, 0.7]

=
0.4c̃3 + 0.3c̃4

0.7
= (4.09, 2.23, 0.00),

c̃[0.3, 0.3, 0.7, 0.7] = c̃4 = (4.50, 1.50, 0.00),

c̃[0.3, 0.7, 0.7, 0.7] =
1− 0.7

1− 0.3
c̃[0.3, 0.3, 0.7, 0.7]

+
0.7− 0.3

1− 0.3
c̃[1, 0.3, 0.7, 0.7]

=
0.3c̃4 + 0.4c̃5

0.7
= (4.91, 0.93, 0.08),

c̃[0.3, 0.7, 0.7, 1] = c̃5 = (5.21, 0.51, 0.14),

c̃[0.7, 0.7, 0.7, 1] =
1− 0.7

1− 0.3
c̃[0.3, 0.7, 0.7, 1]

+
0.7− 0.3

1− 0.3
c̃[1, 0.7, 0.7, 1]

=
0.3c̃5 + 0.4c̃6

0.7
= (5.99, 1.12, 0.51),

c̃[0.7, 0.7, 1, 1] = c̃6 = (6.57, 1.57, 0.79),

c̃[0.7, 1, 1, 1] = c̃7 = (7.50, 1.25, 1.50),

c̃[1, 1, 1, 1] = c̃8 = (9,−1, 3).

Similarly, for d̃(u),

d̃[0, 0, 0, 0]= d̃0 = (0, 0.5, 2),

d̃[0, 0, 0, 0.3]= d̃1 = (0.91, 1.89, 2.11),

d̃[0, 0, 0.3, 0.3]= d̃2 = (1.51, 2.42, 2.20),

d̃[0, 0.3, 0.3, 0.3]=
0.7− 0.3

0.7− 0
d̃[0, 0, 0.3, 0.3]

+
0.3− 0

0.7− 0
d̃[0, 0.7, 0.3, 0.3]

=
0.4d̃2 + 0.3d̃3

0.7
= (1.89, 2.35, 2.28),

d̃[0, 0.3, 0.3, 0.7]= d̃3 = (2.39, 2.24, 2.37),
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d̃[0.3, 0.3, 0.3, 0.7]=
0.7− 0.3

0.7− 0
d̃[0, 0.3, 0.3, 0.7]

+
0.3− 0

0.7− 0
d̃[0.7, 0.3, 0.3, 0.7]

=
0.4d̃3 + 0.3d̃4

0.7
= (2.64, 1.82, 2.37),

d̃[0.3, 0.3, 0.7, 0.7]= d̃4 = (2.97, 1.26, 2.37),

d̃[0.3, 0.7, 0.7, 0.7]=
1− 0.7

1− 0.3
d̃[0.3, 0.3, 0.7, 0.7]

+
0.7− 0.3

1− 0.3
d̃[1, 0.3, 0.7, 0.7]

=
0.3d̃4 + 0.4d̃5

0.7
= (3.35, 0.77, 2.35),

d̃[0.3, 0.7, 0.7, 1]= d̃5 = (3.64, 0.39, 2.34),

d̃[0.7, 0.7, 0.7, 1]=
1− 0.7

1− 0.3
d̃[0.3, 0.7, 0.7, 1]

+
0.7− 0.3

1− 0.3
d̃[1, 0.7, 0.7, 1]

=
0.3d̃5 + 0.4d̃6

0.7
= (4.53, 0.95, 2.42),

d̃[0.7, 0.7, 1, 1]= d̃6 = (5.20, 1.37, 2.48),

d̃[0.7, 1, 1, 1]= d̃7 = (6.26, 1.15, 2.87),

d̃[1, 1, 1, 1]= d̃8 = (8,−1, 4).
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