
Computer-Aided Design 44 (2012) 687–696
Contents lists available at SciVerse ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Programmed design of ship forms
A. Rodríguez, L. Fernández-Jambrina ∗

Ciencias Aplicadas a la Ingeniería Naval, Escuela Técnica Superior de Ingenieros Navales, Universidad Politécnica de Madrid, Avenida Arco de la Victoria SN, 28040 Madrid, Spain

a r t i c l e i n f o

Article history:
Received 8 July 2011
Accepted 4 March 2012

Keywords:
Programmed design
Parametric design
Hull form
Product model
CAD language

a b s t r a c t

This paper describes a new category of CAD applications devoted to the definition and parameterization
of hull forms, called programmed design. Programmed design relies on two prerequisites. The first one is
a product model with a variety of types large enough to face the modeling of any type of ship. The second
one is a design language dedicated to create the product model. The main purpose of the language is to
publish the modeling algorithms of the application in the designer knowledge domain to let the designer
create parametric model scripts. The programmed design is an evolution of the parametric design but it
is not just parametric design. It is a tool to create parametric design tools. It provides a methodology to
extract the design knowledge by abstracting a design experience in order to store and reuse it.

Programmed design is related with the organizational and architectural aspects of the CAD
applications but not with the development of modeling algorithms. It is built on top and relies on existing
algorithms provided by a comprehensive product model. Programmed design can be useful to develop
new applications, to support the evolution of existing applications or even to integrate different types of
application in a single one.

A three-level software architecture is proposed to make the implementation of the programmed
design easier. These levels are the conceptual level based on the design language, the mathematical level
based on the geometric formulation of the product model and the visual level based on the polyhedral
representation of the model as required by the graphic card.

Finally, some scenarios of the use of programmed design are discussed. For instance, the development
of specialized parametric hull form generators for a ship type or a family of ships or the creation of
palettes of hull form components to be used as parametric design patterns. Also two new processes of
reverse engineering which can considerably improve the application have been detected: the creation
of the mathematical level from the visual level and the creation of the conceptual level from the
mathematical level.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The evolution of CAD applications is due to several causes. The
improvements introduced by CAD developers in their products
are inspired by users’ feedback and by technical advances in most
cases. Technical advances may be available to any development
team willing to make the most of them. On the other hand, the
most effective way to improve CAD applications is to take into
account advancedusers’ suggestions in the development process. A
CAD application can be enhanced by designers if they are provided
with a tool to incorporate their knowledge to the application. The
programmed design is a proposal to achieve this goal.

The following paragraphs are devoted to review the state of the
art of ship hull form design applications in order to extract the
best features of the existing product models and the most relevant

∗ Corresponding author. Tel.: +34 913367172; fax: +34 915442149.
E-mail address: leonardo.fernandez@upm.es (L. Fernández-Jambrina).

0010-4485/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2012.03.003
parameterization methodologies. The result of this review is used
to establish the foundations of the programmed design.

2. State of the art

Since the initial days of the IT era, applications devoted to the
design of ship hull forms have been devised since they have been
considered a key milestone within the ship design lifecycle. Most
technical activities of the design process depend on this source of
information, the most immediate of which are naval architecture
calculations. The outcome of these applications can be considered
the origin of the ship product model as conceived nowadays.

During this long period of existence, a myriad of different hull
form applications have been developed, many of them before
the inrush of general purpose CAD systems. A nice review can
be found in [1]. With the advent of the CAD concept in other
areas such as mechanical and architectural design, some of these
hull form design applications were reformulated and others were
developed under this paradigm, consolidating definitively the
modern concept of ship productmodels. Nowadays there aremany

http://dx.doi.org/10.1016/j.cad.2012.03.003
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:leonardo.fernandez@upm.es
http://dx.doi.org/10.1016/j.cad.2012.03.003


688 A. Rodríguez, L. Fernández-Jambrina / Computer-Aided Design 44 (2012) 687–696
different applications devoted to design of ship forms, and all of
them are a very good tool for some specific scenarios within the
design lifecycle.

For the purposes of the programmed design, the most relevant
design applications are those developed under the principles
of parametric design, since programmed design is an evolution
of parametric design. Parameterization is a key feature which
provides several wonderful capabilities for a ship model such
as the possibility of performing multidisciplinary optimization
and design reuse (see Refs. [2–5]). Programmed design can be
conceived as a tool to create parametric design tools.

General purpose CAD systems like CATIA [6] or SolidWorks [7]
are solid modelers using a parametric feature-based approach
to create models and assemblies. But solid modelers are not
especially suited to design ship forms. Surface modelers like
Rhinoceros are more adequate to perform this task. While Rhino
is not parametric in its conception, Grasshopper [8] enables the
creation of flexible parametric designs with Rhino. Grasshopper
is a graphical algorithm editor tightly integrated with Rhino’s 3-D
modeling tools.

However, in the context of ship forms design applications the
parameterization methodologies which have emerged are quite
different to those provided by general purpose CAD systems. There
are at least three differentmethodologies to create parametric ship
forms: global parameterization, geometric parameterization and
parameterization by transformations. The following paragraphs
are devoted to reviewing thesemethodologies of parameterization
and the underlying product models.

2.1. Global parameterization

The variety of applications oriented to design of ship forms is
surprisingly high, as has been already mentioned in the previous
paragraphs. One of the most original approaches is the method-
ology provided by hull form generators, which are applications
developed under the principles of parametric design. Refs. [9–11]
provide a nice introduction to ship form parametric design con-
cepts. The general approach to hull form generation requires book-
keeping on surface and volumedomains. A solution to this problem
is presented in [12].

Two applications are the most representative of this type.
One is the FORAN hull form generator, based on a waterline
formulation and the other is the FRIENDSHIP modeler, based on
parametric design grounded on sections. To understand this type of
application, let us consider the FORAN hull form generation, since
it was the first application which implemented this concept.

The FORAN [13] hull form generator is based on a waterline
formulation defined by parameters containing very relevant ge-
ometric, hydrostatic and hydrodynamic features. The amount of
parameters available to define the waterline provides great flex-
ibility. The waterline formulation has been developed to contain
nice design characteristics if the parameters aremaintainedwithin
some specified ranges. Any parameter of the waterline has a de-
fault value which is very convenient when information is scarce.
One of the advantages of this approach is that the application con-
tains a great amount of heuristic design information available for
the designer.

To generate the hull surface, each of the parameters of the
waterline is controlled by a parametric draft function which
determines its vertical distribution. Then, the draft function
parameters combined with the waterline formulation provide the
degrees of freedom available for performing hull form variations.
Due to the nature of the parameters of the waterline formulation,
many of the draft functions are hydrostatic characteristics of the
designed hull form, and this allows the designer direct control of
these features.
In the case of the FRIENDSHIP modeler [14], a parametric
design section is generated by means of a suitable set of
longitudinal curves. The concept is very similar to the FORAN hull
form generator except for the arrangement of curves, which is
orthogonal to that of the FORAN lines. Longitudinal curves which
control the parametric distribution of design sections are also very
meaningful for the designer as it is for example the sectional area
curve. Then, the designer is able to specify hull form characteristics
within their semantic domain as in the FORAN system. See Ref. [15]
for more detailed information.

FORAN waterline formulation allows us to nicely fit and dis-
tribute the hydrostatic characteristics of the hull. The FRIENDSHIP
modeler can do something similar with longitudinal characteris-
tics (some of them are also hydrostatics characteristics) and nat-
urally supports Lackenby transformations [16]. A nice feature of
the FRIENDSHIP modeler is that it generates geometry (curves and
surfaces) based on the NURBS formulation. This makes easy its in-
tegration with any other CAD/CAE/CAM applications.

The parameters which define the control curves of the method
aremeaningful data in the knowledge domain of the designer such
as main dimensions, hull and waterline coefficients, hydrostatics
characteristics, underwater volume, center of buoyancy, geometric
parameters, etc. With this method the designer can interact only
with its semantic domain during the design process without
taking care of the geometric details of the model. For this reason
this type of parameterization can be called holistic or global
parameterization.

These tools are very useful for initial design and are unbeatable
for preparing a contract design very quickly, as it is usually required
for these short design processes. On the other hand, they are not
flexible enough to fit any kind of hull form details, as it is required
for fitting and fairing for production.

2.2. Parameterization by transformations

The holistic or global parameterization provided by hull form
generators is a very powerful tool for the initial design stage and for
conventional hull types. But there are other parametric approaches
which are not as powerful but much more generic and its use can
be extended to other design stages and for any type of hull forms.
These other approaches are parameterization by transformations
and local or geometric parameterization.

Parameterization by transformation consists in adding
parametric features to an existingmodel (which could be paramet-
ric in origin but not necessarily) by means of a parametric trans-
formation which produces a new hull form. For this reason this
approach is also called parameterization ‘‘a posteriori’’ or partial
parameterization.

Parameterization by transformation is aligned with one of the
traditional methods of ship design, which consists in starting with
a ship which is similar to the one required by design and per-
forming affine transformations on it to reach the target dimen-
sions.When there aremore than one ship, themethod described in
Ref. [17] may be used to combine them.

The final step of parameterization by transformation is to apply
Lackenby transformations [18] to fit hydrostatic features and hull
coefficients. There are other types of transformations apart from
affine and Lackenby transformations, such as local transformations
which can be restricted to transform only some specific zones of
the hull, but the first ones are the most useful and extended. For
any world class application this functionality is a ‘‘must have’’ and
consequently parameterization by transformation can be found in
FORAN, NAPA, etc.

2.3. Geometric parameterization

Geometric parameterization is the most common methodol-
ogy provided by general purpose CAD systems. Any of the input



A. Rodríguez, L. Fernández-Jambrina / Computer-Aided Design 44 (2012) 687–696 689
arguments used during the design session can be considered as a
parameter in order to produce variations of the design. The most
common input arguments used for modeling are geometric condi-
tions like dimensions and tangencies, providing the name to this
type of parameterization. This functionality arises naturally in ap-
plications in which the whole design session is registered in a
script. Applications with a user interface consisting of text com-
mands typed by the user can provide this type of parameterization
without too much development effort. An example of this type of
parameterization can be found in the NAPA system.

Any scriptable product model can be parameterized with this
methodology and consequently can be incorporated into the pro-
grammed design scope. The most common geometric product
models used in the design of ship forms ought to be incorporated
into the programmed design to implement geometric parameteri-
zation. The following paragraphs are devoted to describe the most
relevant of them.

2.3.1. Wire models
One of the most successful and traditional approaches for

developing a hull form design application is by means of a wire
model. The wire model is an indirect way of defining a surface,
which provides some advantages but also some disadvantages.
Among the advantages, the most interesting is that the way of
working mimics the traditional method of fitting and fairing by
hand with batten and weights.

The main disadvantage of this model comes from the fact that
defining a surface with a wire model is an indirect way of doing
the work and the supplied information is incomplete. The surface
is well defined just on the curves belonging to the wire model and
has to be deduced on the holes between the defining curves. The
algorithm used to fill the gaps is critical and it is what makes the
difference between applications. For example, some systems, like
NAPA, use a sort of bi-cubic patchwhile others, like PIAS-FAIRWAY,
use transfinite interpolation [19].

As the fitting process can be performed with curves, it is
very easy to carry out this work with a wire model. Since the
fairing process should be based on the resulting surface, which
is indirectly and incompletely controlled with this method, this
process becomes cumbersome and requires experience, but it is
straightforward and familiar for most designers.

A typical hull form which has undergone a fitting and fairing
process for production with this method usually has many curves
incorporated to control the resulting surface. A large number of
curves in a wire model generates an even larger number of filling
patches between gaps. The wire model application is capable of
coping with this fact, but for other applications which need to
import the resulting surfacemodel it is usually a nightmare to deal
with this fragmented set of small patches.

2.3.2. Surface models
The B-Spline/NURBS formulation is one the most common

product model basis found among hull form design applications.
This formulation provides not only the product model, but also
a modeling tool which is very easy to use and requires little
development effort [20]. The starting point of a design processwith
this type of applications is usually a simple surface, for example
a rectangular plane plate or a cylinder. The dimensions and the
number of control points of the initial patch are predefined by
the user. From this starting point, the user can model the hull by
moving and inserting control points (entire rows or columns) in
the patch.

With this methodology the fairing process consists in getting
a net of control points as uniformly and regularly distributed as
possible. As in theNURBS formulation the derivatives of the surface
are vectors which can be extracted from the net of control points,
Fig. 1. Ship forms defined with FORAN FSURF.

getting a uniform distribution of these points provides a smooth
variation of the derivatives and consequently the same could
be said about the curvatures. A more advanced approach to the
generation of fair free-form surfaces can be found in [21]. Themain
problem that the designer finds with this type of application is
the destructive interference between fitting and fairing processes.
On moving the control points for the fitting process, the fairing is
destroyed and the same happens the other way round. When the
degrees of freedom are insufficient, additional rows or columns
of control points should be added to increase the modeling
capabilities. But increasing the amount of control points on the
surface amplifies the destructive interference of both processes,
making difficult convergence to an acceptable solution.

Anyway, when the fitting requirements are not too strict or
the hull forms are not very involved with constructive details, this
method is very feasible and hasmany adepts. Examples of this type
of application are MAXSURF [22] and FASTSHIP [23].

There is another type of hull form design application based
on the NURBS formulation but with a very different modeling
strategy. The advantages of a wire model for fitting tasks have
already been pointed out. Additionally, the fairing process is better
accomplished with a surface model [24]. The combination of
both strategies can be implemented by means of sophisticated
algorithms providing different constructive methods for creation,
fitting and fairing of patches [25]. Algorithms for fitting curves to
points (interpolation, approximation, etc.), construction of surface
patches from curves (interpolation, approximation, skinning, etc.),
automatic fairing of curves and patches, manual fitting and
fairing of patches using curves as auxiliary tools, management
of trimmed surfaces and management of continuity (in position
and tangency) between adjacent patches are among the kind of
algorithms required by this methodology. An example of this type
of application is the FORAN FSURF module based on the NURBS
formulation, shown in Fig. 1.

3. Programmed design

3.1. Concept

As it has been stated before, the programmed design goal
is to provide a CAD environment in which advanced users
may incorporate their knowledge to the CAD application by
themselves. Consequently, the programmed design functionality
is a component to be built on top of an existing CAD application.
The CAD application has to provide the algorithms used to create
the product model elements. On the other hand, the programmed
design incorporates a design language to allow the advanced user
the creation of modeling programs with those algorithms.

In order to implement the programmed design environment a
comprehensive product model is required to face the modeling of
any type of ship. This product model will have to integrate most
of the different modeling and parameterization methodologies
which have been found in the review of the state of the art. To



690 A. Rodríguez, L. Fernández-Jambrina / Computer-Aided Design 44 (2012) 687–696
Fig. 2. Surface model for containing different forms: external hull, decks,
bulkheads, etc. Some zones of the external hull form have been removed to show
the inner forms.

facilitate the integration of very different components, the product
model needs a structure specifically designed for this purpose.
Additionally, the design language provides out of the box the
geometric parameterization while other parametric approaches
have to be implemented by the product model algorithms.

The following paragraphs are devoted to develop the product
model structure that is required by the programmed design envi-
ronment and the design language which is adequate to ‘‘program’’
such a product model.

3.2. Product model

In the context of this paper, the term product model refers
to a computational representation of the ship, which is defined
and exploited during the design process in order to support
all technical activities. The product model should provide an
unambiguous representation of the vessel, preferably based on
neutral formats, in order to describe the ship as a product.

This representation contains information of geometric nature
and other non-geometric data such as topology, parameters and
technological attributes, but the most important information
contained in the product model is the geometric representation of
the ship.

Product model topology is nicely explained in Ref. [26]
whereas this paper focuses on geometric representation. This
representation is defined as a collection of types of entities that
can be used to build the model and these are usually arranged in a
hierarchical tree. This organization of the model is aimed to make
the design process easier.

The product model required for the process of ship form design
is a collection of independent surfaces which can be connected
by topological relationships (see Fig. 2). These surfaces are hull(s),
decks, bulkheads, superstructures, appendages, etc. They represent
the first level of the hierarchical structure of the product model.
Each of these formsmay have a great complexity depending on the
sort of ship. In conventional ships the most complex surface is the
hull butmodern ships require the samemodeling capabilitiesmore
and more for any of their forms.

In order tomanage the complexity of the surfaces, each of these
forms can be divided into zones. The advantage of this subdivision
is the possibility of applying a different modeling methodology
to each of the zones in which the form has been split. Hence,
the product model has to provide a different type of zone for
each modeling methodology supported by the application and a
subdivision method to split the form into zones, if more than
one zone is required to model the form. Considering the different
modeling methodologies found in the state of the art revision, it
Fig. 3. Typical U–V arrangement of a fore body wire model.

is convenient to have three different types of zones: planar zones,
constructive zones and generic zones.

The planar zones are required to make the definition of flat
surfaces independent from the definition of curved surfaces when
modeling the forms, since it is possible, but involved, managing
both types of surfaces within the same zone. Planar zones are
defined by means of 2D contour curves.

The constructive zone is aimed to supply the holistic param-
eterization and any other method to create a patch by means of
geometric constructions like cones, cylinders, and swept surfaces
or with more complex methods like skinning, blending, trimming
and rounding surfaces. Constructive zones are basic constituents
of the model which can be defined by means of specific and well
defined methods. Depending on the complexity of the construc-
tion, the resultmay consist in one single patch, two patches or even
three patches.

The generic zones implement thewiremodelmethodology. The
borders of the zone are defined with connected curves defining
a 3D contour while the inner geometry is defined by two sets of
intersecting curves calledU curves andV curves. TheU curves have
the first and the last points in the borders of the zone and the inner
points must lie on the V curves. The V curves are defined in the
samewaywith respect to the borders and the U curves (see Fig. 3).
The main advantage of this modeling methodology is that it does
not need structured data with a rectangular arrangement as many
of the constructive methods need. The key factor to implementing
this approach is the filling algorithm which is used to create a
surface from grid curves.

One way to provide an easy and robust method of filling gaps
between grid curves is by means of Bézier patches of rectangular
and triangular topology. This method may require additional
work to prepare the grid in order to produce only rectangular
and triangular patches, but the advantages overpass the effort
spent in this preparation work. In any case, this work could be
performed automatically by the application. Some applications
create triangular patches by collapsing one border of a rectangular
patch. This is not a good idea because in such patches the normal
vector is undefined by the formulation despite there is enough
geometric information to define it correctly. Using triangular
Bézier patches this problem is avoided.

In order to help the coexistence of different types of zones
within the same form, a subdivision procedure is requiredwith the
capability of keeping the continuity and optionally the tangency
between adjacent zones. This requirement is easy to comply
with if the zones are created following a specific sequence. The
constructive zones must be defined first. Then, a map of contour
curves enclosing generic and planar zones should be defined. This
map can include the limiting curves of the constructive zones as
contour curves for generic or planar zones when needed. Finally,
each generic zone should be completed with the U and V curves,
which should be extended up to the borders of the zone defined
in the map. The map can be considered as an agreement between



A. Rodríguez, L. Fernández-Jambrina / Computer-Aided Design 44 (2012) 687–696 691
Fig. 4. A map of generic, constructive and planar zones.
adjacent zones with respect to the continuity and tangency of the
form. It is possible to insert U and V curves inside a generic zone
without modifying the geometry of the contour curves using the
knot insertion algorithm of the NURBS formulation. Fig. 4 provides
an example of a map.

3.3. Design language

A language which is suitable for supporting modeling tasks
performed by a form designer without programming skills must
comply with some specific requirements (see Ref. [27]).

First at all, the language has to be read by the design application
and consequently the latter plays the role of interpreter of the lan-
guage. Hence, the role of the designer is to specify what the pro-
gram should accomplish, rather than describing how to go about
accomplishing it, as the designer is not supposed to have special
skills to write complex algorithms. In order to make the use of the
language easier to the designer, the language should be specifically
oriented to the ship formmodeling domain. Consequently, the de-
sign language should be a declarative interpreted domain specific
language. Additionally, the language should provide some control
sentences such as loops and conditional branches to facilitate exe-
cuting repetitive tasks and automation of processes.

A declarative language script consists of a sequence of decla-
rations which aim in this case to build product model elements.
Each of these sentences creates a geometric constructionwhich can
be either a product model component or an auxiliary entity to
be used later to build a more complex component of the product
model. These declarative sentences can be considered ‘‘construc-
tors’’ of primitives (auxiliary elements) or components (constitu-
tive product model elements).

Hence, a design language script is a set of constructors which
can be combined with control sentences to create loops, branches
and procedures. The outcome of executing this script should be a
complete ship product model or a part of it.

3.3.1. Types and constructors
The design language has to provide a complete set of element

types in order to be capable of creating any primitive or component
which may be required to build the ship product model with any
of the methodologies which have been selected from the state of
the art.

According to the language premises, each type is provided with
a set of constructors and each constructor implements a specific
algorithm or method to create an element of such type. Each
constructor is identified by a unique name within the type and
has associated a list of arguments which collects all the input data
required by the algorithm. Each element of the list of arguments
is a primitive of the product model. The result of executing the
constructor is a new primitive or a new component of the product
model with a unique name in the whole product model.
In order to create a primitive or a component of an explicit type
with a specific constructor, all of the primitives required by the
list of arguments must be created before invoking the constructor.
This may produce very heavy scripts. To avoid this problem the
language must provide the possibility of specifying anonymous
constructors. An anonymous constructor creates on the fly an
element of the required type within the list of arguments to be
consumed immediately and for this reason no name is required.

Most common primitive types are points, polylines, curves,
patches, planes, vectors, lines, segments, integers, floats, strings,
Booleans and lists of primitives. Component types are constructive
zones, generic zones, planar zones, maps and forms.

The syntax of a constructor invocation is: TYPE elemID
ConstructorID (primID1, . . . , primIDn).

An anonymous constructor contains only the constructor
identification with the list of arguments, as the type is inferred
from the context: ConstructorID (primID1, . . . , primIDn).

Using an anonymous constructor consists in substituting a
primitive identification in the list of arguments of another
constructor with the anonymous constructor invocation:

TYPE elemID ConstructorID1(primID1,primID2, . . . , primIDn);

↓

TYPE elemID ConstructorID1(primID1,
ConstructorID2(p1, . . . , pn), . . . , primIDn).

Anonymous constructors can be nested ad infinitum.

3.3.2. Control sentences
The designer must have the possibility of writing loops and

conditional jumps to implement more advanced procedures. The
following schemas are required:

Conditional branching: if (B1);. . . ;else if (B2);. . . ;else;. . . ;end if .
Conditional loop:while(B);. . . ;end while.
In the above expressions, B, B1 and B2 are identifications of

Boolean elements or anonymous constructors of such type of
primitive.

List scanning loop: for(listID, listIndex, listElement);. . . ; end
for; In order to take full advantage of the list scanning loop, the
language has to include a list type for each type of primitive (float
list, points list, curves list, etc.) and some list of lists types (list of
lists of floats, etc.).

Element mutator: set elemID ConstructorID (primID1,. . . ,
primIDn); Mutator syntax is required to modify existing elements
by means of any of its constructors.

In order to organize, encapsulate and reuse design language
scripts, the language must provide the possibility of writing
procedures and user constructors:

Procedure encapsulation: proc(inputID1,.., inputIDn);. . . ;end
proc(outputID1,.., outputIDm).



692 A. Rodríguez, L. Fernández-Jambrina / Computer-Aided Design 44 (2012) 687–696
Fig. 5. Simplified offset table, three frames by five waterlines with the fore profile
and the appropriate data structures to manage this information.

Procedure invocation; call proc((inputID1,.., inputIDn), (out-
putID1,.., outputIDm)).

User constructor definition: cons TYPE ConstructorID(TYPE1
primID1,.., TYPEn primIDn);. . . ;ret retID.

User constructor invocation: TYPE elemID ConstructorID
(primID1, . . . , primIDn).

A complete language specification is out of scope of this paper,
but in order to explore the programmed design concept the
authors have developed a program for demonstration purposes.
This prototype implements some geometric parameterization
constructors. In the next paragraph a simplified case of use of
programmed design is shown, which has been created with the
demonstration program just to illustrate this paper.

Example. The starting point of this example is a very simplified
offset table for a fore body, as shown in Fig. 5. The offset table is
transferred to the design language primitives devoted to contain
lists of floats lf and matrices of floats mf , which in fact are lists
of lists of floats. This transfer has been performed by means of the
clipboard copy and paste functions between theworksheet and the
script editor of the demonstration program.

The heights of the waterlines are stored in a list of floats named
z with the following sentence: lf z 0 4 10 17.5 20; This sentence is
using a simplification of the most formal syntax which should be:
lf z (0, 4, 10, 17.5, 20); This simplification is allowed for plain lists
of arguments, as thosewithout anonymous constructors are. Other
lists of floats like x, xp and zp are defined in a similar way, while y
is a list of lists of floats of typemf .
Using the above data, the following declaration creates the
profile curve: c prof.xz(0,.(.lf xp zp)); where c indicates that the
type is a curve and prof is the curve identification. The curve
constructor for a profile is.xz , which has as arguments a float for
the Y coordinate and a 2D curve. The first argument of the curve
constructor is the Y coordinate 0, as the profile is in the central
plane. The second argument is.(.lf xp zp) where. (indicates the
default constructor for 2D curves, that has as argument a list of
2D points). In this case, the list of 2D points is created by an
anonymous constructor which takes two list of floats:.lf xp zp. This
list of arguments can be typed in the shortened way as it is simple,
instead of the formal way.lf(xp, zp). The result of executing this
constructor is shown in Fig. 6.

In order to provide tangent conditions at points of the profile
there are other constructors for the 2D curve in which the initial
and/or final tangents or even a tangent for each point of the curve
can be defined. The following declaration uses the last one, which
requires a list of 2D points and a list of 2D tangencies as input
arguments:

ltc2 tprof 0 90 90 30.n; List of 2D tangencies (2D vectors or
angles) with name tprof and where .nmeans free tangency.

.pt(.lf xp zp, tprof) Anonymous 2D curve constructor with two
arguments. The first is the list of 2D points given by an anonymous
constructor from 2 lists of floats and the second is the previously
defined list of 2D tangencies tprof .

c prof xz(0, .pt(.lf xp zp, tprof)). Profile curve constructor
.xz with a different second argument indicating a 2D curve
with tangencies defined by the anonymous constructor explained
before. The resulting 3D curve name is prof . The results can be
appreciated in Fig. 7.

The same technique is used to create each section. In this case,
first of all a tangency pattern is created with the 2D tangency
constructor:

ltc2 tfr 0 .n .n 90 90. List of 2D tangencies (2D vectors or angles)
with name tfr and where .nmeans free tangency.

.lis x 0 Anonymous constructor returning the element of list x
with index 0. This is the first element of the list of floats x, and so
it is a float constructor returning the float value 0.0.

.lis y 0 Anonymous constructor returning the element of list y
with index 0. This is the first element of the list of lists of floats y,
and so it is a list of float constructor returning the list of floats (0.0,
10.0, 17.5, 20.0, 20.0).

.lf(.lis y 0, z) Anonymous constructor of a list of 2D points with
two arguments which are lists of floats. The first one is constructed
by the anonymous constructed explained before and the second
one is the previously created list named z .

.pt(.lf(.lis y 0, z), tfr) Anonymous 2D curve constructor with
two arguments. The first one is the list of 2D points given by an
Fig. 6. Profile construction from two lists of X and Z coordinates.



A. Rodríguez, L. Fernández-Jambrina / Computer-Aided Design 44 (2012) 687–696 693
Fig. 7. Profile curve with tangent conditions.
Fig. 8. Profile and frame curves.
anonymous constructor from 2 lists of floats explained before and
the second one is the previously defined list of 2D tangencies tfr .

cfr0.yz(.lisx0, .pt(.lf (.lisy0, z), tfr));
cfr1.yz(.lisx1, .pt(.lf (.lisy1, z), tfr));
cfr2.yz(.lisx2, .pt(.lf (.lisy2, z), tfr)).

These three constructors define named 3D curves in a YZ plane
given an X coordinate (a float value) and a 2D curve defined in
U, V coordinates corresponding in this constructor with Y and
Z coordinates. The arguments are given by means of already
explained anonymous constructors. The result is shown in Fig. 8.

Hence, the body is created with a patch constructor from the
previous curves and a new curve that is used to indicate the
tangency condition at the fore border. This is shown in Fig. 9 with
some improvements as a ‘‘for loop’’ to create the frames using a list
of curves:

The loop to create the curves uses a list of curves created outside
the loop and used within the loop to load the curves: lc lfr.ini;
where lc stands for a list of curves, lfr is the name of the list of
curves and.ini is the constructor to create an empty list.

The loop is invoked by the sentence for x i xc; where x is
the list to scan (a list of floats which contain the abscissas of the
frame sections), i is the index of the current element of the list (of
integer type) and xc is the current element of the list (of the type
corresponding to the elements of the list, in this case a float).

Within the loop the curves are created anonymously as they are
added to the list. Since the list is not created butmodified, a special
syntax for mutators is required: set lfr.add(.yz(xc,.pt(.lf(.lis y i, z),
tfr))); which uses the generic list constructor.add to create a new
list adding the argument element to the previous list lfr .

The tangency condition at the fore end if defined by the curve c
tbody.pxz(.xy(50 0, 20),.pt(.lf xp zp, tprof));

The curve name is tbody and the constructor.pxz takes two
arguments. The first one is a plane containing the curve and the
second one is a 2D curve that represents the 3D curve projected on
the XZ plane. In this case the plane is parallel to the Z axis passing
through the point (50, 0, 0) forming 20° with plane XZ , as it is
indicated by the anonymous constructor.xy(50 0, 20). The 2D curve
is the same as it has been used to create the profile.pt(.lf xp zp,
tprof). This tangency curve combined with the fore profile defines
tangency vectors at the fore end perpendicular to the center plane.

Then the patch named body is created with the constructor.ti:
pat body.ti(1 tbody,.rev lfr);

The.ti constructor has two arguments, a patch tangency
condition for the initial tangency (the final tangency is free with
this constructor) and a list of curves representing patch sections.
A patch tangency condition is given by a float factor and a curve.
Tangent vectors are taken from the affected patch curve (in this
case the first element of the list of curves) to the given tangency
curve and multiplied by the given factor. In this case the factor is
1.0 and the curve is tbody which has been previously defined in a
convenient way to get tangencies at the fore end perpendicular to
the center plane.

The list of curves is definedwith the anonymous constrictor.rev
lfr , which returns the list lfr in reversed order. It is defined thisway
to get the patch normal vectors pointing outside. This is the reason
for using the.ti constructor for the patch, since the profile becomes
the first curve of the list.

Finally, a new user constructor can be defined (Fig. 10) and used
parametrically (Fig. 11).

Note that the selected text in the Fig. 10 is a complete definition
of a new user constructor for patches. Once it is defined, it can
be invoked as any other ‘‘built in’’ constructor of the underlying
CAD application. Additionally, the list of arguments of the new
constructor are parameters on which it is possible to perform
parametric variations as shown in Fig. 11, where changed values
are highlighted. Any input argument can be modified providing
geometric parameterization. The user constructor can be applied
to any data structure similar to the simplified offset table of
the example. With some additional programming effort, the
constructor can be abstracted for more generic offset tables.

The complete script can be wrapped with a new user construc-
tor exposing just the parameters which are required for an specific
analysis, as for example, length and height of the bulbous bow.

This example is necessarily oversimplified in order to keep the
paper in a reasonable length, but it illustrates the idea of a tool used



694 A. Rodríguez, L. Fernández-Jambrina / Computer-Aided Design 44 (2012) 687–696
Fig. 9. Fore body with bow tangency.
Fig. 10. Fore body constructor.
Fig. 11. Fore body parametrized.
by advanced designers to write their design experiences with a
dedicated language and which can be stored and reused whenever
required.
4. Architecture of the application

Ref. [28] provides a very detailed explanation of the most
relevant architectural aspects of shipbuilding CAD applications.



A. Rodríguez, L. Fernández-Jambrina / Computer-Aided Design 44 (2012) 687–696 695
Fig. 12. Top left, conceptual level (the design program and its result), top right, mathematical level (the net of control points and the isoparametric curves of the NURBS
formulation) and 2 different visual levels (bottom left generated with higher precision and bottom right generated with lower precision).
The functionality of a design application comprises the tools for
creating, viewing, editing and interrogating the product model.
The implementation of this functionality requires data structures
which support these functions and all the algorithms associated
with these tasks. Under the paradigm of object orientation, both
data structures and algorithms are encapsulated in classes. The
main goal of the process of software design is the assignment of
responsibilities to the objects (a mantra for developers).

The result of the software design is a class diagram which
contains all the data structures and algorithms required by the
application. The diagram also represents the relations between
objects. A relevant subset of this diagram should be devoted
to implement the product model. The product model class
diagram has to supply the algorithms required by other objects
devoted to provide services such as visualization, selection, edition,
interrogation, etc.

In order to make easier the interaction between these service
objects and the product model implementation, it is very
convenient to split the product model into three levels. These
levels are especially useful for arranging the different types of
algorithms which are implemented by the product model and
can be considered levels of abstraction. The most abstract of
them can be called the conceptual level and it is devoted to
implement the design language, the organization of the model,
the topology and any other kind of relational or organizational
aspect of the product model. The next level of abstraction provides
a mathematical formulation for each of the entities created by the
conceptual model. In this example the mathematical level is based
on NURBS formulation and Bézier triangles and rectangles. Finally,
the model has to interact with the graphic card and requires a
visual representation of the model based on faceted or polyhedral
surfaces and polylines. This visual model is extracted from the
mathematical level by means of some algorithms which require
the pre-selection of certain precision parameters. Fig. 12 provides
a graphic explanation of the previous concepts.

These three levels can be interpreted as a cause–effect chain
or a three stage projection process. The concept is implemented
or described mathematically and these mathematical entities are
visualized or represented as low level visual entities. It is also
possible to consider that concept space is projected to amathemat-
ical space for description and implementation and mathematical
space is projected to a visual space for machine/world representa-
tion (visualization, selection and any kind of exploitation).

The projection from concept to mathematical level determines
which algorithms are possible for creation and edition of each
element or which constructors are available for each type. The
projection from mathematical to visual level is determined by
the level of precision which is required by the exploitation that
the visual model will undergo. For different uses, different visual
models with different precisions will be generated. Considering an
ideal scenario, thewhole definition of the productmodel should be
performed at the conceptual level while the whole product model
exploitation will take place at the visual level.

Taking into account the previous ideas, there is an optimal
level for each product model algorithm to be implemented within
the application, but sometimes there is space for selection. For
example, an intersection algorithm can be implemented in the
mathematical level (very complex) or in the visual level (easier
but the outcome depends on the precision with which it has been
generated).

In order to enforce the programmed design concept and to im-
plement the proposed architecture a design application based on
these premises has been developed. This prototype provides some
geometric parameterization constructors. Developing holistic con-
structors is muchmore complex and it is let to a subsequent phase.
The application has been developed in .NET C# language with Vi-
sual Studio 2010 Express Edition (.NET Framework 4.0). The appli-
cation is configured as a Windows Presentation Foundation (WPF)
application but it also usesWindows Forms for some specific tasks.
The 3Dengine is based onXNAGameStudio 4.0 forWindows (Xbox
is out of scope). XNA requires the use of Windows Forms to be in-
tegrated within aWPF application. All of the examples provided in
this paper have been generated with such application.



696 A. Rodríguez, L. Fernández-Jambrina / Computer-Aided Design 44 (2012) 687–696
5. Conclusions

Programmeddesign can be considered as a newdesignmethod-
ology based on a design language with the semantics and syntax
which has been explained before. As such, it can be considered
another type of design tool with its own advantages and disadvan-
tages. For a single or sporadic design, programmed design may not
be the preferred tool. The user interface based on a design language
is not the most adequate for the occasional designer. The best sce-
nario where programmed design is without any doubt full of ad-
vantages is design reuse and knowledge management. In this way,
programmed design can be considered as a tool for creating de-
sign tools or as a method to store and reuse design experiences.
The tools developed with programmed design scripts should be
wrapped within advanced user interface widgets to facilitate their
usage by less experienced designers.

One type of design tool which can be createdwith programmed
design is a parametric family of ship forms. Holistic parameteriza-
tion is able to prefix the integral properties of the hull (volumet-
ric and hydrostatic) within the product model, but paying a high
cost with respect to the generality of the solution. With geomet-
ric parameterization, the integral properties should be evaluated
after defining the geometry and this geometry should be modi-
fied to reach the required results. This retrofitted process can be
‘‘programmed’’ in a single script, combining geometric parame-
terization with parameterization by transformations. But combin-
ing holistic and geometric parameterizationswith transformations
can define extremely powerful hull form generators. In order to
make the combination of local and global parameterization easier,
it is necessary to develop functions to facilitate the distribution of
those parameters which are automatically managed by the holis-
tic zones. If the contribution of the geometrical zones to these pa-
rameters is evaluated, the contribution of the holistic zones can be
easily adjusted to produce the final result of the parameter as re-
quired by the completemodel. Typically, holistic zones are defined
between aft and fore perpendiculars and geometric zones are used
for appendages, bulbs, aft and fore endings, etc.

A more generic design tool can be based on the use of a palette
of form components that are used like design patterns. These
components should be strongly typified and its interfaces with
other components should have to be also verywell specified. These
components must be defined at a level of granularity in which
most of the ‘‘normal’’ hull forms are composed of the same types
of components, following a similar strategy as the interim product
technology.

Finally, one way to improve the use of programmed design is to
feedback the normal flow from conceptual level to mathematical
level and from this to visual level. Hence, this feedbackwill require
the possibility of transferring a visual model to a mathematical
model and a mathematical model to a conceptual model. Of these
two processes, the last one is the most useful as most surface
models defined with design applications can be imported at the
mathematical level. The process could require the selection of
the types of entities and constructors which are going to receive
(generate) the mathematical model but it should be automated as
much as possible in order to take full advantage of the process.
This functionalitywill allow the application to incorporate external
designs with the same capabilities as native or proprietary designs
and consequently produce programmed designs with external
information in a very easy way.

References

[1] Nowacki H. Five decades of computer-aided ship design. Computer-Aided
Design 2010;42(11):956–69.

[2] Abt C, Harries S. A new approach to integration of CAD and CFD for Naval
architects. In: 6th international conference on computer applications and
information technology in the Maritime industries, COMPIT2007, Cortona,
April 2007.

[3] Harries S. Serious play in ship design, tradition and future of ship design in
Berlin, Colloquium, Technical University Berlin, Abridged version, February;
2008.

[4] Harries S, Abt C. Parametric curve design applying fairness criteria. In: Inter-
national workshop on creating fair and shape-preserving curves and surfaces.
Berlin/Potsdam: Teubner Verlag; 1998.

[5] Harries S, Nowacki H. Form parameter approach to the design of fair
hull shapes. In: 10th international conference on computer applications in
shipbuilding. ICCAS ’99, Massachusetts Institute of Technology, Cambridge,
MA, USA; June 1999.

[6] www.3ds.com/products/catia.
[7] www.solidworks.com/.
[8] www.grasshopper3d.com/.
[9] Abt C, Bade SD, Birk L, Harries S. Parametric hull form design — a step towards

one week ship design. In: 8th international symposium on practical design of
ships and other floating structures, PRADS 2001, Shanghai; September 2001.

[10] Abt C, Harries S, Hochkirch K. Constraint management for marine design
applications. In: international symposium on practical design of ships and
other floating structures, PRADS 2004, Lübeck–Travemünde; September
2004.

[11] Kuiper G. Preliminary design of ship lines by mathematical methods. Journal
of Ship Research 1970;14.

[12] Nowacki H, Kim H. Form parameter based design of hull shapes as volume
and surface objects. In: Proc. 12th international conference on computer
applications in shipbuilding ICCAS’2005, Busan, Korea; August 2005.

[13] www.senermar.es/NAVAL/foran/en.
[14] www.friendship-systems.com.
[15] Abt C, Birk L, Harries S. parametric hull design: the FRIENDSHIP-modeler. In:

International conference on ship and shipping research, NAV 2003, Palermo;
June 2003.

[16] Abt C, Harries S. Hull variation and improvement using the generalized
Lackenby method of the FRIENDSHIP-framework. In: The naval architect,
RINA, September 2007.

[17] Kang JY, Lee BS. Mesh-basedmorphingmethod for rapid hull form generation.
Computer-Aided Design 2010;42(11):970–6.

[18] Lackenby H. On the systematic variation of ship forms. RINA-Transactions
1950;92.

[19] Veelo B. Shape modification of Hull models in H-REP. In: Conference on
computer app. and IT Maritime ind., COMPIT’04, 2004.

[20] Perez-Arribas F, Suarez JA, Fernandez-Jambrina L. Automatic surface mod-
elling of a ship hull. Computer-Aided Design 2006;38:584–94.

[21] Nowacki H, Jin F, Ye X. A synthesis process for fair free-form surfaces.
In: Strasser W, Klein R, Rau R, editors. Geometric Modeling: Theory and
Practice. Berlin, Heidelberg, New York: Springer-Publ.; 1997.

[22] MAXSURF user’s manual, formation design systems Pty Ltd. 1984–2009.
[23] FASTSHIP Proteus Engineering.

http://www.proteusengineering.com/fastship.htm.
[24] Brunet P, Vinacua A, Vivo M, Rodriguez A. Surface fairing for ship hull design

application. Mathematical Engineering in Industry 1998;7(2):79–193.
[25] Rodriguez A, Vivo M, Vinacua A. New tools for hull surface modeling. In: 1st

int. conference on computer app. and IT Maritime Ind., COMPIT’00, 2000.
[26] Solano L, Gurrea I, Brunet P. Topological constraints in ship design, IFIP

conference proceedings. In: Proceedings of the IFIP TC5 WG5.2 fourth
workshop on knowledge intensive cad to knowledge intensive engineering,
Vol. 207. 2000. pp. 173–182.

[27] Reidar T, Rodriguez A. Automation tools in the design process. In: 3rd int.
conference on computer app. and it Maritime ind., COMPIT’04, 2004.

[28] Rodriguez A, Gonzalez C, Gurrea I, Solano L. Kernel architecture for the
development of cad/cam applications in shipbuilding environments. In: 2nd
int. conference on computer app. and it Maritime ind., COMPIT’03, 2003.

http://www.3ds.com/products/catia
http://www.solidworks.com/
http://www.grasshopper3d.com/
http://www.senermar.es/NAVAL/foran/en
http://www.friendship-systems.com
http://www.proteusengineering.com/fastship.htm

	Programmed design of ship forms
	Introduction
	State of the art
	Global parameterization
	Parameterization by transformations
	Geometric parameterization
	Wire models
	Surface models


	Programmed design
	Concept
	Product model
	Design language
	Types and constructors
	Control sentences


	Architecture of the application
	Conclusions
	References


