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Abstract

When defining a ship hull surface, the main objective is to obtain a faired surface or surfaces that contain some specific points of the hull, that

have been selected in the design process and give the ship its hydrodynamic, stability and other properties. So, the hull surface should be a

compromise between fairness and precision, and this is not and easy task. In this paper, authors present a thorough procedure for automatic

modelling with a fair NURBS surface, having lists of points on the stations of the vessel as initial data. The construction of spline curves, and their

application in the definition of ship lines is reviewed. Approximation of spline curves fitting the data on the stations is made, with special emphasis

on the choice of parametrization, which is relevant to increase the accuracy of the splines. NURBS surfaces modelling the hull of the vessel are

constructed and the fairing process adapted to maintain certain ship characteristics is described.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Fitting and fairing the lines drawing from the data of ship

offsets is often the beginning of a complete ship hull design

procedure. This means to define the surface of the ship hull,

which contains or better approximates these offsets or points

belonging to the hull. These tasks may involve a considerable

amount of time and are usually a bottleneck in the process of

design, whereas their result is essential information for

subsequent processes. Any surface modelling system for

naval architecture should fulfil a number of requirements:

† Easy and quick fitting of data within a predetermined

tolerance level.

† Quick and intuitive fairing methods which, although

grounded on complex algorithms, may prevent the user

from involving in complicated mathematical calculations.

One of the most important characteristics of a CAD system

is its capability of exchanging information with other systems

in a large range of formats. The input information in a fitting

process is usually given through ship offsets and therefore it is
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necessary to read files with numerical information (specified

points of the ship hull) in text format. Concerning the output of

the modelling system, this is usually in DXF format if we are

interested in just fitting stations into spline curves (wire

models, Fig. 1, up), or in IGES format if we want one or several

NURBS surfaces constructed with these data (surface model,

Fig. 1, down). The latter one is the most common format for

exchanging information with computer fluid dynamics (CFD)

and finite element (FEM) programs.

The first step towards construction of the ship hull is plotting

curves that comprise the geometrical information of the

surfaces that are aimed to obtain. That is, we want to convert

in a quick and efficient way a set of points in a number of

splines, which contain all relevant information for constructing

the surface. Concerning the fitting process, the method should

provide a measure of the error that has been made in order to

comply with predetermined tolerances (in naval architecture

they are usually of the order of a few millimeters, even

centimeters; this is a function of the construction process, of

the material and of the ship size).

Usual ship files for an ordinary vessel contain between 11

and 25 stations (hull sections as in Fig. 1, up) and 8–10

waterlines (hull sections parallel to the water surface). This

means at least 100 intersection points. When using NURBS, an

exact interpolating surface would require a control net with

such large number of control points, which would make it

difficult to handle in case of requiring a fairing process, since

each control point acts very locally on the curve or surface.
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Fig. 1. Wire and surface models.

Fig. 3. Curvature representation.
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Therefore, and besides for simplicity, it is convenient to use an

approximation method with convenient precision in order to fit

the forms of a vessel.

The hull of a ship can be a complex surface, specially at the

bow and stern parts. There are nearly no two identical ships and

therefore generation and definition of forms is almost a labour

of an experienced naval architect, though the use of computers

makes the task easier. In spite of this, design with plastic or

metal splines, or loftsman’s splines, is still quite extended when

working with a printed design.

A physical spline is a long, narrow strip of wood, plastic or

metal used to fit curves through specified data points [1]. The

splines are shaped by lead weights called ‘ducks’ (Fig. 2) and

by varying the number and position of the weights the spline is

made to pass through the specified data, as smooth or fair as

possible.

The use of surfaces for modelling the hull of a ship is not

just aesthetical. The forms of a ship must be fair or smooth, that

is, they should not show ‘bumps’ which would affect the

hydrodynamic behaviour of the ship [2], increasing ship

resistance. In a wire model, one should represent one by one the

curvature of the stations or of the waterlines and in case they

show fairness problems, more sections of either kind should be
Fig. 2. The loftsman’s spline.
inserted in the problematic zone and modified accordingly in

order to smooth the curvature. From the construction point of

view, the use of surfaces enables the interpolation of lines on

ship hull easy and accurately, which are necessary to build the

internal ship structure.

If the hull surface is defined, total curvature may be

obtained mathematically (Fig. 3) in order to detect critical

zones and act on them, as we shall see later on. This is

specially critical in regions of high curvature, such as the

bow. Furthermore, in case of having a wire model, if we

wish a new station, interpolation for such curve is not easy,

specially if the stations show points called knuckles, where

the continuity of the curvature is lost, as it happens in Fig. 1,

and the union of the different surfaces in these knuckle lines

is C1.

The main disadvantage of the use of surfaces for modelling

the hull of a ship is that they are difficult to control. With an

interpolating wire model one is sure that the hull will pass

through the points on the stations. On drawing approximating

surfaces with such stations, the section along a plane

containing the station will not provide exactly the same

curve (tolerances are always allowed), due to the properties of

surfaces that we will explain later on.

Therefore, the aim of this paper is to present a thorough

procedure for automatic modelling with a fair NURBS surface,

having lists of points on the stations of the vessel as initial data.

The paper is organized as follows. In this section, we review

the construction of spline curves, and their application in the

definition of ship lines.

Section 2 is devoted to approximation of spline curves

fitting the data on the stations, with special emphasis on the

choice of parametrization, which is relevant to increase the

accuracy of the splines. In Section 3, NURBS surfaces

modelling the hull of the vessel are constructed and the fairing

process is depicted in Section 4. The results are discussed at the

end of the paper.
1.1. What is a NURBS?

The surfaces that best model the hull of a ship are non-

uniform rational B-spline (NURBS) surfaces. In order to

introduce the notation for the paper, we review briefly how they

are produced (cf. for instance [3–6]).



Fig. 4. Parametric coordinates in ship stations.
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A B-spline curve is formed by several pieces of polynomial

or rational curves and the whole curve is C2 at the junctions, in

the case of cubic B-splines. It is defined by a polygon called

control polygon, and an interpolation algorithm that allows the

construction of the curve relating the curve to the control

polygon. The interpolation steps are encoded in a family of

piecewise polynomial functions Nn
j ðuÞ called B-spline func-

tions of degree n. The order of the functions is nC1 and stands

for the number of non-null pieces that the B-spline functions

may have. In Fig. 5, a cubic B-spline is shown (degree 3, order

4). Three is the most usual degree in ship design and the one

that fits better the traditional loftsman’s splines.

A spline curve is a linear combination of B-spline functions

with mC1 control points as coefficients. So, spline curves are

parametric, xZg(u), yZh(u). In the plane, ViZ(Xi, Yi), iZ
0,.,m, generate a spline s(u) of degree n,

sðuÞZ
Xm
jZ0

Vj,N
n
j ðuÞZ ðXðuÞ;YðuÞÞ

Z
Xm
jZ0

ðXj,N
n
j ðuÞ; Yj,N

n
j ðuÞÞ (1)

Rational curves may also be defined,

sðuÞZ

Pm
jZ0

wj,Vj,N
n
j ðuÞ

Pm
jZ0

wj,N
n
j ðuÞ

(2)

by introducing a set of numbers, wj, jZ0,.,m, called weights.

If all of them are one, the polynomial B-spline is recovered,

since a nice property of B-spline functions is that their sum is

always unity,

Xm
jZ0

Nn
j ðuÞZ 1

for all values of the parameter u.

In the case of a ship, the use of parametric coordinates is

essential, since there are stations on the vessel that have more

than one ordinate for the same abscissa, as is happens in

regions close to the bow, Fig. 4, and therefore these stations

cannot be drawn as functions of single-valued functions of type

yZf(x).

The parameter u grows monotonically from one endpoint of

the curve to the other. It is usually normalized to take values

between zero and one, but this is not necessary. It bears no

simple relation to the length of the curve. The price that has to

be paid for using parametric coordinates is that the inverse

relation, that is the relation which provides u in terms of x or y

is not simple and therefore it is difficult to know the value of u

for a given point of the ship offsets.

In Fig. 5 left, the vertexes of the control polygon of a spline

that models a station of the bow of a vessel are numbered from

0 to 5. The straight lines that link them are the sides of the

control polygon. It may be seen that the shape of the polygon

mimics the shape of the curve and therefore provides a rough
estimation of it. As it is well known, by moving the control

points the shape of the curve is altered.

In addition to the control polygon, a spline curve has also a

list of knots, which are the values of the parameter u at the

junctions between pieces. We shall refer with the word knot

either to the junction point or the value of the parameter at the

junction. In Fig. 5 right, the knots are marked with dots. They

are usually taken equally spaced in u along the curve, although

this is not strictly necessary. The values of the knots in Fig. 5

are uZ0, 1/3, 2/3 and 1.

Mathematically, the knots just mark the beginning and the

end of the pieces of the spline curve, three in Fig. 5.

Physically, these are the points of the loftsman’s spline

where the weights were set to modify their curvature when

drawing curves (Fig. 2). Changing the position of these

weights, causes the shape of the curve to be changed in order

to fit the data points.

The B-spline curve is forced to pass through the first and last

vertex of the control polygon, corresponding to knots uZ0 and

1. The first and last sides of the control polygon provide the

direction of the tangents to the curve at the endpoints. This is

achieved by repeating the knots at uZ0 and 1 on the spline.

The number of knots equals the number of control points

plus the order of the curve. In Fig. 5, there should be 10 knots

and in Fig. 6, eight knots. In Fig. 6, for a cubic spline the list of

knots could be [0, 0, 0, 0, 1, 1, 1, 1], that is, the first knot is

repeated four times, as much as the order of the spline, and so is

the last knot. In principle, three times would be enough, since

the first and last knots are not necessary for calculation of the

spline, although they appear in IGES formulation. As it has

already been said, the knots are usually taken equally spaced.

In Fig. 5, the list of knots could be [0, 0, 0, 0, 1/3, 2/3, 1, 1, 1, 1].

These lists of knots with non-trivial multiplicity are called open

sequences of knots.
1.1.1. Calculation of the B-spline functions

A spline curve of degree n is a linear combination of

B-spline functions of the same degree. These functions may be

constructed recursively from lower to higher degree in terms of



Fig. 5. Control points and knots for a B-spline.
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the list of knots, starting at uK1. These basis functions can be

calculated with the De Boor algorithm of Eq. (3)

N0
j ðuÞZ

1 u2½ujK1; ujÞ

0 u;½ujK1; ujÞ

(

Nn
j ðuÞZ

uKujK1

ujCnK1KujK1

,NnK1
j ðuÞC

ujCnKu

ujCnKuj
,NnK1

jC1 ðuÞ (3)

2. Mean square approximation of stations with a cubic

spline

As previously mentioned, each station will be given by a list

of data points of the ship hull or offsets, formed by pC1 points

PiZ(xi, yi), iZ0,.,p (3!m!p), necessarily enclosing the

first and last points of the curve, through which the spline will

pass. We wish to find a list of mC1 control points ViZ(Xi, Yi),

iZ0,.,m (3!m!p), which defines the n-degree spline of

parametric equation s(u) which is closer to the data points,

according to Eq. (1), considering the least square fitting

criteria.

We choose cubic splines (nZ3) and not another degree for

simplicity of their formulation and for their nice properties (i.e.

possibility of an inflection point in each piece, class C2.). We

have also mentioned their similarity with the curves drawn with

the traditional design techniques.
Fig. 6. Construction of a spline curve.
Besides, cubic splines mathematically approximate the

previously mentioned physical spline of Fig. 2, a flexible

strip of wood with a number of adjustable weights that was

formerly used for drawing hull forms. In Fig. 7, there appear

some stations, fitting with splines the actual points, shown as

circles.

Spline curves also fulfil that nC1 aligned control points,

where n is the degree of the spline, produce a straight piece of

line. This feature is used to define straight regions of certain

stations with a single spline, which are normally used in ship

hull design because these parts are easy to construct with steel

plates.
2.1. Choosing the list of knots

The spline must pass through the first and last point of the

data set. Therefore, the first and last control points must be the

endpoints of the original curve and multiplicity three (four,

counting the additional knots) will be assigned to the parameter

values corresponding to these points. We may choose the

remaining knots arbitrarily. They are usually taken equally

spaced between 0 and 1 or spaced with constant difference

equal to unity,

uK1 Z u0 Z u1 Z u2 Z 3; u3 Z 4;.; um Z um C1

Z um C2 Z um C3 ZmC1

Once the approximating spline has been defined, we have to

choose a function that measures the distance between the spline

and the original data. The euclidean distance between actual

and approximating points may be used to define

RZ
Xp
iZ0

jsðUiÞKPij

Z
Xp
iZ0

½ðXðUiÞKxiÞ
2 C ðYðUiÞKyiÞ

2� (4)
Fig. 7. Stations modelled as cubic B-splines.
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where Ui, iZ0,.,p, is the value of the parameter u associated

with the point Pi of the data set. This point is related to a point

in the spline, s(Ui), and therefore R measures the distance

between the spline and the original station.
2.2. Choosing a parametrization

The value of function R will decrease as the spline points

approximates to the original data set. For this premise, the

choice of parameters Ui, iZ0,.,p, is determinant. This is

called the choice of parametrization. There are many ways of

choosing the parametrization. The most usual methods are the

uniform parametrization, the parametrization by chord length

and the centripetal parametrization [4,7].

In a first approximation we will use the centripetal

parametrization to obtain the values Ui, iZ0,.,p, since it

usually provides a nicer fitting for a list of points,

UiKUiK1 Z k,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jPiKPiK1j

p
; iZ 1;.; p (5)

where the initial value U0 and k depend on the origin and width

of the interval of definition of the parameter u, in this case,

respectively, 3 and mC1,

U0 Z 3; kZ
mK2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jP1KP0j
p

C/C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jPpKPpK1j

q

2.3. Solving the approximation problem

In order to obtain the cubic spline with mC1 control points,

which is closer to the data, we minimize the distance function

R, using as free parameters the coordinates of the control

points, except for the first and last points, which are already

determined. We are left with mK1 equations for each variable,

X, Y,

Xm
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We shall call B the matrix formed by bijZN3
j ðUiÞ; iZ

0;.; p; jZ0;.;m

BZ

N3
0 ðU0Þ / N3
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The system of Eq. (6) may be written in matrix form as

BtBX ZBtx (7)

where Bt denotes the transposed matrix of B, btijZbij, and X

and x are, respectively, the matrices of coordinates of both the

control points and the data points,
X Z

X0 Y0

« «

Xm Ym

0
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« «

xp yp

0
B@
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Since the first and last control points are known, because

they are, respectively, equal to the first and last data points, the

first and last columns of this system of equations are moved to

the right-hand side. If we write the columns of the matrix B as

Bi ZN3
i ðU0Þ;.;N3

i ðUpÞ

the matrix of the system of equations is provided by their scalar

product, CZ(cij), cijZBi$Bj, i, jZ1,.,mK1,

C Z
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« 1 «

BmK1,B1 / BmK1,BmK1
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This matrix is obviously squared and symmetric and

therefore the system

C,
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«
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has a unique solution. In this case, Gauss method is used to

solve the system of equations of Eq. (7). For most ship hull

forms, stations are modelled with no more than 10 control

points, which can be managed pretty good with Gauss method.
2.4. Searching for the optimal parametrization

Although the centripetal parametrization usually provides

nice results, it is desirable to obtain the best spline fitting for the

data points of the ship hull with a minimum number of control

points. We shall try to optimize the parametrization by an

iterative scheme, using as initial seeds the values Ui, iZ0,.,p,

obtained with the centripetal parametrization.



Fig. 8. Effect of the parametrization.
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This is one of the key points of the process, since the quality

of the approximation of the station points obviously determines

the quality of the hull approximating surface.

Once the approximating spline s(u) is obtained with the

values of Ui provided by Eq. (5), we calculate the line

perpendicular to the spline curve from each data point Pi. Such

line cuts the spline at a point Ii, so that distance PiIi is the

minimum distance between the data point and the spline. Then,

we take the value U1
i of the parameter u corresponding to Ii,

IiZs(U1
i ), obtaining a new family of parameters, U1

0 ;.;U1
p .

We calculate now the parametrization for the approximating

spline s1(u) with the new parameters, which provides a better

precision fitting for the list of points Pi. Iterating this process j

times, we get a family U
j
i of parameters for which the precision

of the associated approximating spline sj(u) is increased several

times compared to the original centripetal parametrization.

In order to calculate the error made in the approximation, we

divide the spline in a large number of points (i.e. 5000) and the

distance PiIi is calculated numerically. In Fig. 8, it is shown

the effect of the choice of parametrization in the fitting of the

points of a station in the bow region, 6.35 m draught

(maximum height of the station) and 1.7 m half breadth

(maximum width of the station), with a spline of six control

points. In Fig. 8, the parametrization is centripetal, the first step

of approximation. With just one iteration (Fig. 8), the

improvement is hardly perceptible, but in Fig. 8, 20 iterations

have been carried out, 50 in Fig. 8, and it is shown that the error

diminishes on increasing the number of iterations.

Fig. 8 shows the case of a bulbous bow. In the case of the

examples of Section 4 that correspond to sailing ships, the error

is reached with just two or three iterations and the presented

example of Fig. 8 is more interesting to see the effect of the

parametrization.

If a certain tolerance is imposed on the approximation,

iterations are carried out until the maximal distance PiIi
becomes less than the tolerance value. If the tolerance cannot

be attained no matter the number of iterations, the number of

control points is to be increased.

Once this process is carried out on the list of points for every

station (among them it is also possible to include the bow form

profile), we have every station approximated with a cubic

spline and also a measure of the approximation error made in

each of them. Increasing the number of control points may

diminish this error. The tolerance can be taken to be zero by

prescribing a number of control points equal to the number of

data points, though in this case we are not approximating but

interpolating a spline through the data.

Interpolation is just a special case of approximation, but the

presented method and the examples of Section 4 uses

approximation instead interpolation, because this way more

simple curves and surfaces can be obtained, which will

facilitate the fairing process. This approximation gives good

enough results for the tolerances normally used in ship design.

The iterative process used in the construction of the optimal

B-spline curve for each station is a technique introduced by

Hoschek [19]. Using direct least-square minimization over

control points for each iteration, Hoschek’s method remains
computationally intensive and globally weak because problems

of convergence due to rough parameter corrections that can be

encountered. An improvement of Hoschek’s method was

proposed by Saux and Wallner [20] in order to get a more

robust parametrization optimization step. For ship hull forms,

that authors have tested, the parametrization method used in

this work does not show convergence problems. Most complex

parts of ship can be bulbous bow forms as the one of Fig. 8 and

this forms are correctly solved with the parametrization process

described in this work.

Now we have all the information needed to write a DXF file

with the whole wire model of the ship.
2.5. Stations with straight pieces

The use of straight pieces in stations to form the flat bottom

and the flat sides is common in high displacement ships.

Straight pieces are always a problem for modelling with

NURBS surfaces or splines, since one has to be careful to attain

that they are actually straight. If these straight pieces are not

controlled, the ship may have points under the base plane or the

maximum breadth may be surpassed.

The method that has been described for fitting the optimal

parametrization may mimic nicely straight pieces on stations

(Fig. 9 left). The approximation is better if more points are

introduced on the straight pieces of the station (Fig. 9 right), so

these points will have more influence in the numerical fitting.

If one wishes to ensure that straight pieces are actually

straight by drawing a station with just one cubic spline, it is

necessary to modify the described method by placing four

aligned control points on the chosen straight piece (bottom or

side) and if the tangency points with the bottom and the side are

known, they must be used as knots for the spline.

In Fig. 10, it can be seen the four points aligned with the

directions of the bottom and the side of a station. The points T

are the tangency points of the bilge with the mentioned straight

pieces.

In this way, just one spline is needed to model stations with

straight pieces avoiding the modelling of the bottom and the
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side with straight lines and defining separately the bilge that is

to be joined to these lines preserving the tangency. This

simplifies the modelization of the ship with surfaces that

support on the splines, which fit the points of the ship offsets.

This is shown in Section 3.
Fig. 10. Straight parts.
3. Generation of a spline surface through the stations

The generalization of cubic spline curves to bicubic spline

surfaces is almost straightforward. The control polygon is

substituted for a control net depending on two indices, Vij (Xij,

Yij, Zij), as in Fig. 11. Products of B-spline functions in two

variables u and v and two lists of knots {uK1, .,umC3}, {vK1,

.,vnC3} are used,

sðu; vÞZ
Xm
iZ0

Xn
jZ0

Vij,N
3
i ðuÞ,N

3
j ðvÞ

u2½u2; um�; v2½v2; vn�

(8)

For constant u we obtain cubic spline curves in v with n

control points. For constant v we obtain cubic spline curves in u

with m control points. Therefore, we may construct the surface

from a 2D net of spline curves. This is specially useful for our

purposes, since it allows us to draw a surface from previously

designed stations of the vessel.

In practice this is easy, since it just requires another

minimum squares fitting, this time with nC1 control points for

each of the mC1 longitudinal rows of control points

corresponding to the approximating splines for the stations.

These new control polygons constitute the control net of the

approximating surface for the initial list of data points.

In this case the mC1 lists of points will not be coplanar as

before, since the bow form is included. Therefore the fitting

must be 3D, which does not mean any additional complication,

since one just needs to add a third coordinate z in space.

After finishing this calculation process, a text file in format

IGES 5.0 is created where the relevant information for the

construction of the bicubic spline surface through the stations is

stored.
4. Fairing process

Once the surface is fitted with an adequate number of

control points, it is usually faired interactively by direct
Fig. 9. Fitting stations with straight parts.
manipulation of the calculated control net, taking into account

curvature diagrams of the surface.

The main problem is that generally this fairing process may

damage the level of precision acquired during the construction

of the approximating surface, since the fairing and fitting

process may interfere with each other. To avoid this we use an

automatic fairing method that requires no direct participation

of the user.

It is desirable that the fairing process should be local. If

the surface needs to be faired only at a local spot due to the

presence of an isolated bump, this should not mean that

the whole surface has to be modified, and the hydrodynamic

characteristics of the vessel will be maintained.
4.1. Fairing criterion

Among both lists of knots necessary to define the surface,

we shall refer the inner knots as u3,.,umK1 and v3,.,vnK1 and

we assume that they all have multiplicity one. The whole set of

indices for inner knots (uk, vl) is then

I Z fð3; 3Þ; ð3; 4Þ;.;ðmK1; nK1Þg

If this criterion had to be fulfilled at every knot, it would

mean that the spline surface would not be spline but

polynomial, that is it would be a spline of just one piece.

Since bicubic spline surfaces are generically C2, their third-

order derivatives are discontinuous at the knots. That is, we

have just excluded the knots corresponding to the edges of the

surface.

There are a certain number of fairing algorithms in the

literature, but mostly for spline curves and not for surfaces.
Fig. 11. Control point net.
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Methods for splines curves are usually grounded on knot

removal procedures [8–11]. However, the translations from

curves to surfaces is far from straight forward.

We have chosen [12] for its simplicity and its local

character, since it involves just nine control points in each

iteration, compared with other alternative fairing algorithms

[13,14,11]. We have modified [12] to maintain certain ship

characteristics, as we will explain in the final comments of the

fairing process.

Faired surfaces can be generated by means of minimization

of certain fairness measures, which can be regarded as

approximate strain energy [15]. A discussion about the

selection of proper fairness measures can be found in [16]

and [17]. In order to develop a fairing method we need a sort of

quantitative measure of the fairness of the surface.

4.1.1. Local fairness criterion

A C2 spline surface s(u, v) is fairer in a neighbourhood of the

inner knot (uk, vl) if s(u, v) is locally C3 at (uk, vl).

Following this criterion, each local fairing iteration consists

on reducing the differences between third-order partial

derivatives at (uk, vl). This means that fairing the whole

surface amounts to reducing the value of the sum of third-order

discontinuities at all inner knots on the surface.

A spline surface is C3 at (u, v) if and only if every third-order

partial derivative of s(u, v) is continuous at (u, v). Since spline

surfaces already have the nice property of having continuous

third order cross partial derivatives, the sum of the differences

along both u and v directions provides a reasonable measure of

local fairness, according to the fairness criterion.

We may define discontinuity vectors at each knot,

Duuuðuk; vlÞZ
v3s

vu3
ðuKk ; vlÞK

v3s

vu3
ðuCk ; vlÞZ

Xk
iZkK4

XlK1

jZlK3

aij,Vij

(9)

Dvvvðuk; vlÞZ
v3s

vv3
ðuk; v

K
l ÞK

v3s

vv3
ðuk; v

C
l ÞZ

XkK1

iZkK3

Xl
jZlK4

bij,Vij

where generically the coefficients aij, bij (Table 1 and Table 2)

depend on the knot (uk, vl). But in the case of equally spaced

inner knots, they take the same value for every knot,
Table 1

aij coefficients, iZkK4,.,k, jZlK3,.,lK1

aij kK4 kK3 kK2 kK1 k

lK3 K1/6 2/3 K1 2/3 K1/6

lK2 K2/3 8/3 K4 8/3 K2/3

lK1 K1/6 2/3 K1 2/3 K1/6

Table 2

bij coefficients, iZkK3,.,kK1, jZlK4,.,l

bij lK4 lK3 lK2 lK1 l

kK3 K1/6 2/3 K1 2/3 K1/6

kK2 K2/3 8/3 K4 8/3 K2/3

kK1 K1/6 2/3 K1 2/3 K1/6
Therefore, a local fairness measure Lkl at the knot (uk, ul)

could be defined as

Lkl Z jDuuuðuk; vlÞj
2 C jDvvvðuk; vlÞj

2 (10)

In the calculation of Lkl, 21 different control points take part.

As a whole, we may assign the whole surface s(u, v) a

quantity Gs that may be called global fairness measure,

Gs Z
X
ðk;lÞ2I

Lkl (11)

Global fairness criterion: A bicubic spline surface s(u, v) is

fairer than another s0(u, v) if Gs!G 0
s.

The strategy that we follow in order to improve the fairness

of the surface involves two steps:

† A local fairing iteration at the knot (uk, vl), (k, l)2I, where

LklZmax(Lij), that is, at the least fair knot, according to the

local fairness criterion.

† Recalculation of Gs and back to the previous step.
4.2. Local fairing iteration

The smoothness of the surface at the knot (uk, ul) changes

from C2 to C3, LklZ0, that is, the third-order derivative

discontinuity disappears and the surface is then as smooth as

possible at this knot. The local smoothness measure is zero and

therefore

Duuuðuk; vlÞZ 0; Dvvvðuk; vlÞZ 0 (12)

This system of equations is compatible but undetermined,

since there are more unknowns than equations. We obviously

intend to modify the surface minimally, that is, the distance

maxjs(u, v)Ks 0(u, v)j should be minimal. But this condition is

highly non-linear.

In order to linearize the problem, while influencing

minimally the surface, we modify the position of just nine

points, instead of 21, keeping fixed the others. That is, we

improve the local fairness measure of each knot (uk, vl)

modifying the position of the control points Vij, iZkK3, kK2,

kK1, jZlK3, lK2, lK1, that affect the most the neighbour-

hood of the knot.

In this way, the new position of these nine points will

be given by the solution of the system of Eq. (12) that at

the same time causes the smallest deformation of the

original surface, that is, the minimum of the vector function

FðV 0
ijÞ

FðV0
ijÞZ

XkK1

iZkK3

XlK1

jZlK3

jVx
ijKV 0x

ij j
2;

XkK1

iZkK3

XlK1

jZlK3

jV
y
ijKV

0y
ij j

2;

XkK1

iZkK3

XlK1

jZlK3

jVz
ijKV 0z

ij j
2

(13)

where Vij is an original control point and V 0
ij is a modified

one.
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This condition replaces the minimal deformation condition

and it has the advantage of producing linear Lagrange equations.

In order to solve this problem, we make use of Lagrange

multipliers,

Q V0
ij; l;m

� �
Z F V0

ij

� �
Cl,jDuuuðuk; vlÞjCm,jDvvvðuk; vlÞj

(14)

by imposing that the new function QðV 0
ijÞ should meet a

minimum.

This furnishes the following system of 11 vector equations,

vQ

vV0
ij

Z 0 ð9 equationsÞ

vQ

vl
Z 0 ð1 equationÞ

vQ

vm
Z 0 ð1 equationÞ

(15)

In the case of equally spaced knots, the coefficient matrix of

the previous system of equations does not depend on the knot.

If the differences ukKukK1 and vlKvlK1 are unity.

AZ

2 0 0 0 0 0 0 0 0 4 4

0 2 0 0 0 0 0 0 0 K6 16

0 0 2 0 0 0 0 0 0 4 4

0 0 0 2 0 0 0 0 0 16 K6

0 0 0 0 2 0 0 0 0 K24 K24

0 0 0 0 0 2 0 0 0 16 K6

0 0 0 0 0 0 2 0 0 4 4

0 0 0 0 0 0 0 2 0 K6 16

0 0 0 0 0 0 0 0 2 4 4

4 K6 4 16 K24 16 4 K6 4 0 0

4 16 4 K6 K24 K6 4 16 4 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

A,

V0
kK3;lK1

V0
kK2;lK1

V0
kK1;lK1

V 0
kK3;lK2

V 0
kK2;lK2

V 0
kK1;lK2

V 0
kK3;lK3

V 0
kK2;lK3

V 0
kK1;lK3

l

m

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

Z

2,VkK3;lK1

2,VkK2;lK1

2,VkK1;lK1

2,VkK3;lK2

2,VkK2;lK2

2,VkK1;lK2

2,VkK3;lK3

2,VkK2;lK3

2,VkK1;lK3

c1

c2

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA
c1 Z ðVkK4;lK3 C4,VkK4;lK2 CVkK4;lK1 CVk;lK3 C4,Vk;lK2

CVk;lK1Þ

c2 Z ðVkK3;lK4 C4,VkK2;lK4 CVkK1;lK4 CVkK3;l C4,VkK2;l

CVkK1;lÞ

Once the inverse of the coefficient matrix A is known, the

iterations of the fairing process are easy to compute, since they

are just a multiplication of the matrix by the independent term

vector. V 0
ij stand for the new position of the control points Vij

after a fairing iteration.
4.3. Final comments to the fairing process

This fairing process will not be generally necessary when

the surface has been modelled with a low number of control

points, but also with low precision to fit the hull data, since the

approximation procedure has already erased small irregula-

rities that may have arisen in the ship offsets. In Fig. 12, the

number of control points may be seen, 7!6, and also the

longitudinal distribution of curvature along isoparametric

curves, a usual technique for checking the hull fairness.

The problem arises when very high precision is required and

a large number of control points are therefore used, even as

much as data points. In this case, approximation becomes

interpolation. In such cases the surface reproduces precisely the

ship offsets, but the feared bumps may appear. We may easily

detect them plotting the gaussian curvature of the surface or the

curvature of isoparametric curves in any CAD application by

importing to an IGES file the data that have been obtained in

the previous step.

In Fig. 13, a control net of 7!10 points has been used for

fitting ship offsets following the method described in this work.

A greater number of control points has been used to obtain a

better fitting in the stem region. The control net as well as the

longitudinal curvature of the isoparametric curves of the

surface may be seen.

In these cases we use the fairing algorithm that we have

previously described, which is local, that is, it just modifies the

surface where it is needed to be smoothed, altering the

information of a few control points and leaving the rest unaltered.

However, if we do not want to alter the shape of the ship hull

surface at the deck or at the centreline, or the tangent directions

on such edges, we must not allow the fairing algorithm to

modify the position of every control point. These parameters

affects ship seakeeping.

In order to avoid it, we fix the position of the last and of the

first two longitudinal rows of control points. We thereby

prevent the algorithm from changing them and therefore the

centreline and the bow and stern profiles, as well as the

deadrise angle or starting angle of the stations at the centreline,

remain unaltered.

In this way, we avoid deforming too much the original hull

surface. In order to achieve this, we just restrict the application

of the fairing algorithm to a set I0 of inner knots, subset of the



Fig. 12. Unfaired net.
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original set I, where the last and the first rows of inner knots

have been excluded. That is, the knots that are included in the

algorithm and therefore may be faired are (uk, vl) such that k, l

are in I 0Z{(4, 4); (4, 5);.; (mK2, nK2)}.

In Fig. 14, the fairing effects may be seen on the hull of

Fig. 13. The curvature of isoparametric curves has improved if

we compare them with the ones that have not been faired.

A last thing to be considered is the required number of

iterations of the fairing algorithm. There is no a priori criterion

to choose it, since it depends on the considered hull. It is not

convenient to use a too large number so that the original

surface does not change too much, but it cannot be so low that
Fig. 13. Unfa
the surface is not enough faired. A quick view of the curvature

of the isoparametric lines is a good indicator.
5. Discussion

In this paper, we have described a full process for

automatically designing faired hull forms directly from the

data points in ship offsets. The method relies on a nice fitting of

data points of the stations with an original selection of the

parametrization, increasing as much as possible the precision

of the approximating cubic spline curves. The origin of the

method is the traditional design with physical splines.
ired net.



Fig. 14. Control points net with few control points.
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To this aim, an iterative algorithm has been devised for

obtaining the values of the optimised parametrization for the

spline curves that approximate the hull data points. Other parts

of the process, the approximation scheme or the fairing

algorithm are standard, although the fairing has been adapted in

order to maintain certain ship characteristics. The method

provides accurate results for most hull forms.

The method, however may be improved in several ways. For

instance, other fairing algorithms may be tried such us

directional methods [18], because for an elongated shape as

the ship hull, it differs much between the transversal and

longitudinal directions. This could be another line of research

for further improving the method.
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