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Abstract

In this Letter we analyse the possibility of having homogeneous isotropic cosmological models with observers reaching t = ∞ in finite proper
time. It is shown that just observationally-suggested dark energy models with w ∈ (−5/3,−1) show this feature and that they are endowed with
an exotic curvature singularity. Furthermore, it is shown that non-accelerated observers in these models may experience a duration of the universe
as short as desired by increasing their linear momentum. A subdivision of phantom models in two families according to this behavior is suggested.
© 2007 Elsevier B.V. All rights reserved.

PACS: 04.20.Dw; 98.80.Jk
1. Introduction

During the last years there has been mounting experimen-
tal evidence from different sources (supernovae type Ia [1],
redshift of distant objects [2] and temperature fluctuations of
background radiation [3]) supporting an accelerated expansion
of our Universe at present time (cf. for instance [4] for a re-
view).

Trying to explain this fact, several proposals have been
made, such as dark energy contents for the universe or modifica-
tions of the theory of gravity, which have produced a menagerie
of new types of singular events in the respective cosmological
models, traditionally restricted to Big Bang and Big Crunch sin-
gularities. For instance, we may find in phantom energy models
Big Rip singularities [5]. An attempt to explain the accelerated
expansion without violating all energy conditions [6] produces
sudden singularities. Most recently, inaccessible singularities in
toral cosmologies have been added to the list [7].

There have been several attempts to organize these families
of singular events in thorough classifications. In [8] all types
of singular events in Friedmann–Lemaître–Robertson–Walker
(FLRW) cosmological models are classified according to the
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coefficients and exponents of a power expansion in time of the
scale factor of the universe around the event. In [9] singular-
ities are classified using the finiteness of the scale factor, the
density and the pressure of the universe. In [10] the behavior of
causal geodesics close to singular events and the strength of the
singularities are analysed.

This line of research has proven successful showing unex-
pected features of FLRW cosmological models near the singu-
larities. For instance, it has allowed to show that sudden sin-
gularities are weak [11], since tidal forces do not disrupt finite
objects falling into them [12–14].

Another intriguing feature concerning Big Rip singularities
is that photons do not experience such fate for effective equa-
tions of state, p = wρ, with w ∈ (−5/3,−1) (that is, those
comprised between the superphantom [15] and the phantom
divide), since they require an infinite lapse of time to reach
that event [10]. Since this range of the parameter w comprises
the observationally accepted values [16], which are slightly
below −1, this fact is more than a mere curiosity.

Following the idea of classifying the singular events aris-
ing in FLRW cosmological models, it is worth mentioning that
all classifications are incomplete in a sense: they unveil what
happens at a finite coordinate time t , but they are elusive when
asked about infinite t . This may seem a pointless considera-
tion, since in most cases an infinite coordinate time lapse corre-
sponds to an infinite time lapse experienced by the observer, but
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the mentioned example about photons in phantom cosmologies,
where a finite coordinate time lapse requires an infinite proper
time shows us that the issue is far from being trivial.

To this aim in Section 2 the equations governing causal
geodesics in FLRW cosmological models are reviewed. In Sec-
tion 3 the conditions for a causal geodesic to reach t = ±∞ in
finite proper time are derived. It will be shown that just phan-
tom models fulfill this property. In Section 4 it will be discussed
if this abrupt end of causal geodesics is an actual singular-
ity or not. Analysis of the Ricci curvature as measured by the
observers will settle the issue, in spite of the zero value of curva-
ture scalar polynomials there. In fact these are strong curvature
singularities. Finally, the consequences of these facts will be
discussed in Section 5.

2. Geodesics in FLRW cosmological models

The metric for FLRW cosmological models may be written,

ds2 = −dt2 + a2(t)
{
f 2(r) dr2 + r2(dθ2 + sin2 θ dφ2)},

(1)f (r) = 1√
1 − kr2

, k = 0,±1,

in terms of spherical coordinates r , θ , φ with their usual ranges
and a coordinate time, with a range depending on the type of
cosmological model.

Three families of models are comprised in this expression,
open models with k = −1, flat models with k = 0 and closed
models with k = 1. Observations favor flat models, but we keep
for our purposes the general formula.

Free-falling observers in a spacetime are modeled by time-
like geodesics parametrized by proper time τ , since these
curves have the property of vanishing acceleration. The use of
proper time allows us to write the velocity u of the parametriza-
tion of the geodesic (ṫ , ṙ, θ̇ , φ̇) as a unitary vector,

(2)δ = −gij ẋ
i ẋj , xi, xj = t, r, θ,φ,

where the dot means derivation with respect to τ .
There are three types of geodesics: timelike (δ = 1), space-

like (δ = −1) and lightlike (δ = 0). We consider just causal
geodesics, δ = 0,1, since they are the only ones that may carry
signals or observers.

A quick way to write down simple geodesic equations for
these spacetimes is taking into account that the universe is ho-
mogeneous and isotropic and therefore geodesics are straight
lines in the spacetime and we may take θ̇ = 0 = φ̇ without loss
of generality.

It is also easy to check that the vector ∂R = ∂r/f (r),

R =
{ arcsinh r, k = −1,

r, k = 0,

arcsin r, k = 1,

generates an isometry along these straight lines and therefore
there is a conserved quantity P of geodesic motion attached to
it, the specific linear momentum of the observer,

(3)±P = u · ∂R = a2(t)f (r)ṙ,
where the · denotes the inner product defined by the metric (1).
The double sign is introduced in order to keep P positive.

We just need another equation for ṫ to complete the set and
we may obtain it without resorting to Christoffel symbols for
the metric by using the unitarity condition (2),

δ = ṫ2 − a2(t)f 2(r)ṙ2.

Restricting to future-pointing geodesics, ṫ > 0 (past-pointing
geodesics are treated in a similar fashion), the whole set of geo-
desic equations is reduced to

(4a)ṫ =
√

δ + P 2

a2(t)
,

(4b)ṙ = ± P

a2(t)f (r)
.

Hence we see that there are basically three types of causal
geodesics: radial lightlike (δ = 0, P �= 0) and timelike geodes-
ics (δ = 1, P �= 0) and the comoving congruence of fluid world-
lines (δ = 1, P = 0), which provide little information about the
geometry of spacetime, since for them t = τ regardless of the
possible singularities in the universe.

3. Singularities at infinity

Since singularities along causal geodesics at a finite t0 were
considered in detail in [10], we focus now on infinite values of
coordinate time t .

Singularities may appear also at t = ±∞ if there are ob-
servers that reach these events in finite proper time. Unfortu-
nately, it is not always possible to perform power expansions of
the scale factor centered in t = ±∞, as it is done in [8,10] for
finite t , since there are physically reasonable spacetimes with
oscillatory scale factors, for instance, anti-de Sitter universes,
for which the limit of a(t) is not defined when t tends to infin-
ity.

However, the question of when t = ±∞ is reached by geo-
desic observers in finite proper time can be easily solved.

For lightlike radial geodesics we have

ṫ = P

a(t)
,

t∫
t0

a(t ′) dt ′ = P(τ − τ0),

and therefore lightlike geodesics reach t = ∞ in finite proper
time if and only if the integral

(5)

∞∫
t

a(t ′) dt ′

is finite for sufficiently large t . That is, if a(t) is an integrable
function at infinity.

Comoving fluid worldlines with P = 0 need not be consid-
ered, since they reach t = ∞ in infinite proper time.

Finally, we have timelike radial geodesics. In this case,
proper time may be written again in terms of an integral of a(t)
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using (4a),

(6)

t∫
t0

dt ′√
1 + P 2/a2(t ′)

= τ − τ0,

and therefore these geodesics reach t = ∞ in finite proper time
if and only if the improper integral

∞∫
t

dt ′√
1 + P 2/a2(t ′)

is convergent for sufficiently large t .
Obviously this can only happen if a(t) tends to zero at infin-

ity, but it is not a sufficient condition. Since we may bound

∞∫
t

dt ′√
1 + P 2/a2(t ′)

<
1

P

∞∫
t

a(t ′) dt ′,

the integral for timelike geodesics is convergent if the one for
lightlike geodesics is.

Furthermore, since for large t and a(t) tending to zero

1√
1 + P 2/a2(t ′)

= a(t ′)
P

− 1

2

a3(t ′)
P 3

+ · · · ,

is a telescopic series, the integral for timelike geodesics con-
verges if and only if the one for lightlike geodesics does. Hence,
all radial geodesics have the same regularity pattern.

The analysis for t = −∞ is entirely similar and so we have
focused on the t = ∞ case.

Since in most models the scale factor a(t) behaves asymptot-
ically as a power of coordinate time, we start considering scale
factors which behave close to infinity as

a(t) � c|t |η, c > 0, w = 2

3η
− 1.

The equation for lightlike geodesics (4a) may be integrated
close to infinity,

t �
{

(1 + η)P

c

}1/(1+η)

(τ − τ0)
1/(1+η), η �= −1,

t � eP (τ−τ0)/c, η = −1,

and provides valuable information, since t diverges when τ

tends to infinity for η � −1, whereas t diverges at finite proper
time τ0 if η < −1.

The latter cases are quite interesting, since at τ0 the geodesic
reaches t = ∞ in finite proper time. Therefore, lightlike geo-
desics range from τ = −∞ (t = 0) to τ = τ0 (t = ∞) and are
incomplete towards the future.

This is not the interesting case, since it involves models start-
ing at a Big Rip at t = 0. But if we consider t = −∞, lightlike
geodesics range from τ = τ0 (t = −∞) to τ = ∞ (t = 0) and
are incomplete towards the past. This is the usual range in the
suggested phantom models.

As it has been said, the same behavior appears for timelike
radial geodesics, with the difference that these actually end up
at the Big Rip at t = 0 in a finite proper time [10].
Not only causal geodesics, but also spatial geodesics show
this feature.

For non-tilted spatial geodesics in a hypersurface t = t0,

ṫ = 0 ⇒ t = t0, P = a(t0),

ṙ = ± 1

a(t0)f (r)
⇒ R = ± s − s0

a(t0)
,

proper distance s is essentially the radial coordinate R, cor-
rected by the expansion factor, as expected.

But for tilted spatial geodesics,

ṫ =
√

P 2

a2(t)
− 1 ⇒ s − s0 =

∞∫
t

dt ′√
P 2/a2(t ′) − 1

,

and for a(t) � c|t |η for large t , this integral converges to a finite
value if and only if η < −1. Hence the length of these tilted spa-
tial geodesics is also finite, even though the radial coordinate r

diverges.

4. Curvature singularities

However, at t = ±∞ all curvature scalar polynomials van-
ish, since they decrease as t−2 and this suggests a sort of
Minkowskian limit. Therefore there is no scalar polynomial
curvature singularity there. A pathological feature named im-
prisoned incompleteness, which appears in spacetimes like
Taub-NUT, where geodesics are incomplete without singular
scalars of curvature, is not feasible, since the spacetime has
a cosmic time (a function with timelike gradient everywhere,
the coordinate time t ) and is therefore causally stable [17,18].
We might suspect that geodesic incompleteness could simply
point out that the spacetime is not fully covered with the coor-
dinate patch (1) and that therefore it could be extendible beyond
t = ±∞.

This is the case, for instance, of Milne universe, correspond-
ing to k = −1, a(t) = t in (1). A suitable coordinate transfor-
mation

T = t
√

1 + r2, R = rt,

shows that this model is just the portion of Minkowski space-
time inside the null cone T = R and therefore the apparent
singularity at t = 0 is due just to the choice of coordinates.
Or for Schwarzschild spacetime, which in Schwarzschild co-
ordinates appears to be singular at the horizon at r = 2M ,
whereas this coordinate singularity disappears on extending it
with Eddington–Finkelstein [19] or Kruskal [20] coordinates.

However, the null value of the scale factor in that limit sug-
gests a point as a limit in this case.

If we compute the Ricci tensor component along the velocity
of the geodesic, an exotic behavior appears.

For a radial lightlike geodesic,

ut = ṫ = P

a
, ur = ṙ = ± P

f a2
,

(7)Riju
iuj = 2P 2

(
a′2 + k

a4
− a′′

a3

)
� 2P 2η

c2t2(η+1)
+ 2kP 2

c4t4η
,
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Fig. 1. Conformal diagram for a model with w ∈ (−5/3,−1): Timelike radial
geodesics like a have finite length, whereas lightlike geodesics like b are infinite
towards the future and timelike geodesics like c are infinite towards the past.

we take a look at the first term of the zero component of the
Ricci curvature, since it is present regardless of the value of k,

(8)2P 2
(

a′2

a4
− a′′

a3

)
� 2P 2η

c2t2(η+1)
� 2η

(η + 1)2

1

(τ − τ0)2
,

and find out that the Ricci curvature diverges when t approaches
±∞ (τ tends to τ0) for η < −1.

A similar analysis may be performed for radial timelike geo-
desics,

ut = ṫ =
√

1 + P 2

a2
, ur = ṙ = ± P

f a2
,

(9)Riju
iuj = −3a′′

a
+ 2P 2

(
a′2 + k

a4
− a′′

a3

)
,

since for scale factors with η < −1 and large values of |t | the
dominant term is the P 2-term, which is the same as for lightlike
geodesics.

Hence the Ricci curvature diverges along both families of
radial geodesics on approaching t = ±∞.

Hence we are to conclude that universes with scale factor
a(t) � c|t |η, η < −1, for large values of |t | have a p.p. curvature
singularity (curvature singularity along a parallelly-transported
basis) [17] at t = ±∞, though the scalar polynomials of curva-
ture are zero there.

That is, there is an actual curvature singularity at t = ±∞
for these models, which correspond to w ∈ (−5/3,−1), which
is reached by the observers in finite proper time. Considering
just expanding models of this type, all radial observers would
trace their geodesic paths from the initial singularity at t = −∞
to the Big Rip at t = 0 in a finite lapse of proper time.

This result does not contradict the Penrose diagrams for
these models shown in [21], since conformal diagrams provide
no information about distances, just about angles, but intro-
duces a difference between models with w ∈ (−5/3,−1) and
those with w � −5/3 as it is shown in Fig. 1.

Furthermore, we may check the strength of these curvature
singularities, which might be relevant, since other types of sin-
gularities, such as sudden singularities [6] (singularities II and
IV in [9]) were shown not to be strong enough to disrupt finite
objects [11] and even have been suggested to be consistent with
observations [22].

Definitions of singularities related to curvature and geodes-
ics refer to ideal point observers. When finite objects are con-
sidered, tidal forces are relevant and it is interesting to check
if they may destroy the object. In this case the singularity is
considered to be strong [12]. This qualitative concept has been
stated rigorously by several authors [13,14,23,24].

For instance, in Tipler’s definition [13] a curvature singu-
larity is strong if the volume spanned by three Jacobi fields
referred to an orthonormal basis parallelly-transported along a
causal geodesic tends to zero at the singularity. Królak’s def-
inition [14] just requires that the derivative of this volume be
negative.

There are necessary and sufficient conditions for the appear-
ance of strong singularities [25], that become quite simple to
implement in the case of FLRW spacetimes, since the Weyl ten-
sor vanishes [10].

With Tipler’s definition a lightlike geodesic of velocity u

comes up a strong singularity at τ0 if and only if the inte-
gral

(10)

τ∫
0

dτ ′
τ ′∫

0

dτ ′′ Riju
iuj

diverges as τ tends to τ0.
And with Królak’s definition a lightlike geodesic of veloc-

ity u comes up a strong singularity at τ0 if and only if

(11)

τ∫
0

dτ ′ Riju
iuj

diverges as τ tends to τ0.
Since the Ricci curvature component (7) diverges as 1/(τ −

τ0)
2, the integral of this term provides a logarithmic diver-

gence at τ0 for η < −1 with Tipler’s definition and an inverse
power divergence with Królak’s definition. Therefore, lightlike
geodesics meet a strong singularity at t = ±∞ if and only if
η < −1. The contribution of the curvature term diverges even
faster when present.

The previous conditions on integrals of Ricci components
become sufficient conditions on dealing with timelike geodes-
ics. Since the behavior of Ricci curvature has been shown to be
similar for both families of radial geodesics for large |t | and
η < −1, we learn that also radial timelike geodesics meet a
strong curvature singularity at t = ±∞.

We may easily extend this result to non-power law growth/
decrease of the expansion factor:

• For a(t) growing or decreasing as 1/|t | or slower, radial
geodesics reach t = ±∞ in infinite proper time.

• For a(t) decreasing faster than 1/|t |, radial geodesics
reach t = ±∞ in finite proper time and therefore there is an
actual strong curvature singularity there, except for the de Sit-
ter spacetime.

These two cases include all situations for which the scale
factor has a well-defined limit t → ±∞. Oscillatory scale fac-
tors may be treated directly with condition (5).
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5. Discussion

So far we have shown that FLRW cosmological models for
which a(t) decreases faster than 1/|t | for large values of |t |
show a strong curvature singularity for t → ±∞. This is the
case of phantom models with w ∈ (−5/3,−1), family that in-
cludes models compatible with observations, since w is esti-
mated to be slightly below minus one [16].

Since the implications of these results are related to the past
of the models instead of their future, it might seem a pointless
discussion, for phantom models are intended to describe the fu-
ture of the universe from now on. In the past other fields such
as dust, radiation and the cosmological constant would be dom-
inant and would prevent the appearance of the exotic curvature
singularities described here.

However, even though phantom models are not relevant to
study the past of the universe, there are still consequences that
are applicable to our present Universe.

We may consider, for instance, the total duration of a uni-
verse filled with a phantom field as experienced by a free-falling
observer (6),

T =
0∫

−∞

dt√
1 + P 2/a2(t)

=
0∫

−∞

dt√
1 + P 2/c2t2η

=
(

P

c

)1/η
∞∫

0

xη dx√
1 + x2η

(12)= −
(

P

c

)1/η B(− 1
2η

, 1
2 + 1

2η
)

2η
, η < −1,

by the change of variable x = −(c/P )1/ηt , using the hypergeo-
metric function Beta.

We already know that this expression for the time span is
finite for η < −1, but it can be made as small as desired by
taking arbitrary large values of the linear momentum of the ob-
server P . There is no lower bound, nor upper bound, which we
know it is infinite for non-radial observers.

Though the calculation has been made for the duration of
the universe from the initial singularity to the Big Rip, it is
clear that this result is also valid for the time span from the co-
incidence moment when phantom fields become the dominant
component of the content of the universe to the Big Rip. That is,
non-accelerated observers may shorten the time span to the end
of the universe at will by increasing their linear momentum P .

This feature is exclusive of dark energy models with w ∈
(−5/3,−1), since a negative exponent η is required in (12)
for the decreasing behavior of T . For models with w � −5/3,
η ∈ [−1,0) the integral (12) is divergent, since t = −∞ is ac-
tually at infinity, but the decreasing behavior is also exhibited
for finite intervals of time up to the Big Rip singularity, though
the interest on these models is so far quite limited.

Another issue is the character of the singularity. Since a(t)

tends to zero at t = ±∞ for models with w ∈ (−5/3,−1), this
might suggest a sort of Big Bang singularity, though endowed
with exotic features. However, the sign of the Ricci curvature
measured by causal geodesics (7), (9) prevents this interpreta-
tion, since in (8) we see that it is negative (non-focusing) for
negative η in flat models.

In fact, for radial geodesics,

dR

dt
= ± Ṙ

ṫ
= ± P

a(t)
√

P 2 + a2(t)
� ± 1

a(t)
,

R � R0 ± 1

c

t1−η

1 − η
,

the radial coordinate diverges for large |t | in models with η < 1,
and shows that geodesics are indeed not focusing and therefore
geodesics diverge instead of converge.

With all these results in mind, we may refine the usual clas-
sification of flat models according to the value of w by intro-
ducing this new information, bearing in mind that none of these
models is valid for the whole life of the universe, just for a frac-
tion of it:

1. Models with η > 1, −1 < w < −1/3: Quintessence mod-
els with a Big Bang singularity at t = 0.

2. Models with η = 1, k = −1, w = −1/3: Milne-like mod-
els which may have weak or strong singularities at t = 0 [8,10].

3. Models with 0 < η < 1, w > −1/3: Classical models
(dust, radiation, . . . ) with a Big Bang singularity at t = 0.

4. Models with η = 0: The menagerie of models which are
either regular (de Sitter, anti-de Sitter, . . . ) or possess sudden,
freeze, pressure, higher derivative singularities as described in
[8–10], which may be weak or strong.

5. Models with −1 � η < 0, w � −5/3: Phantom models
ranging from t = −∞ to t = 0 where they meet a Big Rip sin-
gularity. Scalar perturbations of these models have been shown
to lead to high inhomogeneity, which may prevent the forma-
tion of the singularity [26].

6. Models with η < −1, w ∈ (−5/3,−1): Phantom mod-
els with a p.p. curvature singularity at t = −∞ which affects
just radial geodesics and a Big Rip singularity at t = 0 which
does not show up for lightlike geodesics. One of these phantom
models has been shown to be stable against quantum correc-
tions [27].
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