Almost prime orders of CM elliptic curves modulo p.

Jorge Jimenez Urroz
Banff, 21 May 2008

Introduction

Let E / \mathbb{Q} be an elliptic curve given by

$$
y^{2}=x^{3}+a x+b .
$$

Introduction

Let E / \mathbb{Q} be an elliptic curve given by

$$
y^{2}=x^{3}+a x+b .
$$

Then,

$$
E(\mathbb{Q}) \simeq E_{\text {tors }}(\mathbb{Q}) \otimes \mathbb{Z}^{r(E)} .
$$

Introduction

Let E / \mathbb{Q} be an elliptic curve given by

$$
y^{2}=x^{3}+a x+b .
$$

Then,

$$
E(\mathbb{Q}) \simeq E_{\text {tors }}(\mathbb{Q}) \otimes \mathbb{Z}^{r(E)} .
$$

Moreover, for any given prime $p \nmid 6 N(E)$

$$
E\left(\mathbb{F}_{p}\right) \simeq \mathbb{Z} / d_{p} \mathbb{Z} \otimes \mathbb{Z} / d_{p} e_{p} \mathbb{Z}
$$

Questions

- When is $E\left(\mathbb{F}_{p}\right)$ cyclic?

Questions

- When is $E\left(\mathbb{F}_{p}\right)$ cyclic?
- Given E / \mathbb{Q} with $r(E) \geq 1, P \in E(\mathbb{Q}) / E_{\text {tors }}(\mathbb{Q})$, When $<P \bmod p>=E\left(\mathbb{F}_{p}\right)$?

Questions

- When is $E\left(\mathbb{F}_{p}\right)$ cyclic?
- Given E / \mathbb{Q} with $r(E) \geq 1, P \in E(\mathbb{Q}) / E_{\text {tors }}(\mathbb{Q})$, When $<P \bmod p>=E\left(\mathbb{F}_{p}\right)$?
- When $\left|E\left(\mathbb{F}_{p}\right)\right|$ is prime?

Cyclicity

Conjecture: (Borosh-Moreno-Porta) Let E / \mathbb{Q} be an elliptic curve. There exist a constant C_{E} such that

$$
\Pi_{E}(x)=\#\left\{p \leq x: E\left(\mathbb{F}_{p}\right) \text { is cyclic }\right\} \sim C_{E} \frac{x}{\log x}
$$

Cyclicity

Conjecture: (Borosh-Moreno-Porta) Let E / \mathbb{Q} be an elliptic curve. There exist a constant C_{E} such that

$$
\Pi_{E}(x)=\#\left\{p \leq x: E\left(\mathbb{F}_{p}\right) \text { is cyclic }\right\} \sim C_{E} \frac{x}{\log x} .
$$

- Proved by Serre in 1976 under GRH, with an explicit constant C_{E}, which is non zero precisely when $[\mathbb{Q}(E[2]): \mathbb{Q}]>1$.

Cyclicity

Conjecture: (Borosh-Moreno-Porta) Let E / \mathbb{Q} be an elliptic curve. There exist a constant C_{E} such that

$$
\Pi_{E}(x)=\#\left\{p \leq x: E\left(\mathbb{F}_{p}\right) \text { is cyclic }\right\} \sim C_{E} \frac{x}{\log x} .
$$

- Proved by Serre in 1976 under GRH, with an explicit constant C_{E}, which is non zero precisely when $[\mathbb{Q}(E[2]): \mathbb{Q}]>1$.
- In 1979 Murty prove the conjecture unconditionally for CM curves.

Primitive points

Conjecture: (Lang-Trotter, 1976) Given E / \mathbb{Q} with $r(E)>1, P \in E(\mathbb{Q})$ free, there exist $C_{E, P}$ such that if

$$
A_{E, P}(x)=\left\{p \leq x:<P \bmod p>=E\left(\mathbb{F}_{p}\right)\right\}
$$

then

$$
\left|A_{E, P}(x)\right| \sim C_{E, P} \frac{x}{\log x}
$$

Primitive points

Given E / \mathbb{Q} with CM by $O_{K}, r(E) \geq 1, P \in E(\mathbb{Q})$ free, let
$\Pi_{E, P}^{\text {split }}(x)=\#\left\{p \in A_{E, P}(x): p\right.$ splits in $\left.O_{K}\right\}$.

Primitive points

Given E / \mathbb{Q} with CM by $O_{K}, r(E) \geq 1, P \in E(\mathbb{Q})$ free, let

$$
\Pi_{E, P}^{\text {split }}(x)=\#\left\{p \in A_{E, P}(x): p \text { splits in } O_{K}\right\} .
$$

Theorem: (Gupta-Murty, 1987) Under GRH we have

$$
\Pi_{E, P}^{\text {split }}(x) \sim C_{E, P} \frac{x}{\log x}
$$

Remark: The constant $C_{E, P}$ is positive whenever 2,3 are inert or $K=\mathbb{Q}(\sqrt{-11})$.

Primitive points

Theorem: (Gupta-Murty, 1987) Whenever $r(E) \geq 6$, there is a finite explicit set, $S \in E(\mathbb{Q})$ such that $\left|A_{E, P}(x)\right| \rightarrow \infty$ unconditionally for some $P \in S$.

Primitive points

Theorem: (Gupta-Murty, 1987) Whenever $r(E) \geq 6$, there is a finite explicit set, $S \in E(\mathbb{Q})$ such that $\left|A_{E, P}(x)\right| \rightarrow \infty$ unconditionally for some $P \in S$.

Theorem: (Gupta-Murty, 1987)
$\#\left\{p \leq x: p\right.$ splits,$\left.|<P \bmod p>|<x^{\frac{1}{2}-\epsilon}\right\}=o(x)$
$\#\left\{q \leq x: q\right.$ inert,$\left.|<P \bmod q>|<x^{\frac{1}{3}-\epsilon}\right\}=o(x)$

Prime Order

Conjecture: (Koblitz, 1988) Let E / \mathbb{Q} be an elliptic curve not isogenus to one with nontrivial \mathbb{Q} torsion. Then,

$$
\Pi_{E}^{\text {prime }}(x)=\#\left\{p \leq x:\left|E\left(\mathbb{F}_{p}\right)\right| \text { is prime }\right\} \sim C_{E} \frac{x}{\log ^{2} x}
$$

Remark: It is not known a single example of curve for which the conjecture is true. Why?

Prime Order

Conjecture: (Koblitz, 1988) Let E / \mathbb{Q} be an elliptic curve not isogenus to one with nontrivial \mathbb{Q} torsion. Then,

$$
\Pi_{E}^{\text {prime }}(x)=\#\left\{p \leq x:\left|E\left(\mathbb{F}_{p}\right)\right| \text { is prime }\right\} \sim C_{E} \frac{x}{\log ^{2} x}
$$

Remark: It is not known a single example of curve for which the conjecture is true. Why? Consider the CM case.

$$
\left|E\left(\mathbb{F}_{p}\right)\right|=N\left(\pi_{p}-1\right), \quad \pi_{p} \in O_{K},
$$

Hence, $\pi_{p}=1+\tilde{\pi}_{p}$, is the twin prime conjecture in the ring O_{K}.

Prime Order, known results.
 Theorem:(Balog-Cojocaru-David, Preprint)

$$
\frac{1}{|\mathcal{C}|} \sum_{E \in \mathcal{C}} \Pi_{E}^{\text {prime }}(x) \sim C \frac{x}{\log ^{2} x}
$$

Prime Order, known results.
 Theorem:(Balog-Cojocaru-David, Preprint)

$$
\frac{1}{|\mathcal{C}|} \sum_{E \in \mathcal{C}} \Pi_{E}^{\text {prime }}(x) \sim C \frac{x}{\log ^{2} x}
$$

Find the smallest n such that $\#\left\{p \leq x:\left|E\left(\mathbb{F}_{p}\right)\right|=P_{n}\right\} \gg \frac{x}{\log ^{2} x}$

Prime Order, known results.
 Theorem:(Balog-Cojocaru-David, Preprint)

$$
\frac{1}{|\mathcal{C}|} \sum_{E \in \mathcal{C}} \Pi_{E}^{\text {prime }}(x) \sim C \frac{x}{\log ^{2} x}
$$

Find the smallest n such that
$\#\left\{p \leq x:\left|E\left(\mathbb{F}_{p}\right)\right|=P_{n}\right\} \gg \frac{x}{\log ^{2} x}$

- (Miri-Murty), GRH, non CM, $n \leq 16$.

Prime Order, known results.

Theorem:(Balog-Cojocaru-David, Preprint)

$$
\frac{1}{|\mathcal{C}|} \sum_{E \in \mathcal{C}} \Pi_{E}^{\text {prime }}(x) \sim C \frac{x}{\log ^{2} x}
$$

Find the smallest n such that
$\#\left\{p \leq x:\left|E\left(\mathbb{F}_{p}\right)\right|=P_{n}\right\} \gg \frac{x}{\log ^{2} x}$

- (Miri-Murty), GRH, non CM, $n \leq 16$.
- (Steuding-Weng), GRH, $n \leq 9$, and $n \leq 4$ if CM.

Prime Order, known results.

Theorem:(Balog-Cojocaru-David, Preprint)

$$
\frac{1}{|\mathcal{C}|} \sum_{E \in \mathcal{C}} \Pi_{E}^{\text {prime }}(x) \sim C \frac{x}{\log ^{2} x}
$$

Find the smallest n such that
$\#\left\{p \leq x:\left|E\left(\mathbb{F}_{p}\right)\right|=P_{n}\right\} \gg \frac{x}{\log ^{2} x}$

- (Miri-Murty), GRH, non CM, $n \leq 16$.
- (Steuding-Weng), GRH, $n \leq 9$, and $n \leq 4$ if CM.
- (Cojocaru), $\mathrm{CM} n \leq 5$

Prime Order, known results.

Theorem:(Balog-Cojocaru-David, Preprint)

$$
\frac{1}{|\mathcal{C}|} \sum_{E \in \mathcal{C}} \Pi_{E}^{\text {prime }}(x) \sim C \frac{x}{\log ^{2} x}
$$

Find the smallest n such that
$\#\left\{p \leq x:\left|E\left(\mathbb{F}_{p}\right)\right|=P_{n}\right\} \gg \frac{x}{\log ^{2} x}$

- (Miri-Murty), GRH, non CM, $n \leq 16$.
- (Steuding-Weng), GRH, $n \leq 9$, and $n \leq 4$ if CM.
- (Cojocaru), CM $n \leq 5$
- (Iwaniec-Jiménez Urroz), $n \leq 2$ for $y^{2}=x^{3}-x$.

Almost prime orders.

Theorem: (Jiménez Urroz) Let E / \mathbb{Q} be an elliptic curve with complex multiplication by O_{K}. Then,

$$
\#\left\{p \leq x, p \text { splits }: \frac{1}{d_{E}}\left|E\left(\mathbb{F}_{p}\right)\right|=P_{2}\right\} \gg \frac{x}{\log ^{2} x}
$$

Almost prime orders.

Theorem: (Jiménez Urroz) Let E / \mathbb{Q} be an elliptic curve with complex multiplication by O_{K}. Then,

$$
\#\left\{p \leq x, p \text { splits }: \frac{1}{d_{E}}\left|E\left(\mathbb{F}_{p}\right)\right|=P_{2}\right\} \gg \frac{x}{\log ^{2} x}
$$

Remark: The method allow us to improve on primitive points in the following way.

Let E / \mathbb{Q} be an elliptic curve with complex multiplication by O_{K} with $r(E) \geq 1$, and $P \in E(\mathbb{Q})$ free. Then
$\#\left\{q \leq x: q\right.$ inert,$\left.|<P \bmod q>|>x^{0.44}\right\} \gg \frac{x}{\log ^{2} x}$

Proof of the remark.

The Theorem gives an explicit constant such that

$$
\#\left\{p \leq x,: \frac{1}{d_{E}}\left|E\left(\mathbb{F}_{p}\right)\right|=P_{2}\right\} \gg \frac{x}{\log ^{2} x}
$$

Proof of the remark.

The Theorem gives an explicit constant such that

$$
\#\left\{p \leq x,: \frac{1}{d_{E}}\left|E\left(\mathbb{F}_{p}\right)\right|=P_{2}\right\} \gg \frac{x}{\log ^{2} x}
$$

We know that

$$
\#\left\{q \leq x:|<P \bmod q>|<x^{1 / 3}\right\}=o(x) .
$$

Proof of the remark.

The Theorem gives an explicit constant such that

$$
\#\left\{p \leq x,: \frac{1}{d_{E}}\left|E\left(\mathbb{F}_{p}\right)\right|=P_{2}\right\} \gg \frac{x}{\log ^{2} x}
$$

We know that

$$
\#\left\{q \leq x:|<P \bmod q>|<x^{1 / 3}\right\}=o(x) .
$$

By sieve, find β such that
$\#\left\{p \leq x,: q \| E\left(\mathbb{F}_{p}\right) \mid, x^{1 / 3}<q<x^{\beta}\right\}<(C-\epsilon) \frac{x}{\log ^{2} x}$
For inert primes use results of Cai and Wu for the best constant in the twin prime conjecture.

The constant d_{E}

D	$\left(g_{4}, g_{6}\right)$	d_{E}
-4	$\left(-g^{4}, 0\right),\left(4 g^{4}, 0\right)$	8
-4	$\left(m^{2}, 0\right),\left(-m^{2}, 0\right)$	4
-4	$(m, 0)$	2
-8	$\left(-30 g^{2},-56 g^{3}\right)$	2
-3	$\left(0, g^{6}\right),\left(0,-27 g^{6}\right)$	12
-3	$\left(0, m^{3}\right)$	4
-3	$\left(0, m^{2}\right),\left(0,-27 m^{2}\right)$	3
-3	$(0, m)$	1
-7	$\left(-140 g^{2},-784 g^{3}\right)$	4
$-D \geq 11$	$\left(g_{4}, g_{6}\right)$	1

The constant d_{E}

Corollary: Any E / \mathbb{Q} with $C M$ curve by $K=\mathbb{Q}(\sqrt{-D}), D \geq 11$ does not have rational torsion.

The constant d_{E}

Corollary: Any E / \mathbb{Q} with CM curve by $K=\mathbb{Q}(\sqrt{-D}), D \geq 11$ does not have rational torsion.

Proof: Note that for any prime $\lambda \in O_{K}$, $\left|\left(O_{K} / \lambda O_{K}\right)^{*}\right| \geq 3$ and use Čebotarev density theorem.

Proof of Main Theorem

Based on the formula

$$
\left|E\left(\mathbb{F}_{p}\right)\right|=N\left(\pi_{p}-1\right),
$$

for some explicit π_{p} above p in O_{K}. Recently Rubin and Silverberg have given a general formula, valid in particular for any CM curve over \mathbb{Q}.

Consider the sequence

$$
\mathcal{A}(x)=\left\{a=N\left(\frac{\pi_{p}-1}{\delta_{E}}\right), \pi \in \mathcal{P}(x)\right\} .
$$

The problem is a typical sieve problem.

Proof of Main Theorem

Use the weighted sum

$$
\sum_{\substack{a \in \mathcal{A}(x) \\\left(a, P(z) Q(z) p_{K}\right)=1}}\left\{1-\sum_{\substack{p_{0} \mid a \\ z<p_{0} \leq y}} \frac{1}{2}-\sum_{\substack{a=p_{1} p_{2} p_{3} \\ z<p_{3} \leq y<p_{2}<p_{1}}} \frac{1}{2}\right\}
$$

Proof of Main Theorem

Use the weighted sum

$$
\sum_{\substack{a \in \mathcal{A}(x) \\\left(a, P(z) Q(z) p_{K}\right)=1}}\left\{1-\sum_{\substack{p_{0} \mid a \\ z<p_{0} \leq y}} \frac{1}{2}-\sum_{\substack{a=p_{1} p_{2} p_{3} \\ z<p_{3} \leq y<p_{2}<p_{1}}} \frac{1}{2}\right\}
$$

To control the error term, we need a
Bombieri-Vinogradov type theorem in two different contexts, first in the ring O_{K}, and then for elements

$$
\omega=\delta_{E} \pi_{1} \pi_{2} \pi_{3} .
$$

Finally, one key ingredient is remove the inert primes from the sequence before sieving in order to increase the level of distribution of the sequence.

