Almost prime orders of CM elliptic curves modulo p.

Jorge Jimenez Urroz Banff, 21 May 2008

Introduction

Let E/\mathbb{Q} be an elliptic curve given by

$$y^2 = x^3 + ax + b.$$

Introduction

Let E/\mathbb{Q} be an elliptic curve given by

$$y^2 = x^3 + ax + b.$$

Then,

$$E(\mathbb{Q}) \simeq E_{\text{tors}}(\mathbb{Q}) \otimes \mathbb{Z}^{r(E)}$$
.

Introduction

Let E/\mathbb{Q} be an elliptic curve given by

$$y^2 = x^3 + ax + b.$$

Then,

$$E(\mathbb{Q}) \simeq E_{\text{tors}}(\mathbb{Q}) \otimes \mathbb{Z}^{r(E)}$$
.

Moreover, for any given prime $p \nmid 6N(E)$

$$E(\mathbb{F}_p) \simeq \mathbb{Z}/d_p\mathbb{Z} \otimes \mathbb{Z}/d_pe_p\mathbb{Z}$$

Questions

• When is $E(\mathbb{F}_p)$ cyclic?

Questions

• When is $E(\mathbb{F}_p)$ cyclic?

• Given E/\mathbb{Q} with $r(E) \ge 1$, $P \in E(\mathbb{Q})/E_{tors}(\mathbb{Q})$,

When $< P \mod p > = E(\mathbb{F}_p)$?

Questions

• When is $E(\mathbb{F}_p)$ cyclic?

• Given E/\mathbb{Q} with $r(E) \ge 1, P \in E(\mathbb{Q})/E_{tors}(\mathbb{Q}),$ When $< P \bmod p >= E(\mathbb{F}_p)$?

• When $|E(\mathbb{F}_p)|$ is prime?

Cyclicity

Conjecture: (Borosh-Moreno-Porta) Let E/\mathbb{Q} be an elliptic curve. There exist a constant C_E such that

$$\Pi_E(x) = \#\{p \le x : E(\mathbb{F}_p) \text{ is cyclic}\} \sim C_E \frac{x}{\log x}.$$

Cyclicity

Conjecture: (Borosh-Moreno-Porta) Let E/\mathbb{Q} be an elliptic curve. There exist a constant C_E such that

$$\Pi_E(x) = \#\{p \le x : E(\mathbb{F}_p) \text{ is cyclic}\} \sim C_E \frac{x}{\log x}.$$

• Proved by Serre in 1976 under GRH, with an explicit constant C_E , which is non zero precisely when $[\mathbb{Q}(E[2]):\mathbb{Q}] > 1$.

Cyclicity

Conjecture: (Borosh-Moreno-Porta) Let E/\mathbb{Q} be an elliptic curve. There exist a constant C_E such that

$$\Pi_E(x) = \#\{p \le x : E(\mathbb{F}_p) \text{ is cyclic}\} \sim C_E \frac{x}{\log x}.$$

- Proved by Serre in 1976 under GRH, with an explicit constant C_E , which is non zero precisely when $[\mathbb{Q}(E[2]):\mathbb{Q}] > 1$.
- In 1979 Murty prove the conjecture unconditionally for CM curves.

Conjecture: (Lang-Trotter, 1976) Given E/\mathbb{Q} with r(E) > 1, $P \in E(\mathbb{Q})$ free, there exist $C_{E,P}$ such that if

$$A_{E,P}(x) = \{ p \le x : < P \text{ mod } p > = E(\mathbb{F}_p) \},$$

then

$$|A_{E,P}(x)| \sim C_{E,P} \frac{x}{\log x}.$$

Given E/\mathbb{Q} with CM by O_K , $r(E) \geq 1$, $P \in E(\mathbb{Q})$ free, let

$$\Pi_{E,P}^{\text{split}}(x) = \#\{p \in A_{E,P}(x) : p \text{ splits in } O_K\}.$$

Given E/\mathbb{Q} with CM by O_K , $r(E) \geq \overline{1, P \in E(\mathbb{Q})}$ free, let

$$\Pi_{E,P}^{\text{split}}(x) = \#\{p \in A_{E,P}(x) : p \text{ splits in } O_K\}.$$

Theorem: (Gupta-Murty, 1987) Under GRH we have

$$\Pi_{E,P}^{\text{split}}(x) \sim C_{E,P} \frac{x}{\log x}$$

Remark: The constant $C_{E,P}$ is positive whenever 2, 3 are inert or $K = \mathbb{Q}(\sqrt{-11})$.

Theorem: (Gupta-Murty, 1987) Whenever $r(E) \ge 6$, there is a finite explicit set, $S \in E(\mathbb{Q})$ such that $|A_{E,P}(x)| \to \infty$ unconditionally for some $P \in S$.

Theorem: (Gupta-Murty, 1987) Whenever $r(E) \ge 6$, there is a finite explicit set, $S \in E(\mathbb{Q})$ such that $|A_{E,P}(x)| \to \infty$ unconditionally for some $P \in S$.

Theorem: (Gupta-Murty, 1987)

$$\#\{p \le x : p \text{ splits }, | < P \text{ mod } p > | < x^{\frac{1}{2} - \epsilon}\} = o(x)$$

$$\#\{q \le x : q \text{ inert }, | < P \text{ mod } q > | < x^{\frac{1}{3} - \epsilon}\} = o(x)$$

Prime Order

Conjecture: (Koblitz, 1988) Let E/\mathbb{Q} be an elliptic curve not isogenus to one with nontrivial \mathbb{Q} torsion. Then,

$$\Pi_E^{\text{prime}}(x) = \#\{p \le x : |E(\mathbb{F}_p)| \text{ is prime}\} \sim C_E \frac{x}{\log^2 x}$$

Remark: It is not known a single example of curve for which the conjecture is true. Why?

Prime Order

Conjecture: (Koblitz, 1988) Let E/\mathbb{Q} be an elliptic curve not isogenus to one with nontrivial \mathbb{Q} torsion. Then,

$$\Pi_E^{\text{prime}}(x) = \#\{p \le x : |E(\mathbb{F}_p)| \text{ is prime}\} \sim C_E \frac{x}{\log^2 x}$$

Remark: It is not known a single example of curve for which the conjecture is true. Why? Consider the CM case.

$$|E(\mathbb{F}_p)| = N(\pi_p - 1), \quad \pi_p \in O_K,$$

Hence, $\pi_p = 1 + \tilde{\pi}_p$, is the twin prime conjecture in the ring O_K .

Theorem: (Balog-Cojocaru-David, Preprint)

$$\frac{1}{|\mathcal{C}|} \sum_{E \in \mathcal{C}} \Pi_E^{\text{prime}}(x) \sim C \frac{x}{\log^2 x}.$$

Theorem: (Balog-Cojocaru-David, Preprint)

$$\frac{1}{|\mathcal{C}|} \sum_{E \in \mathcal{C}} \Pi_E^{\text{prime}}(x) \sim C \frac{x}{\log^2 x}.$$

$$\#\{p \le x : |E(\mathbb{F}_p)| = P_n\} \gg \frac{x}{\log^2 x}$$

Theorem: (Balog-Cojocaru-David, Preprint)

$$\frac{1}{|\mathcal{C}|} \sum_{E \in \mathcal{C}} \Pi_E^{\text{prime}}(x) \sim C \frac{x}{\log^2 x}.$$

Find the smallest n such that

$$\#\{p \le x : |E(\mathbb{F}_p)| = P_n\} \gg \frac{x}{\log^2 x}$$

• (Miri-Murty), GRH, non CM, $n \le 16$.

Theorem: (Balog-Cojocaru-David, Preprint)

$$\frac{1}{|\mathcal{C}|} \sum_{E \in \mathcal{C}} \Pi_E^{\text{prime}}(x) \sim C \frac{x}{\log^2 x}.$$

$$\#\{p \le x : |E(\mathbb{F}_p)| = P_n\} \gg \frac{x}{\log^2 x}$$

- (Miri-Murty), GRH, non CM, $n \le 16$.
- (Steuding-Weng), GRH, $n \le 9$, and $n \le 4$ if CM.

Theorem: (Balog-Cojocaru-David, Preprint)

$$\frac{1}{|\mathcal{C}|} \sum_{E \in \mathcal{C}} \Pi_E^{\text{prime}}(x) \sim C \frac{x}{\log^2 x}.$$

$$\#\{p \le x : |E(\mathbb{F}_p)| = P_n\} \gg \frac{x}{\log^2 x}$$

- (Miri-Murty), GRH, non CM, $n \leq 16$.
- (Steuding-Weng), GRH, $n \le 9$, and $n \le 4$ if CM.
- (Cojocaru), CM $n \le 5$

Theorem: (Balog-Cojocaru-David, Preprint)

$$\frac{1}{|\mathcal{C}|} \sum_{E \in \mathcal{C}} \Pi_E^{\text{prime}}(x) \sim C \frac{x}{\log^2 x}.$$

$$\#\{p \le x : |E(\mathbb{F}_p)| = P_n\} \gg \frac{x}{\log^2 x}$$

- (Miri-Murty), GRH, non CM, $n \leq 16$.
- (Steuding-Weng), GRH, $n \le 9$, and $n \le 4$ if CM.
- (Cojocaru), CM $n \le 5$
- (Iwaniec-Jiménez Urroz), $n \le 2$ for $y^2 = x^3 x$.

Almost prime orders.

Theorem: (Jiménez Urroz) Let E/\mathbb{Q} be an elliptic curve with complex multiplication by O_K . Then,

$$\#\{p \le x, p \text{ splits } : \frac{1}{d_E}|E(\mathbb{F}_p)| = P_2\} \gg \frac{x}{\log^2 x}$$

Almost prime orders.

Theorem: (Jiménez Urroz) Let E/\mathbb{Q} be an elliptic curve with complex multiplication by O_K . Then,

$$\#\{p \le x, p \text{ splits } : \frac{1}{d_E}|E(\mathbb{F}_p)| = P_2\} \gg \frac{x}{\log^2 x}$$

Remark: The method allow us to improve on primitive points in the following way.

Let E/\mathbb{Q} be an elliptic curve with complex multiplication by O_K with $r(E) \geq 1$, and $P \in E(\mathbb{Q})$ free. Then

$$\#\{q \le x : q \text{ inert }, | < P \bmod q > | > x^{0.44}\} \gg \frac{x}{\log^2 x}$$

Proof of the remark.

The Theorem gives an explicit constant such that

$$\#\{p \le x, : \frac{1}{d_E} |E(\mathbb{F}_p)| = P_2\} \gg \frac{x}{\log^2 x}$$

Proof of the remark.

The Theorem gives an explicit constant such that

$$\#\{p \le x, : \frac{1}{d_E} |E(\mathbb{F}_p)| = P_2\} \gg \frac{x}{\log^2 x}$$

We know that

$$\#\{q \le x : | < P \bmod q > | < x^{1/3}\} = o(x).$$

Proof of the remark.

The Theorem gives an explicit constant such that

$$\#\{p \le x, : \frac{1}{d_E} |E(\mathbb{F}_p)| = P_2\} \gg \frac{x}{\log^2 x}$$

We know that

$$\#\{q \le x : | < P \bmod q > | < x^{1/3}\} = o(x).$$

By sieve, find β such that

$$\#\{p \le x, : q | |E(\mathbb{F}_p)|, x^{1/3} < q < x^{\beta}\} < (C - \epsilon) \frac{x}{\log^2 x}$$

For inert primes use results of Cai and Wu for the best constant in the twin prime conjecture.

The constant d_E

D	(g_4,g_6)	d_E
-4	$(-g^4,0),(4g^4,0)$	8
-4	$(m^2,0),(-m^2,0)$	4
-4	(m,0)	2
-8	$(-30g^2, -56g^3)$	2
-3	$(0, g^6), (0, -27g^6)$	12
-3	$(0, m^3)$	4
-3	$(0, m^2), (0, -27m^2)$	3
-3	(0,m)	1
-7	$(-140g^2, -784g^3)$	4
$-D \ge 11$	(g_4,g_6)	1

The constant d_E

Corollary: Any E/\mathbb{Q} with CM curve by $K = \mathbb{Q}(\sqrt{-D}), D \ge 11$ does not have rational torsion.

The constant d_E

Corollary: Any E/\mathbb{Q} with CM curve by $K = \mathbb{Q}(\sqrt{-D}), D \ge 11$ does not have rational torsion.

Proof: Note that for any prime $\lambda \in O_K$, $|(O_K/\lambda O_K)^*| \geq 3$ and use Čebotarev density theorem.

Proof of Main Theorem

Based on the formula

$$|E(\mathbb{F}_p)| = N(\pi_p - 1),$$

for some explicit π_p above p in O_K . Recently Rubin and Silverberg have given a general formula, valid in particular for any CM curve over \mathbb{Q} .

Consider the sequence

$$\mathcal{A}(x) = \left\{ a = N\left(\frac{\pi_p - 1}{\delta_E}\right), \ \pi \in \mathcal{P}(x) \right\}.$$

The problem is a typical sieve problem.

Proof of Main Theorem

Use the weighted sum

$$\sum_{\substack{a \in \mathcal{A}(x) \\ (a, P(z)Q(z)p_K) = 1}} \left\{ 1 - \sum_{\substack{p_0 \mid a \\ z < p_0 \le y}} \frac{1}{2} - \sum_{\substack{a = p_1 p_2 p_3 \\ z < p_3 \le y < p_2 < p_1}} \frac{1}{2} \right\}$$

Proof of Main Theorem

Use the weighted sum

$$\sum_{\substack{a \in \mathcal{A}(x) \\ (a, P(z)Q(z)p_K) = 1}} \left\{ 1 - \sum_{\substack{p_0 \mid a \\ z < p_0 \le y}} \frac{1}{2} - \sum_{\substack{a = p_1 p_2 p_3 \\ z < p_3 \le y < p_2 < p_1}} \frac{1}{2} \right\}$$

To control the error term, we need a Bombieri-Vinogradov type theorem in two different contexts, first in the ring O_K , and then for elements

$$\omega = \delta_E \pi_1 \pi_2 \pi_3.$$

Finally, one key ingredient is remove the inert primes from the sequence before sieving in order to increase the level of distribution of the sequence.