Square-free discriminants of Frobenius rings

Joint work with Chantal David, Université Concordia.

Università Tor Vergata, Roma, May 21, 2010

Let E be an elliptic curve over \mathbb{Q}, and p a prime of good reduction (i.e. $p \nmid N_{E}$). The Frobenius endomorphism

$$
(x, y) \mapsto\left(x^{p}, y^{p}\right)
$$

of E / \mathbb{F}_{p} is a root of the polynomial

$$
x^{2}-a_{p} x+p=\left(x-\pi_{p}\right)\left(x-\bar{\pi}_{p}\right)
$$

where $\left|a_{p}\right| \leq 2 \sqrt{p}$ by the Hasse bound.

Let E be an elliptic curve over \mathbb{Q}, and p a prime of good reduction (i.e. $p \nmid N_{E}$). The Frobenius endomorphism

$$
(x, y) \mapsto\left(x^{p}, y^{p}\right)
$$

of E / \mathbb{F}_{p} is a root of the polynomial

$$
x^{2}-a_{p} x+p=\left(x-\pi_{p}\right)\left(x-\bar{\pi}_{p}\right)
$$

where $\left|a_{p}\right| \leq 2 \sqrt{p}$ by the Hasse bound.
Then

$$
\mathbb{Z}\left[\pi_{p}\right] \subseteq \operatorname{End}\left(E / \mathbb{F}_{p}\right)
$$

Let E be an elliptic curve over \mathbb{Q}, and p a prime of good reduction (i.e. $p \nmid N_{E}$). The Frobenius endomorphism

$$
(x, y) \mapsto\left(x^{p}, y^{p}\right)
$$

of E / \mathbb{F}_{p} is a root of the polynomial

$$
x^{2}-a_{p} x+p=\left(x-\pi_{p}\right)\left(x-\bar{\pi}_{p}\right)
$$

where $\left|a_{p}\right| \leq 2 \sqrt{p}$ by the Hasse bound.
Then

$$
\mathbb{Z}\left[\pi_{p}\right] \subseteq \operatorname{End}\left(E / \mathbb{F}_{p}\right)
$$

and if p is a prime of ordinary reduction

$$
\operatorname{End}\left(E / \mathbb{F}_{p}\right) \otimes \mathbb{Q}=\mathbb{Q}\left(\pi_{p}\right)
$$

Let \mathcal{O}_{K} be the maximal order in $\mathbb{Q}\left(\pi_{p}\right)$. Then

$$
\mathbb{Z}\left[\pi_{p}\right] \subseteq \operatorname{End}\left(E / \mathbb{F}_{p}\right) \subseteq \mathcal{O}_{K},
$$

and any order can occur by Deuring's theorem.

Let \mathcal{O}_{K} be the maximal order in $\mathbb{Q}\left(\pi_{p}\right)$. Then

$$
\mathbb{Z}\left[\pi_{p}\right] \subseteq \operatorname{End}\left(E / \mathbb{F}_{p}\right) \subseteq \mathcal{O}_{K},
$$

and any order can occur by Deuring's theorem.

- When does $\mathbb{Z}\left[\pi_{p}\right]=\operatorname{End}\left(E / \mathbb{F}_{p}\right)$?

Let \mathcal{O}_{K} be the maximal order in $\mathbb{Q}\left(\pi_{p}\right)$. Then

$$
\mathbb{Z}\left[\pi_{p}\right] \subseteq \operatorname{End}\left(E / \mathbb{F}_{p}\right) \subseteq \mathcal{O}_{K},
$$

and any order can occur by Deuring's theorem.

- When does $\mathbb{Z}\left[\pi_{p}\right]=\operatorname{End}\left(E / \mathbb{F}_{p}\right)$?
- When does $\mathbb{Z}\left[\pi_{p}\right]=\mathcal{O}_{K}$?

Let \mathcal{O}_{K} be the maximal order in $\mathbb{Q}\left(\pi_{p}\right)$. Then

$$
\mathbb{Z}\left[\pi_{p}\right] \subseteq \operatorname{End}\left(E / \mathbb{F}_{p}\right) \subseteq \mathcal{O}_{K},
$$

and any order can occur by Deuring's theorem.

- When does $\mathbb{Z}\left[\pi_{p}\right]=\operatorname{End}\left(E / \mathbb{F}_{p}\right)$?
- When does $\mathbb{Z}\left[\pi_{p}\right]=\mathcal{O}_{K}$?

We have

$$
\mathbb{Z}\left[\pi_{p}\right]=\mathcal{O}_{K} \Longrightarrow \mathbb{Z}\left[\pi_{p}\right]=\operatorname{End}\left(E / \mathbb{F}_{p}\right) \Longrightarrow E\left(\mathbb{F}_{p}\right) \text { is cyclic. }
$$

Theorem (Serre, 1977)

Assume the GRH. Then

$$
\#\left\{p \leq x: E\left(\mathbb{F}_{p}\right) \text { is cyclic }\right\} \sim C_{1}(E) \pi(x) .
$$

Theorem (Serre, 1977)

Assume the GRH. Then

$$
\#\left\{p \leq x: E\left(\mathbb{F}_{p}\right) \text { is cyclic }\right\} \sim C_{1}(E) \pi(x) .
$$

Theorem (Murty, 1983)
Let E / \mathbb{Q} with CM.

$$
\#\left\{p \leq x: E\left(\mathbb{F}_{p}\right) \text { is cyclic }\right\} \sim C_{1}(E) \pi(x) .
$$

Let $\Delta_{p}=\operatorname{disc}\left(\operatorname{End}\left(E / \mathbb{F}_{p}\right)\right)$. Let b_{p} be such that $a_{p}^{2}-4 p=b_{p}^{2} \Delta_{p}$.

Let $\Delta_{p}=\operatorname{disc}\left(\operatorname{End}\left(E / \mathbb{F}_{p}\right)\right)$. Let b_{p} be such that $a_{p}^{2}-4 p=b_{p}^{2} \Delta_{p}$.
Then,

$$
\left|Ш_{p}\right|=b_{p}^{2},
$$

where $Ш_{p}$ is the Tate-Shafarevic group of E_{p} as an elliptic curve defined over its function field $\mathbb{F}_{p}\left(E_{p}\right)$.

Let $\Delta_{p}=\operatorname{disc}\left(\operatorname{End}\left(E / \mathbb{F}_{p}\right)\right)$. Let b_{p} be such that $a_{p}^{2}-4 p=b_{p}^{2} \Delta_{p}$.
Then,

$$
\left|Ш_{p}\right|=b_{p}^{2},
$$

where $Ш_{p}$ is the Tate-Shafarevic group of E_{p} as an elliptic curve defined over its function field $\mathbb{F}_{p}\left(E_{p}\right)$.

Theorem (Cojocaru-Duke, 2004)

Assume the GRH. Then

$$
\#\left\{p \leq x: \mathbb{Z}\left[\pi_{p}\right]=\operatorname{End}\left(E / \mathbb{F}_{p}\right)\right\} \sim C_{2}(E) \pi(x)
$$

Square-free values

$$
\begin{gathered}
\mathbb{Z}\left[\pi_{p}\right]=\mathcal{O}_{K} \\
\text { if and only if } \\
a_{p}^{2}-4 p= \begin{cases}D & D \equiv 1 \bmod 4 \text { and square-free } \\
4 D & D \equiv 2,3 \bmod 4 \text { and square-free }\end{cases}
\end{gathered}
$$

Square-free values

$$
\begin{gathered}
\mathbb{Z}\left[\pi_{p}\right]=\mathcal{O}_{K} \\
a_{p}^{2}-4 p= \begin{cases}D & D \equiv 1 \bmod 4 \text { and square-free } \\
4 D & D \equiv 2,3 \bmod 4 \text { and square-free }\end{cases}
\end{gathered}
$$

Are there infinitely many supersingular primes congruent to $1 \bmod 4$? This would give infinitely many primes p such that

$$
\mathbb{Z}\left[\pi_{p}\right]=\mathcal{O}_{K}
$$

Conjecture (Lang-Trotter conjecture)

Let K be an imaginary quadratic number field, and E an elliptic curve over \mathbb{Q} without complex multiplication. Let

$$
\Pi_{E, K}(x)=\#\left\{p \leq x: p \nmid N_{E} \text { and } \mathbb{Q}\left(\pi_{p}\right)=K\right\} .
$$

Then $\Pi_{E, K}(x) \sim C_{\mathrm{LT}}(E, K) \frac{\sqrt{x}}{\log x}$ as $x \rightarrow \infty$.

Upper bounds under the GRH (Cojocaru-David, 2008)

$$
\Pi_{E}(K ; x) \lll N \quad x^{13 / 14} \log x
$$

Upper bounds under the GRH (Cojocaru-David, 2008)

$$
\Pi_{E}(K ; x) \lll N \quad x^{13 / 14} \log x
$$

Let $\mathcal{D}_{E}(x)$ be the set of distinct fields $K=\mathbb{Q}\left(\pi_{p}\right)$ for primes $p \leq x$ of good reduction. Then,

$$
\left|\mathcal{D}_{E}(x)\right| \gg_{N} \frac{x^{1 / 14}}{(\log x)^{2}}
$$

- Can we show that there are many distinct fields by showing there are many distinct square-free values of $a_{p}^{2}-4 p$?
- Can we show that there are many distinct fields by showing there are many distinct square-free values of $a_{p}^{2}-4 p$?
- Can we show that there are many distinct fields by showing there are many distinct square-free values of $a_{p}^{2}-4 p$?
- Can we show that there are infinitely many primes such that D_{p}, the discriminant of $\mathbb{Q}\left(\pi_{p}\right)$, lies in a fixed arithmetic progression? Counting square-free values of $a_{p}^{2}-4 p$ in arithmetic progressions would give an answer to that question.

Curves with Complex Multiplication (CM)

Curves with Complex Multiplication (CM)

Example: Let $E: y^{2}=x^{3}-x$ with $C M$ by $\mathbb{Z}[i]$. Let $p \equiv 1 \bmod 4$ (ordinary prime). Since E has rational 2-torsion, a_{p} is even, and 4 divides $a_{p}^{2}-4 p$.

Curves with Complex Multiplication (CM)

Example: Let $E: y^{2}=x^{3}-x$ with $C M$ by $\mathbb{Z}[i]$. Let $p \equiv 1 \bmod 4$ (ordinary prime). Since E has rational 2-torsion, a_{p} is even, and 4 divides $a_{p}^{2}-4 p$.
We have

$$
4\left(\left(a_{p} / 2\right)^{2}-p\right)=a_{p}^{2}-4 p=\left(\pi_{p}-\bar{\pi}_{p}\right)^{2} .
$$

Curves with Complex Multiplication (CM)

Example: Let $E: y^{2}=x^{3}-x$ with $C M$ by $\mathbb{Z}[i]$. Let $p \equiv 1 \bmod 4$ (ordinary prime). Since E has rational 2-torsion, a_{p} is even, and 4 divides $a_{p}^{2}-4 p$.
We have

$$
4\left(\left(a_{p} / 2\right)^{2}-p\right)=a_{p}^{2}-4 p=\left(\pi_{p}-\bar{\pi}_{p}\right)^{2} .
$$

Since E has CM by $\mathbb{Z}[i]$,

$$
\pi_{p}-\bar{\pi}_{p}=2 b i
$$

Curves with Complex Multiplication (CM)

Example: Let $E: y^{2}=x^{3}-x$ with $C M$ by $\mathbb{Z}[i]$. Let $p \equiv 1 \bmod 4$ (ordinary prime). Since E has rational 2-torsion, a_{p} is even, and 4 divides $a_{p}^{2}-4 p$.
We have

$$
4\left(\left(a_{p} / 2\right)^{2}-p\right)=a_{p}^{2}-4 p=\left(\pi_{p}-\bar{\pi}_{p}\right)^{2} .
$$

Since E has CM by $\mathbb{Z}[i]$,

$$
\pi_{p}-\bar{\pi}_{p}=2 b i
$$

and
$\left(a_{p} / 2\right)^{2}-p=-b^{2}$ is square-free $\Longleftrightarrow b=1 \Longleftrightarrow p=\left(a_{p} / 2\right)^{2}+1$.

Sieving the squares

Let

$$
\Pi_{E}^{\mathrm{sf}}(x)=\#\left\{p \leq x: a_{p}^{2}-4 p \text { is square-free }\right\} .
$$

Then,

$$
\begin{aligned}
\Pi_{E}^{\mathrm{sf}}(x) & =\sum_{p \leq x} \sum_{d^{2} \mid a_{p}^{2}-4 p} \mu(d) \\
& =\sum_{d \leq 2 \sqrt{x}} \mu(d) \sum_{\substack{p \leq x \\
d^{2} \mid a_{p}^{2}-4 p}} 1
\end{aligned}
$$

Sieving the squares

Let

$$
\Pi_{E}^{\mathrm{sf}}(x)=\#\left\{p \leq x: a_{p}^{2}-4 p \text { is square-free }\right\}
$$

Then,

$$
\begin{aligned}
\Pi_{E}^{\mathrm{sf}}(x) & =\sum_{p \leq x} \sum_{d^{2} \mid a_{p}^{2}-4 p} \mu(d) \\
& =\sum_{d \leq 2 \sqrt{x}} \mu(d) \sum_{\substack{p \leq x \\
d^{2} \mid a_{p}^{2}-4 p}} 1
\end{aligned}
$$

To count the primes p such that $d^{2} \mid a_{p}^{2}-4 p$, we use the extension $\mathbb{Q}\left(E\left[d^{2}\right]\right) / \mathbb{Q}$, where $\mathbb{Q}\left(E\left[d^{2}\right]\right)$ is the field obtained by adjoining the coordinates of the d^{2}-torsion points of E to \mathbb{Q}.

Torsion Fields of elliptic curves

Since $E\left[d^{2}\right] \simeq \mathbb{Z} / d^{2} \mathbb{Z} \times \mathbb{Z} / d^{2} \mathbb{Z}$, we have

$$
\operatorname{Gal}\left(\mathbb{Q}\left(E\left[d^{2}\right]\right) / \mathbb{Q}\right) \subseteq \mathrm{GL}_{2}\left(\mathbb{Z} / d^{2} \mathbb{Z}\right) .
$$

Also, for $p \nmid d N_{E}$,

$$
\begin{aligned}
\rho_{d^{2}}: \operatorname{Gal}\left(\mathbb{Q}\left(E\left[d^{2}\right]\right) / \mathbb{Q}\right) & \rightarrow \mathrm{GL}_{2}\left(\mathbb{Z} / d^{2} \mathbb{Z}\right) \\
\sigma_{p} & \mapsto[g]
\end{aligned}
$$

such that

$$
\begin{aligned}
\operatorname{tr}(g) & \equiv a_{p}(E) \bmod d^{2} \\
\operatorname{det}(g) & \equiv p \bmod d^{2}
\end{aligned}
$$

Let

$$
\begin{aligned}
& G_{E}\left(d^{2}\right)=\operatorname{Im}\left(\rho_{d^{2}}\right) \subseteq \mathrm{GL}_{2}\left(\mathbb{Z} / d^{2} \mathbb{Z}\right) \\
& C_{E}\left(d^{2}\right)=\left\{g \in G_{E}\left(d^{2}\right): \operatorname{tr}^{2} g-4 \operatorname{det} g \equiv 0 \bmod d^{2}\right\}
\end{aligned}
$$

Let

$$
\begin{aligned}
& G_{E}\left(d^{2}\right)=\operatorname{Im}\left(\rho_{d^{2}}\right) \subseteq \mathrm{GL}_{2}\left(\mathbb{Z} / d^{2} \mathbb{Z}\right) \\
& C_{E}\left(d^{2}\right)=\left\{g \in G_{E}\left(d^{2}\right): \operatorname{tr}^{2} g-4 \operatorname{det} g \equiv 0 \bmod d^{2}\right\}
\end{aligned}
$$

Using the Chebotarev Density Theorem under the GRH (and following Murty, Murty and Saradha for a better error term), we have

$$
\begin{aligned}
\pi_{d^{2}}(x) & =\sum_{\substack{p \leq x \\
d^{2} \mid a_{p}^{2}-4 p}} 1=\#\left\{p \leq x: \sigma_{p} \in C_{E}\left(d^{2}\right)\right\} \\
& =\frac{\left|C_{E}\left(d^{2}\right)\right|}{\left|G_{E}\left(d^{2}\right)\right|} \pi(x)+O\left(\left|C_{E}\left(d^{2}\right)\right|^{1 / 2} x^{1 / 2} \log x d\right) .
\end{aligned}
$$

Main term

We then write $\Pi_{E}^{\text {sf }}(x)=\mathrm{MT}+\mathrm{ET}$, where

$$
\mathrm{MT}=\pi(x) \sum_{d \leq 2 \sqrt{x}} \mu(d) \frac{\left|C_{E}\left(d^{2}\right)\right|}{\left|G_{E}\left(d^{2}\right)\right|} .
$$

Main term

We then write $\Pi_{E}^{\mathrm{sf}}(x)=\mathrm{MT}+\mathrm{ET}$, where

$$
\mathrm{MT}=\pi(x) \sum_{d \leq 2 \sqrt{x}} \mu(d) \frac{\left|C_{E}\left(d^{2}\right)\right|}{\left|G_{E}\left(d^{2}\right)\right|}
$$

By Serre's Theorem, there exists an integer M_{E} such that

- If $\left(d_{1}, d_{2}\right)=\left(d_{1}, M_{E}\right)=1$, then

$$
G_{E}\left(d_{1}^{2} d_{2}^{2}\right)=G_{E}\left(d_{1}^{2}\right) \times G_{E}\left(d_{2}^{2}\right)
$$

- If $\left(d, M_{E}\right)=1$, then $G_{E}\left(d^{2}\right)=G L_{2}\left(\mathbb{Z} / d^{2} \mathbb{Z}\right)$.

Main term

We then write $\Pi_{E}^{\mathrm{sf}}(x)=\mathrm{MT}+\mathrm{ET}$, where

$$
\mathrm{MT}=\pi(x) \sum_{d \leq 2 \sqrt{x}} \mu(d) \frac{\left|C_{E}\left(d^{2}\right)\right|}{\left|G_{E}\left(d^{2}\right)\right|}
$$

By Serre's Theorem, there exists an integer M_{E} such that

- If $\left(d_{1}, d_{2}\right)=\left(d_{1}, M_{E}\right)=1$, then

$$
G_{E}\left(d_{1}^{2} d_{2}^{2}\right)=G_{E}\left(d_{1}^{2}\right) \times G_{E}\left(d_{2}^{2}\right)
$$

- If $\left(d, M_{E}\right)=1$, then $G_{E}\left(d^{2}\right)=G L_{2}\left(\mathbb{Z} / d^{2} \mathbb{Z}\right)$.

Then,

$$
\sum_{d=1}^{\infty} \mu(d) \frac{\left|C_{E}\left(d^{2}\right)\right|}{\left|G_{E}\left(d^{2}\right)\right|}=\sum_{d \mid M_{E}} \mu(d) \frac{\left|C_{E}\left(d^{2}\right)\right|}{\left|G_{E}\left(d^{2}\right)\right|} \prod_{\ell \nmid M_{E}}\left(1-\frac{\ell^{2}+\ell-1}{\ell^{2}\left(\ell^{2}-1\right)}\right)
$$

Error term

Conjecture

$$
\Pi_{E}^{\mathrm{sf}}(x) \sim C^{\mathrm{sf}}(E) \pi(x),
$$

where

$$
C^{\mathrm{sf}}(E)=\sum_{d \mid M_{E}} \mu(d) \frac{\left|C_{E}\left(d^{2}\right)\right|}{\left|G_{E}\left(d^{2}\right)\right|} \prod_{\ell \nmid M_{E}}\left(1-\frac{\ell^{2}+\ell-1}{\ell^{2}\left(\ell^{2}-1\right)}\right)
$$

Error term

Conjecture

$$
\Pi_{E}^{\mathrm{sf}}(x) \sim C^{\mathrm{sf}}(E) \pi(x)
$$

where

$$
C^{\mathrm{sf}}(E)=\sum_{d \mid M_{E}} \mu(d) \frac{\left|C_{E}\left(d^{2}\right)\right|}{\left|G_{E}\left(d^{2}\right)\right|} \prod_{\ell \nmid M_{E}}\left(1-\frac{\ell^{2}+\ell-1}{\ell^{2}\left(\ell^{2}-1\right)}\right)
$$

To prove the conjecture, we need to control the error term

$$
\text { ET } \ll x^{1 / 2+\epsilon} \sum_{d \leq 2 \sqrt{x}} d^{3} .
$$

$$
\sum_{d \mid P(z)} \mu(d) \sum_{\substack{p \leq x \\ d 2^{2} \mid \rho_{p}^{p}-4 p}} 1=\pi(x) \sum_{d \mid P(z)} \mu(d) \frac{\left|C_{E}\left(d^{2}\right)\right|}{\left|G_{E}\left(d^{2}\right)\right|}+O\left(x^{1 / 2+\epsilon} e^{3 z}\right)
$$

and we need to take z small to control the first error term coming from the Chebotarev Density Theorem.

$$
\sum_{d \mid P(z)} \mu(d) \sum_{\substack{p \leq x \\ d^{2} \mid a_{p}^{2}-4 p}} 1=\pi(x) \sum_{d \mid P(z)} \mu(d) \frac{\left|C_{E}\left(d^{2}\right)\right|}{\left|G_{E}\left(d^{2}\right)\right|}+O\left(x^{1 / 2+\epsilon} e^{3 z}\right)
$$

and we need to take z small to control the first error term coming from the Chebotarev Density Theorem.

We can get an upper bound by sieving, but there are no known lower bounds for $\pi^{\mathrm{sf}}(x)$.

$$
\sum_{d \mid P(z)} \mu(d) \sum_{\substack{p \leq x \\ d 2 \mid Q_{p}^{2}-4 \rho}} 1=\pi(x) \sum_{d \mid P(z)} \mu(d) \frac{\left|C_{E}\left(d^{2}\right)\right|}{\left|G_{E}\left(d^{2}\right)\right|}+O\left(x^{1 / 2+\epsilon} e^{3 z}\right)
$$

and we need to take z small to control the first error term coming from the Chebotarev Density Theorem.

We can get an upper bound by sieving, but there are no known lower bounds for $\pi^{\text {sf }}(x)$.

The theorems of Serre and Cojocaru-Duke rely on the fact that the primes p such that $\mathbb{Z} / d \mathbb{Z} \times \mathbb{Z} / d \mathbb{Z} \leq E\left(\mathbb{F}_{p}\right)$, or $d^{2} \mid b_{p}^{2}$, are the primes splitting completely in some extension depending on d.

Let h be a positive odd integer, and let r be any integer such that the greatest common divisor (r, h) is square-free. Let $\Delta(r, h)$ be the set of square-free integers congruent to $r \bmod h$, and

$$
\Pi_{E, r, h}^{\mathrm{sf}}(x)=\#\left\{p \leq x: a_{p}^{2}-4 p \in \Delta(r, h)\right\} .
$$

Let h be a positive odd integer, and let r be any integer such that the greatest common divisor (r, h) is square-free. Let $\Delta(r, h)$ be the set of square-free integers congruent to $r \bmod h$, and

$$
\Pi_{E, r, h}^{\mathrm{sf}}(x)=\#\left\{p \leq x: a_{p}^{2}-4 p \in \Delta(r, h)\right\} .
$$

Theorem

Let $\varepsilon>0$, and A, B such that $A B>x \log ^{8} x, A, B>x^{\varepsilon}$. Then

$$
\frac{1}{4 A B} \sum_{|a| \leq A,|b| \leq B} \Pi_{E(a, b), r, h}^{\mathrm{sf}}(x)=\mathfrak{C} \frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right),
$$

where \mathfrak{C} is the positive constant

$$
\mathfrak{C}=\frac{1}{3 h} \prod_{\substack{\ell \| h \\ \ell \ell r}} \frac{\ell-1}{\ell} \prod_{\substack{\ell \mid h \\ \ell \nmid r}} \frac{\ell\left(\ell-1-\left(\frac{r}{\ell}\right)\right)}{(\ell-1)\left(\ell-\left(\frac{r}{\ell}\right)\right)} \prod_{\ell \nmid h}\left(1-\frac{\ell^{2}+\ell-1}{\ell^{2}\left(\ell^{2}-1\right)}\right) .
$$

$$
\mathfrak{C}=\frac{1}{3 h} \prod_{\substack{\ell \| h \\ \ell \mid r}} \frac{\ell-1}{\ell} \prod_{\substack{\ell \ell h \\ \ell \nmid r}} \frac{\ell\left(\ell-1-\left(\frac{r}{\ell}\right)\right)}{(\ell-1)\left(\ell-\left(\frac{r}{\ell}\right)\right)} \prod_{\ell \nmid h}\left(1-\frac{\ell^{2}+\ell-1}{\ell^{2}\left(\ell^{2}-1\right)}\right) .
$$

For $\ell \nmid h$:

$$
=\frac{\left|\left\{g \in \mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{2} \mathbb{Z}\right): \operatorname{tr}^{2} g-4 \operatorname{det} g \not \equiv 0 \bmod \ell^{2}\right\}\right|}{\left|\mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{2} \mathbb{Z}\right)\right|}
$$

For $h=\ell^{\alpha} h^{\prime}, \alpha \geq 1$ and $\left(h^{\prime}, \ell\right)=1$, let $\beta=\max (\alpha, 2)$. Then:

$$
\begin{aligned}
= & \mid\left\{g \in \mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{\beta} \mathbb{Z}\right): \operatorname{tr}^{2} g-4 \operatorname{det} g \not \equiv 0 \bmod \ell^{2}\right. \\
& \text { and } \left.\operatorname{tr}^{2} g-4 \operatorname{det} g \equiv r \bmod \ell^{\alpha}\right\} /\left|\mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{\beta} \mathbb{Z}\right)\right| .
\end{aligned}
$$

Towards an average over the prime fields

$$
\frac{1}{4 A B} \sum_{|a| \leq A,|b| \leq B} \Pi_{E(a, b), r, h}^{\mathrm{sf}}(x)
$$

Towards an average over the prime fields

$$
\begin{aligned}
& \frac{1}{4 A B} \sum_{|a| \leq A,|b| \leq B} \Pi_{E(a, b), r, h}^{\mathrm{sf}}(x) \\
= & \frac{1}{4 A B} \sum_{p \leq x} \#\left\{|a| \leq A,|b| \leq B: a_{p}^{2}(E(a, b))-4 p \in \Delta(r, h)\right\}
\end{aligned}
$$

Towards an average over the prime fields

$$
\begin{aligned}
& \quad \frac{1}{4 A B} \sum_{|a| \leq A,|b| \leq B} \Pi_{E(a, b), r, h}^{\text {sf }}(x) \\
& =\frac{1}{4 A B} \sum_{p \leq x} \#\left\{|a| \leq A,|b| \leq B: a_{p}^{2}(E(a, b))-4 p \in \Delta(r, h)\right\} \\
& =\frac{1}{4 A B} \sum_{p \leq x}\left(\frac{2 A}{p}+O(1)\right)\left(\frac{2 B}{p}+O(1)\right) \times \\
& \quad \times \#\left\{E / \mathbb{F}_{p}: a_{p}^{2}(E)-4 p \in \Delta(r, h)\right\}
\end{aligned}
$$

Towards an average over the prime fields

$$
\begin{aligned}
& \frac{1}{4 A B} \sum_{|a| \leq A,|b| \leq B} \Pi_{E(a, b), r, h}^{\mathrm{sf}}(x) \\
= & \frac{1}{4 A B} \sum_{p \leq x} \#\left\{|a| \leq A,|b| \leq B: a_{p}^{2}(E(a, b))-4 p \in \Delta(r, h)\right\} \\
= & \frac{1}{4 A B} \sum_{p \leq x}\left(\frac{2 A}{p}+O(1)\right)\left(\frac{2 B}{p}+O(1)\right) \times \\
& \times \#\left\{E / \mathbb{F}_{p}: a_{p}^{2}(E)-4 p \in \Delta(r, h)\right\} \\
\sim & \sum_{p \leq x} \frac{\#\left\{E / \mathbb{F}_{p}: a_{p}^{2}-4 p \in \Delta(r, h)\right\}}{p^{2}}
\end{aligned}
$$

when A, B are big enough. Here, we need $A, B>x^{1+\varepsilon}$.

Then, the average result is equivalent to the following

Theorem

Let h be a positive odd integer, and let r be any integer such that (r, h) is square-free. Let

$$
\Pi^{\mathrm{sf}}(p)=\#\left\{E \text { over } \mathbb{F}_{p}: a_{p}^{2}-4 p \in \Delta(r, h)\right\}
$$

Then, as $x \rightarrow \infty$,

$$
\sum_{p \leq x} \Pi^{\mathrm{sf}}(p)=\frac{\mathfrak{C}}{3} \frac{x^{3}}{\log x}+O\left(\frac{x^{3}}{\log ^{2} x}\right)
$$

where \mathfrak{C} is the constant above.

Counting elliptic curves over finite fields

$$
\begin{aligned}
\Pi^{\mathrm{sf}}(p) & =\#\left\{E / \mathbb{F}_{p}: a_{p}^{2}(E)-4 p \in \Delta(r, h)\right\} \\
& =\sum_{\substack{-2 \sqrt{p}<t<2 \sqrt{p} \\
t^{2}-4 p \in \Delta(r, h)}} \#\left\{E / \mathbb{F}_{p}: a_{p}(E)=t\right\}
\end{aligned}
$$

Counting elliptic curves over finite fields

$$
\begin{aligned}
\Pi^{\mathrm{sf}}(p) & =\#\left\{E / \mathbb{F}_{p}: a_{p}^{2}(E)-4 p \in \Delta(r, h)\right\} \\
& =\sum_{\substack{-2 \sqrt{\bar{p}}<t<2 \sqrt{\bar{p}} \\
t^{2}-4 p \in \Delta(r, h)}} \#\left\{E / \mathbb{F}_{p}: a_{p}(E)=t\right\}
\end{aligned}
$$

Theorem (Deuring's Theorem)

Let t be an integer such that $|t| \leq 2 \sqrt{p}$. The number of elliptic curves over \mathbb{F}_{p} with $a_{p}(E)=t$ is $H\left(t^{2}-4 p\right)(p-1)$.

For any $D<0$, the Kronecker class number $H(D)$ is

$$
H(D)=\sum_{\substack{\frac{f^{2} \mid D}{f^{2}}=0,1 \bmod 4}} \frac{h\left(D / f^{2}\right)}{w\left(D / f^{2}\right)}
$$

$$
\sum_{p \leq x} \frac{\prod^{\mathrm{sf}}(p)}{p^{2}}=2 \sum_{p \leq x} \sum_{\substack{1 \leq t \leq 2 \sqrt{p} \\ t^{2}-4 p \in \Delta(r, h)}}^{\infty} \frac{h\left(t^{2}-4 p\right)}{w\left(t^{2}-4 p\right) p}
$$

$$
\begin{aligned}
& \sum_{p \leq x} \frac{\Pi^{\mathrm{sf}}(p)}{p^{2}}=2 \sum_{p \leq x} \sum_{\substack{1 \leq t \leq 2 \sqrt{p} \\
t^{2}-4 p \in \Delta(r, h)}}^{o d d} \frac{h\left(t^{2}-4 p\right)}{w\left(t^{2}-4 p\right) p} \\
&=2 \sum_{p \leq x} \sum_{\substack{1 \leq t \leq 2 \sqrt{p} \\
t^{2}-4 p \equiv r \bmod h}}^{o d d} \frac{h\left(t^{2}-4 p\right)}{w\left(t^{2}-4 p\right) p} \sum_{d^{2} \mid t^{2}-4 p} \mu(d)
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{p \leq x} \frac{\Pi^{\mathrm{sf}}(p)}{p^{2}}=2 \sum_{p \leq x} \sum_{\substack{1 \leq t \leq 2 \sqrt{p} \\
t^{2}-4 p \in \Delta(r, h)}}^{o d d} \frac{h\left(t^{2}-4 p\right)}{w\left(t^{2}-4 p\right) p} \\
&=2 \sum_{p \leq x} \sum_{\substack{1 \leq t \leq 2 \sqrt{p} \\
t^{2}-4 p \equiv r \bmod h}}^{o d d} \frac{h\left(t^{2}-4 p\right)}{w\left(t^{2}-4 p\right) p} \sum_{d^{2} \mid t^{2}-4 p} \mu(d) \\
& " \sim " \quad 2 \sum_{1 \leq t \leq 2 \sqrt{x}}^{o d d} \sum_{d \leq R} \mu(d) \sum_{\substack{p \leq x \\
d^{2} \mid t^{2}-4 p \\
t^{2}-4 p \equiv r \bmod h}} \frac{h\left(t^{2}-4 p\right)}{w\left(t^{2}-4 p\right) p}
\end{aligned}
$$

$$
\sum_{p \leq x} \frac{\Pi^{\mathrm{sf}}(p)}{p^{2}} \quad " \sim " \quad 2 \sum_{1 \leq t \leq 2 \sqrt{x}}^{o d d} \sum_{d \leq R} \mu(d) \sum_{\substack{p \leq x \\ d^{2} \mid t^{2}-4 p \\ t^{2}-4 p \equiv r \bmod h}} \frac{h\left(t^{2}-4 p\right)}{w\left(t^{2}-4 p\right) p} .
$$

By doing the average over elliptic curves in a family, we got rid of the difficult question of counting primes such that d^{2} divides $a_{p}^{2}-4 p$, and translate it into an average of class numbers.

$$
\sum_{p \leq x} \frac{\Pi^{\mathrm{sf}}(p)}{p^{2}} \quad " \sim " 2 \sum_{1 \leq t \leq 2 \sqrt{x}}^{\text {odd }} \sum_{d \leq R} \mu(d) \sum_{\substack{p \leq x \\ d^{2}| |^{2}-4 p \\ t^{2}-4 p \equiv r \bmod h}} \frac{h\left(t^{2}-4 p\right)}{w\left(t^{2}-4 p\right) p} .
$$

By doing the average over elliptic curves in a family, we got rid of the difficult question of counting primes such that d^{2} divides $a_{p}^{2}-4 p$, and translate it into an average of class numbers.

By the class number formula, $h(d)=\frac{\omega}{2 \pi}|d|^{1 / 2} L(1, \chi)$, we get

$$
\sim \frac{2}{3 \pi} \sum_{\substack{n \leq U \\ 1 \leq \leq \leq \sqrt{x} \\\left(t^{2}-r, h\right)=1}}^{o d d} \frac{1}{n} \sum_{\substack{\alpha(\bmod n) \\ \alpha=\left(t^{2}-\alpha, n\right)=1 \\ \alpha \equiv r \bmod (n, h)}}\left(\frac{\alpha}{n}\right) \sum_{\substack{d \leq R \\(d, n t)=1 \\ r \equiv 0 \bmod \left(d^{2}, h\right)}}^{o d d} \mu(d) \sum_{\substack{p \leq x \\ p \equiv \nu \bmod \left[n d^{2}, h\right]}} \frac{\sqrt{4 p-t^{2}}}{p}
$$

We now have to count primes in certain arithmetic progression, depending on α, t, d, n, r, h, with weights $\frac{\sqrt{4 p-t^{2}}}{p}$, which can be done using Barban-Davenport-Halberstam's Theorem to control the error counting primes in arithmetic progressions on average.

$$
\sim \frac{2}{3 \pi} \sum_{\substack{n \leq U \\ 1 \leq t \leq 2 \sqrt{x} \\\left(t^{2}-r, h\right)=1}}^{\text {odd }} \frac{1}{n} \sum_{\substack{\alpha(\bmod n) \\\left(t^{2}-\alpha, n\right)=1 \\ \alpha \equiv r \bmod (n, h)}}\left(\frac{\alpha}{n}\right) \sum_{\substack{d \leq R \\(d, n t)=1 \\ r \equiv 0 \bmod \left(d^{2}, h\right)}}^{\text {odd }} \mu(d) \sum_{\substack{p \leq x \\ p \equiv \nu \bmod \left[n d^{2}, h\right]}} \frac{\sqrt{4 p-t^{2}}}{p}
$$

We now have to count primes in certain arithmetic progression, depending on α, t, d, n, r, h, with weights $\frac{\sqrt{4 p-t^{2}}}{p}$, which can be done using Barban-Davenport-Halberstam's Theorem to control the error counting primes in arithmetic progressions on average.

Let

$$
S(T)=\sum_{\substack{1 \leq t \leq T \\\left(t^{2}-r, h\right)=1}}^{\text {odd }} \sum_{n \leq U}^{\text {nsd }} \frac{1}{n} \sum_{\substack{\alpha(\bmod n) \\\left(t^{2}-\alpha, n\right)=1 \\ \alpha \equiv r(\bmod (n, h))}}\left(\frac{\alpha}{n}\right) \sum_{\substack{d \leq R \\(d, n t)=1 \\ r \equiv 0 \bmod \left(d^{2}, h\right)}} \frac{\mu(d)}{\varphi\left(\left[n d^{2}, h\right]\right)} .
$$

$$
S(T)=\sum_{\substack{1 \leq t \leq T \\\left(t^{2}-r, h\right)=1}}^{\text {odd }} \sum_{n \leq U}^{\text {odd }} \frac{1}{n} \sum_{\substack{\alpha(\bmod n) \\\left(t^{2}-\alpha, n\right)=1 \\ \alpha \equiv r(\bmod (n, h))}}\left(\frac{\alpha}{n}\right) \sum_{\substack{d \leq R \\(d, n t)=1 \\ r \equiv 0 \bmod \left(d^{2}, h\right)}} \frac{\mu(d)}{\varphi\left(\left[n d^{2}, h\right]\right)}
$$

Theorem

$$
S(T) \sim \frac{3}{2} \mathfrak{C} T
$$

where

$$
\mathfrak{C}=\frac{1}{3 h} \prod_{\substack{\ell \| h \\ \ell \ell r}} \frac{\ell-1}{\ell} \prod_{\substack{\ell \mid h \\ \ell \nmid r}} \frac{\ell\left(\ell-1-\left(\frac{r}{\ell}\right)\right)}{(\ell-1)\left(\ell-\left(\frac{r}{\ell}\right)\right)} \prod_{\ell \nmid h}\left(1-\frac{\ell^{2}+\ell-1}{\ell^{2}\left(\ell^{2}-1\right)}\right) .
$$

This gives the conjectural constant $C^{\text {sf }}(E, r, h)$ counting matrices in Galois groups for an "ideal curve" E with $M_{E}=1$.

