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Let E be an elliptic curve over Q, and p a prime of good reduction
(i.e. p - NE ). The Frobenius endomorphism

(x , y) 7→ (xp, yp)

of E/Fp is a root of the polynomial

x2 − apx + p = (x − πp)(x − πp)

where |ap| ≤ 2
√

p by the Hasse bound.

Then
Z[πp] ⊆ End(E/Fp)

and if p is a prime of ordinary reduction

End(E/Fp)⊗Q = Q(πp).



Introduction Square-free values Sieving the squares Theorem on Average

Let E be an elliptic curve over Q, and p a prime of good reduction
(i.e. p - NE ). The Frobenius endomorphism

(x , y) 7→ (xp, yp)

of E/Fp is a root of the polynomial

x2 − apx + p = (x − πp)(x − πp)

where |ap| ≤ 2
√

p by the Hasse bound.
Then

Z[πp] ⊆ End(E/Fp)

and if p is a prime of ordinary reduction

End(E/Fp)⊗Q = Q(πp).



Introduction Square-free values Sieving the squares Theorem on Average

Let E be an elliptic curve over Q, and p a prime of good reduction
(i.e. p - NE ). The Frobenius endomorphism

(x , y) 7→ (xp, yp)

of E/Fp is a root of the polynomial

x2 − apx + p = (x − πp)(x − πp)

where |ap| ≤ 2
√

p by the Hasse bound.
Then

Z[πp] ⊆ End(E/Fp)

and if p is a prime of ordinary reduction

End(E/Fp)⊗Q = Q(πp).



Introduction Square-free values Sieving the squares Theorem on Average

Let OK be the maximal order in Q(πp). Then

Z[πp] ⊆ End(E/Fp) ⊆ OK ,

and any order can occur by Deuring’s theorem.

When does Z[πp] = End(E/Fp)?

When does Z[πp] = OK ?

We have

Z[πp] = OK =⇒ Z[πp] = End(E/Fp) =⇒ E (Fp) is cyclic.
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Theorem (Serre, 1977)

Assume the GRH. Then

# {p ≤ x : E (Fp) is cyclic} ∼ C1(E )π(x).

Theorem (Murty, 1983)

Let E/Q with CM.

# {p ≤ x : E (Fp) is cyclic} ∼ C1(E )π(x).
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Let ∆p = disc(End(E/Fp)). Let bp be such that a2
p − 4p = b2

p∆p.

Then,
|Xp| = b2

p,

where Xp is the Tate-Shafarevic group of Ep as an elliptic curve
defined over its function field Fp(Ep).

Theorem (Cojocaru-Duke, 2004)

Assume the GRH. Then

# {p ≤ x : Z[πp] = End(E/Fp)} ∼ C2(E )π(x).
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Square-free values

Z[πp] = OK

if and only if

a2
p − 4p =

{
D D ≡ 1 mod 4 and square-free
4D D ≡ 2, 3 mod 4 and square-free

Are there infinitely many supersingular primes congruent to
1 mod 4? This would give infinitely many primes p such that

Z[πp] = OK .
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Conjecture (Lang-Trotter conjecture)

Let K be an imaginary quadratic number field, and E an elliptic
curve over Q without complex multiplication. Let

ΠE ,K (x) = # {p ≤ x : p - NE and Q(πp) = K} .

Then ΠE ,K (x) ∼ CLT(E ,K )

√
x

log x
as x →∞.
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Upper bounds under the GRH (Cojocaru-David, 2008)

ΠE (K ; x) �N x13/14 log x .

Let DE (x) be the set of distinct fields K = Q(πp) for primes p ≤ x
of good reduction. Then,

|DE (x)| �N
x1/14

(log x)2
.
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Can we show that there are many distinct fields by showing
there are many distinct square-free values of a2

p − 4p?

Can we show that there are infinitely many primes such that
Dp, the discriminant of Q(πp), lies in a fixed arithmetic
progression? Counting square-free values of a2

p − 4p in
arithmetic progressions would give an answer to that question.
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Curves with Complex Multiplication (CM)

Example: Let E : y 2 = x3 − x with CM by Z[i ]. Let p ≡ 1 mod 4
(ordinary prime). Since E has rational 2-torsion, ap is even, and 4
divides a2

p − 4p.
We have

4((ap/2)2 − p) = a2
p − 4p = (πp − π̄p)2.

Since E has CM by Z[i ],

πp − π̄p = 2bi

and

(ap/2)2−p = −b2 is square-free ⇐⇒ b = 1 ⇐⇒ p = (ap/2)2+1.
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Sieving the squares

Let
Πsf

E (x) = #{p ≤ x : a2
p − 4p is square-free}.

Then,

Πsf
E (x) =

∑
p≤x

∑
d2|a2

p−4p

µ(d)

=
∑

d≤2
√

x

µ(d)
∑
p≤x

d2|a2
p−4p

1

To count the primes p such that d2 | a2
p − 4p, we use the extension

Q(E [d2])/Q, where Q(E [d2]) is the field obtained by adjoining the
coordinates of the d2-torsion points of E to Q.
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Torsion Fields of elliptic curves

Since E [d2] ' Z/d2Z× Z/d2Z, we have

Gal
(
Q(E [d2])/Q

)
⊆ GL2(Z/d2Z).

Also, for p - dNE ,

ρd2 : Gal(Q(E [d2])/Q) → GL2(Z/d2Z)

σp 7→ [g ]

such that

tr(g) ≡ ap(E ) mod d2

det(g) ≡ p mod d2
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Let

GE (d2) = Im(ρd2) ⊆ GL2(Z/d2Z)

CE (d2) = {g ∈ GE (d2) : tr2 g − 4 det g ≡ 0 mod d2}

Using the Chebotarev Density Theorem under the GRH (and
following Murty, Murty and Saradha for a better error term), we
have

πd2(x) =
∑
p≤x

d2|a2
p−4p

1 = #
{

p ≤ x : σp ∈ CE (d2)
}

=
|CE (d2)|
|GE (d2)|

π(x) + O
(
|CE (d2)|1/2x1/2 log xd

)
.
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Main term

We then write Πsf
E (x) = MT + ET, where

MT = π(x)
∑

d≤2
√

x

µ(d)
|CE (d2)|
|GE (d2)|

.

By Serre’s Theorem, there exists an integer ME such that

If (d1, d2) = (d1,ME ) = 1, then
GE (d2

1 d2
2 ) = GE (d2

1 )× GE (d2
2 ).

If (d ,ME ) = 1, then GE (d2) = GL2(Z/d2Z).

Then,

∞∑
d=1

µ(d)
|CE (d2)|
|GE (d2)|

=
∑
d |ME

µ(d)
|CE (d2)|
|GE (d2)|

∏
`-ME

(
1− `2 + `− 1

`2(`2 − 1)

)
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Error term

Conjecture

Πsf
E (x) ∼ C sf(E )π(x),

where

C sf(E ) =
∑
d |ME

µ(d)
|CE (d2)|
|GE (d2)|

∏
`-ME

(
1− `2 + `− 1

`2(`2 − 1)

)

To prove the conjecture, we need to control the error term

ET � x1/2+ε
∑

d≤2
√

x

d3.
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∑
d |P(z)

µ(d)
∑
p≤x

d2|a2
p−4p

1 = π(x)
∑

d |P(z)

µ(d)
|CE (d2)|
|GE (d2)|

+ O
(

x1/2+εe3z
)

and we need to take z small to control the first error term coming
from the Chebotarev Density Theorem.

We can get an upper bound by sieving, but there are no known
lower bounds for πsf(x).

The theorems of Serre and Cojocaru-Duke rely on the fact that the
primes p such that Z/dZ× Z/dZ ≤ E (Fp), or d2 | b2

p, are the
primes splitting completely in some extension depending on d .
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Let h be a positive odd integer, and let r be any integer such that
the greatest common divisor (r , h) is square-free. Let ∆(r , h) be
the set of square-free integers congruent to r mod h, and

Πsf
E ,r ,h(x) = #{p ≤ x : a2

p − 4p ∈ ∆(r , h)}.

Theorem

Let ε > 0, and A,B such that AB > x log8 x, A,B > xε. Then

1

4AB

∑
|a|≤A,|b|≤B

Πsf
E(a,b),r ,h(x) = C

x

log x
+ O

(
x

log2 x

)
,

where C is the positive constant

C =
1

3h

∏
`‖h
`|r

`− 1

`

∏
`|h
`-r

`
(
`− 1−

(
r
`

))
(`− 1)

(
`−

(
r
`

)) ∏
`-h

(
1− `2 + `− 1

`2(`2 − 1)

)
.
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C =
1

3h

∏
`‖h
`|r

`− 1

`

∏
`|h
`-r

`
(
`− 1−

(
r
`

))
(`− 1)

(
`−

(
r
`

)) ∏
`-h

(
1− `2 + `− 1

`2(`2 − 1)

)
.

For ` - h:

=
|
{

g ∈ GL2(Z/`2Z) : tr2 g − 4 det g 6≡ 0 mod `2
}
|

|GL2(Z/`2Z)|

For h = `αh′, α ≥ 1 and (h′, `) = 1, let β = max(α, 2). Then:

= |
{

g ∈ GL2(Z/`βZ) : tr2 g − 4 det g 6≡ 0 mod `2

and tr2 g − 4 det g ≡ r mod `α
}
/|GL2(Z/`βZ)|.
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Towards an average over the prime fields

1

4AB

∑
|a|≤A,|b|≤B

Πsf
E(a,b),r ,h(x)

=
1

4AB

∑
p≤x

#
{
|a| ≤ A, |b| ≤ B : a2

p(E (a, b))− 4p ∈ ∆(r , h)
}

=
1

4AB

∑
p≤x

(
2A

p
+ O(1)

)(
2B

p
+ O(1)

)
×

×#
{

E/Fp : a2
p(E )− 4p ∈ ∆(r , h)

}
∼

∑
p≤x

#
{

E/Fp : a2
p − 4p ∈ ∆(r , h)

}
p2

when A,B are big enough. Here, we need A,B > x1+ε.
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p(E (a, b))− 4p ∈ ∆(r , h)
}

=
1

4AB

∑
p≤x

(
2A

p
+ O(1)

)(
2B

p
+ O(1)

)
×

×#
{

E/Fp : a2
p(E )− 4p ∈ ∆(r , h)

}

∼
∑
p≤x

#
{

E/Fp : a2
p − 4p ∈ ∆(r , h)

}
p2

when A,B are big enough. Here, we need A,B > x1+ε.
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Then, the average result is equivalent to the following

Theorem

Let h be a positive odd integer, and let r be any integer such that
(r , h) is square-free. Let

Πsf(p) = #
{

E over Fp : a2
p − 4p ∈ ∆(r , h)

}
.

Then, as x →∞,∑
p≤x

Πsf(p) =
C

3

x3

log x
+ O

(
x3

log2 x

)
,

where C is the constant above.
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Counting elliptic curves over finite fields

Πsf(p) = #
{

E/Fp : a2
p(E )− 4p ∈ ∆(r , h)

}
=

∑
−2
√

p<t<2
√

p

t2−4p∈∆(r ,h)

# {E/Fp : ap(E ) = t} .

Theorem (Deuring’s Theorem)

Let t be an integer such that |t| ≤ 2
√

p. The number of elliptic
curves over Fp with ap(E ) = t is H(t2 − 4p)(p − 1).

For any D < 0, the Kronecker class number H(D) is

H(D) =
∑
f 2|D

D
f 2≡0,1 mod 4

h(D/f 2)

w(D/f 2)
.
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∑
p≤x

Πsf(p)

p2
= 2

∑
p≤x

odd∑
1≤t≤2

√
p

t2−4p∈∆(r,h)

h(t2 − 4p)

w(t2 − 4p)p

= 2
∑
p≤x

odd∑
1≤t≤2

√
p

t2−4p≡r mod h

h(t2 − 4p)

w(t2 − 4p)p

∑
d2|t2−4p

µ(d)

“ ∼ ” 2
odd∑

1≤t≤2
√

x

∑
d≤R

µ(d)
∑
p≤x

d2|t2−4p

t2−4p≡r mod h

h(t2 − 4p)

w(t2 − 4p)p
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∑
p≤x

Πsf(p)

p2
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√
x
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µ(d)
∑
p≤x

d2|t2−4p
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h(t2 − 4p)
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By doing the average over elliptic curves in a family, we got rid of
the difficult question of counting primes such that d2 divides
a2
p − 4p, and translate it into an average of class numbers.

By the class number formula, h(d) = ω
2π |d |

1/2L(1, χ), we get

∼ 2

3π

odd∑
n≤U

1≤t≤2
√

x

(t2−r,h)=1

1

n

∑
α(mod n)

(t2−α,n)=1
α≡r mod (n,h)

(α
n

) odd∑
d≤R

(d,nt)=1

r≡0 mod (d2,h)

µ(d)
∑
p≤x

p≡ν mod [nd2,h]

√
4p − t2

p
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We now have to count primes in certain arithmetic progression,

depending on α, t, d , n, r , h, with weights

√
4p−t2

p , which can be
done using Barban–Davenport–Halberstam’s Theorem to control
the error counting primes in arithmetic progressions on average.

Let

S(T ) =
odd∑

1≤t≤T

(t2−r,h)=1

odd∑
n≤U

1

n

∑
α(mod n)

(t2−α,n)=1
α≡r(mod (n,h))

(α
n

) ∑
d≤R

(d,nt)=1

r≡0 mod (d2,h)

µ(d)

ϕ([nd2, h])
.
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S(T ) =
odd∑

1≤t≤T

(t2−r,h)=1

odd∑
n≤U

1

n

∑
α(mod n)

(t2−α,n)=1
α≡r(mod (n,h))

(α
n

) ∑
d≤R

(d,nt)=1

r≡0 mod (d2,h)

µ(d)

ϕ([nd2, h])
.

Theorem

S(T ) ∼ 3

2
CT

where

C =
1

3h

∏
`‖h
`|r

`− 1

`

∏
`|h
`-r

`
(
`− 1−

(
r
`

))
(`− 1)

(
`−

(
r
`

)) ∏
`-h

(
1− `2 + `− 1

`2(`2 − 1)

)
.

This gives the conjectural constant C sf(E , r , h) counting matrices
in Galois groups for an “ideal curve” E with ME = 1.
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