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Let E be an elliptic curve over Q, and p a prime of good reduction
(i.e. pt Ng). The Frobenius endomorphism

(x,y) = (xP, ")

of E/F, is a root of the polynomial

X% —apx+p = (x — mp)(x —7p)

where |a,| < 2,/p by the Hasse bound.
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Let E be an elliptic curve over Q, and p a prime of good reduction
(i.e. pt Ng). The Frobenius endomorphism

(x,y) = (xP, ")

of E/F, is a root of the polynomial

X% —apx+p = (x — mp)(x —7p)

where |a,| < 2,/p by the Hasse bound.
Then
Zrp] € End(E/F)p)

and if p is a prime of ordinary reduction

End(E/F,) ® Q = Q(p).
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Let Ok be the maximal order in Q(7p). Then
Z[mp] € End(E/F,) C Ok,
and any order can occur by Deuring’s theorem.

e When does Z[r,] = End(E/F,)?
e When does Z[rp] = Ok 7

We have

Z|mp) = Ok = Z[mp) = End(E/F,) = E(F,) is cyclic.
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Theorem (Serre, 1977)

Assume the GRH. Then

#{p < x : E(Fp) is cyclic} ~ Ci(E)m(x).
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Theorem (Serre, 1977)

Assume the GRH. Then

#{p < x : E(Fp) is cyclic} ~ Ci(E)m(x).

Theorem (Murty, 1983)

Let E/Q with CM.

#{p <x : E(Fp) is cyclic} ~ Gi(E)m(x).
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Let A, = disc(End(E/Fp)). Let b, be such that a3 — 4p = b2A,,.

Then,
‘Hlp| = bgv

where III,, is the Tate-Shafarevic group of E, as an elliptic curve
defined over its function field Fp(Ep).

Theorem (Cojocaru-Duke, 2004)

Assume the GRH. Then

#{p < x : Z[rp] = End(E/Fp)} ~ G(E)m(x).
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Square-free values

Zlmp) = Ok
if and only if

2 _ap— D D =1mod 4 and square-free
P P=14ap D= 2,3 mod 4 and square-free

Are there infinitely many supersingular primes congruent to
1 mod 47 This would give infinitely many primes p such that

Z[mp] = Ok.
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Conjecture (Lang-Trotter conjecture)

Let K be an imaginary quadratic number field, and E an elliptic
curve over Q without complex multiplication. Let

Nex(x)=#{p<x : ptNe and Q(7,) = K}.

Then Mg k(x) ~ Gur(E, K)Ioﬁi as x — oo.
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Upper bounds under the GRH (Cojocaru-David, 2008)

Ne(K;x) <y x3/logx.
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Upper bounds under the GRH (Cojocaru-David, 2008)

Ne(K;x) <y x3/logx.

Let De(x) be the set of distinct fields K = Q(7,) for primes p < x
of good reduction. Then,

1/14

IDe(x)| >n (log x)2°
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@ Can we show that there are many distinct fields by showing
there are many distinct square-free values of af, — 4p?

@ Can we show that there are infinitely many primes such that
Dp, the discriminant of Q(7p), lies in a fixed arithmetic
progression? Counting square-free values of a/% —4pin
arithmetic progressions would give an answer to that question.
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Curves with Complex Multiplication (CM)

Example: Let E : y2 = x3 — x with CM by Z[i]. Let p =1 mod 4
(ordinary prime). Since E has rational 2-torsion, a, is even, and 4
divides 3,2, —4p.

We have

4((3/3/2)2 —p) = 3;2) —4p = (mp — 7_Tp)2'

Since E has CM by Z][i],
Tp— 7p = 2bi
and

(ap/2)?—p = —b? is square-free <= b=1 <= p=(a,/2)*+1.
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Sieving the squares

Let
N¥(x)=#{p<x: a,% — 4p is square-free}.

Then,

NE(x) = >, > wd)

p<xd?|a2—4p

= > ud) Y1

pP<x
dS2\/; d2\a%74p

To count the primes p such that d? ] a,z, — 4p, we use the extension
Q(E[d?])/Q, where Q(E[d?]) is the field obtained by adjoining the
coordinates of the d?-torsion points of E to Q.
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Torsion Fields of elliptic curves

Since E[d?] ~ Z/d?Z x 7./ d*Z, we have
Gal (Q(E[d?])/Q) C GLo(Z/d°Z).
Also, for p t dNE,

par - Gal(Q(E[d?])/Q) — GLa(Z/d°Z)
op — [g]

such that

tr(g) = ap(E) mod d?
det(g) = pmod d?
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Ge(d?) = Im(pge) C GLy(Z/d?Z)
Ce(d?) = {g€ Gg(d?) : tr’g —4detg = 0mod d?}
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Let

Ge(d?) = Im(pge) C GLy(Z/d?Z)
Ce(d?) = {g€ Gg(d?) : tr’g —4detg = 0mod d?}

Using the Chebotarev Density Theorem under the GRH (and
following Murty, Murty and Saradha for a better error term), we
have

Te(x) = Z 1:#{p§x:0p€CE(d2)}

pP<x
d2 \a%—4p

|Ce(d?)]

= mw(x) + 0 <‘CE(d2)‘1/2X1/2 |ngd) .
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o If (di,dr) = (di, Mg) =1, then
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Main term

We then write M5{(x) = MT + ET, where

Ce(d?
MT = w(x) Y M(d)M.
d<2y/x

By Serre’s Theorem, there exists an integer Mg such that
o If (di,dr) = (di, Mg) =1, then
Ge(d?d3) = Ge(d?) x Ge(d3).
o If (d, Mg) =1, then Gg(d?) = GLx(Z/d?7).

Then,
= I e Ty (Bl
21 6 (d )V%E“(d)mls(dznﬂg(l D)
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Error term

ME (x) ~ CH(E)m(x),

where

Ce(d? P2+i-1
Csf(E) _ Z /.L(d)‘ E( )‘ (1_ 62(;2_1)>

2
i NGe(d)]
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Error term

ME (x) ~ CH(E)m(x),

where

. C d2 £2 €—1

d|Mg ew

To prove the conjecture, we need to control the error term

ET <« x1/2te Z ds.
d<2/x
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S () X 1=l 3 () g+ 0 (xre)

d|P(z) PEX d|P(z)
d2|al%—4p

and we need to take z small to control the first error term coming
from the Chebotarev Density Theorem.
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and we need to take z small to control the first error term coming
from the Chebotarev Density Theorem.

We can get an upper bound by sieving, but there are no known
lower bounds for 7 (x).
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S () X 1=l 3 () g+ 0 (xre)

d|P(z) PEX d|P(2)
d2|al%—4p

and we need to take z small to control the first error term coming
from the Chebotarev Density Theorem.

We can get an upper bound by sieving, but there are no known
lower bounds for 7 (x).

The theorems of Serre and Cojocaru-Duke rely on the fact that the
primes p such that Z/dZ x Z/dZ < E(F}), or d* | b2, are the
primes splitting completely in some extension depending on d.
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Let h be a positive odd integer, and let r be any integer such that
the greatest common divisor (r, h) is square-free. Let A(r, h) be
the set of square-free integers congruent to r mod h, and

rlSEf,r,h(X) =#{p<x: a,z, —4p e A(r, h)}.
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Let h be a positive odd integer, and let r be any integer such that
the greatest common divisor (r, h) is square-free. Let A(r, h) be
the set of square-free integers congruent to r mod h, and

N, h(x) =#{p<x:a)—4pec A(r, h)}.

Theorem

Let € > 0, and A, B such that AB > x Iog8 x, A, B > x®. Then

1 f X X
4AB Z ﬂ7:'(a,b),r,h(x) = Q@ +0 < 5 > )

| X
|a|<A,[b|<B o€

where € s the positive constant

(- )
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(-1 ﬁfl () LB
sl Ty 0 )

For ¢t h:

| {g € GL2(Z/(?Z) : t+? g — 4det g # 0 mod (2} |
|GL2(Z/2Z)]

For h=1(%W, o > 1 and (W,¢) =1, let 8 = max(«,?2). Then:

_ {g € GLy(Z/0PZ) : 12 g — 4detg 2 0 mod (2
and tr? g — 4detg = r mod (*} /|GL2(Z/¢°Z)).
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Towards an average over the prime fields

1 S
1AB Z rlEf(a,b),r,h(X)

|la|<A,|b|<B

= 4ABZ#{|3| <A |b| < B : a3 (E(a,b)) —4p € Ar,h)}

p<x

= s 2 (5 rom) (3 +om) »

p<x
x# {E/Fp: a3(E) —4p € A(r, h)}
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Towards an average over the prime fields

1 S
1AB Z rlEf(a,b),r,h(X)

la|<A,[b|<B

— ﬁz#ﬂ‘ﬂ < A/|b <B: ai(E(a7b)) —4p e A(r, h)}

p<x

= ﬁ > <2pA + 0(1)) <25 + 0(1)> x

p<x
x# {E/Fp: a3(E) —4p € A(r, h)}
N Z #{E/Fp: a] ;24p € A(r,h)}

p<x

when A, B are big enough. Here, we need A, B > x'*¢.
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Then, the average result is equivalent to the following

Theorem

Let h be a positive odd integer, and let r be any integer such that
(r, h) is square-free. Let

st (p) =#{E overF, : ag—4p€A(r, h)}.

Then, as x — oo,

3 3

Z”Sf(p)zgloxgx+0< . >

2
x log= x

where € is the constant above.
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Counting elliptic curves over finite fields

M'(p) = #{E/Fp: a3(E) —4p e A(r,h)}
- > #{E/F,: ap(E) =t}

—2/p<t<2./p
t2—4peA(r,h)
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Counting elliptic curves over finite fields

M'(p) = #{E/Fp: a3(E) —4p e A(r,h)}
- > #{E/F,: ap(E) =t}

—2/p<t<2./p
t2—4peA(r,h)

Theorem (Deuring's Theorem)

Let t be an integer such that |t| < 2,/p. The number of elliptic
curves over Fp, with a,(E) = t is H(t?> — 4p)(p — 1).

For any D < 0, the Kronecker class number H(D) is

h(D/f?
o- T

2D
%50,1 mod 4
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nst X h(2 -4
) DD D e
p<x p p<x 1<t<2\/p w pp

t2—4peA(r,h)
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DR Y S S e B

2 - 2

pgx p p<X 1<t<2,/p W(t _4p)p
t2—4peA(r,h)

odd
h(t? — 4p)
= 23 D atm—am, 2 M)
w(t? — 4p)p
p<x ) 1<t<2/p d2|t2—4p
t¢—4p=r mod h
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DR Y S S e B

2 - 2

pgx p p<X 1<t<2,/p W(t _4p)p
t2—4peA(r,h)

odd

h(t? — 4
R = T

p<x 1<t<2\p d2|t2—4p
t2—4pErmodh
odd
i ” h(t274p)
~T2 Y Do) Y T
w(t*> —4p)p
1<t<2/x d<R pSx

d2|t2—ap
2 —4p=r mod h
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mfp) . . % h(t2 — 4p)
N ID DD S O SR e
p<x 1<t<2/x d<R p<x

d2|t274p
t2—4pEr mod h
By doing the average over elliptic curves in a family, we got rid of
the difficult question of counting primes such that d? divides
3[2, — 4p, and translate it into an average of class numbers.
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mfp) . . % h(t2 — 4p)
N ID DD S O SR e
p<x 1<t<2/x d<R p<x

d2|t274p
t2—4pEr mod h
By doing the average over elliptic curves in a family, we got rid of
the difficult question of counting primes such that d? divides
3[2, — 4p, and translate it into an average of class numbers.

By the class number formula, h(d) = %|d|1/2L(1,X), we get

9 Odd]. o odd 4o — 12
=20 DN DI = ) DINTCI NS DI

n<U a(mod n) d<R p<x P
1<t<2v/x (tzfa,n):l (d,nt)=1 p=v mod [ndz,h]
(2—r,h)=1  a=rmod (n,h) r=0mod (d2,h)
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2 oddl o odd 4o — 12
rn L s D (G) D X

n<U a(mod n) d<R p<x P
1<t<2v/x (2 —a,n)=1 (d,nt)=1 p=v mod [nd2,h]
(t2—r,h)=1 a=r mod (n,h) r=0 mod (d2,h)

We now have to count primes in certain arithmetic progression,

r/ _¢$2
depending on «, t,d, n, r, h, with weights %, which can be
done using Barban—-Davenport—Halberstam’s Theorem to control
the error counting primes in arithmetic progressions on average.
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2 oddl o odd 4o — 12
rn L s D (G) D X

n<U a(mod n) d<R p<x P
1<t<2v/x (2 —a,n)=1 (d,nt)=1 p=v mod [nd2,h]
(t2—r,h)=1 a=r mod (n,h) r=0 mod (d2,h)

We now have to count primes in certain arithmetic progression,

r/ _¢$2
depending on «, t,d, n, r, h, with weights %, which can be
done using Barban—-Davenport—Halberstam’s Theorem to control
the error counting primes in arithmetic progressions on average.

Let
odd odd
1 a p(d)
S(T) = - (f) AL
M= 2. > ) 2 cpem
1<t<T n<U a(mod n) d<R
(2=rp)=1 (2—a,n)=1 (d,nt)=1

a=r(mod (n,h)) r=0 mod (d2,h)
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_ 1 o p(d)
S(M= > > n 2. (E) > o([nd?, h])
1<t<T  p<U a(mod n) d<R
(t2—r,h)=1 - (2 —a,n)=1 B (d,nt):12
a=r(mod (n,h)) r=0 mod (d<,h)
3

where

1y f-117 L(t=1-(%)) < £2+£—1>

¢=_— 1—— ).
3h¥ 14 l;h[(é—l) (¢- (%) H P2 - 1)
L|r 4r

This gives the conjectural constant CSf(E, r, h) counting matrices
in Galois groups for an “ideal curve” E with Mg =.1.
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