Square-free values

Sieving the squares 000000

Theorem on Average

Square-free discriminants of Frobenius rings

Joint work with Chantal David, Université Concordia.

Università Tor Vergata, Roma, May 21, 2010

Introduction	Square-free values	Sieving the squares	Theorem on Average
0000			

Let *E* be an elliptic curve over \mathbb{Q} , and *p* a prime of good reduction (i.e. $p \nmid N_E$). The Frobenius endomorphism

 $(x,y)\mapsto (x^p,y^p)$

of E/\mathbb{F}_p is a root of the polynomial

$$(x^2 - a_p x + p = (x - \pi_p)(x - \overline{\pi}_p))$$

where $|a_p| \leq 2\sqrt{p}$ by the Hasse bound.

Introduction	Square-free values	Sieving the squares	Theorem on Average
00000			

Let *E* be an elliptic curve over \mathbb{Q} , and *p* a prime of good reduction (i.e. $p \nmid N_E$). The Frobenius endomorphism

 $(x,y)\mapsto (x^p,y^p)$

of E/\mathbb{F}_p is a root of the polynomial

$$(x^2 - a_p x + p = (x - \pi_p)(x - \overline{\pi}_p))$$

where $|a_p| \le 2\sqrt{p}$ by the Hasse bound. Then

 $\mathbb{Z}[\pi_p] \subseteq \operatorname{End}(E/\mathbb{F}_p)$

Introduction	Square-free values	Sieving the squares	Theorem on Average
0000			

Let *E* be an elliptic curve over \mathbb{Q} , and *p* a prime of good reduction (i.e. $p \nmid N_E$). The Frobenius endomorphism

 $(x,y)\mapsto (x^p,y^p)$

of E/\mathbb{F}_p is a root of the polynomial

$$(x^2 - a_p x + p = (x - \pi_p)(x - \overline{\pi}_p))$$

where $|a_p| \leq 2\sqrt{p}$ by the Hasse bound. Then

 $\mathbb{Z}[\pi_p] \subseteq \operatorname{End}(E/\mathbb{F}_p)$

and if p is a prime of ordinary reduction

$$\operatorname{End}(E/\mathbb{F}_p)\otimes \mathbb{Q}=\mathbb{Q}(\pi_p).$$

Introduction 00●00	Square-free values	Sieving the squares	Theorem on Average

```
\mathbb{Z}[\pi_p] \subseteq \operatorname{End}(E/\mathbb{F}_p) \subseteq \mathcal{O}_K,
```

and any order can occur by Deuring's theorem.

Introduction	Square-free values	Sieving the squares	Theorem on Average

 $\mathbb{Z}[\pi_p] \subseteq \operatorname{End}(E/\mathbb{F}_p) \subseteq \mathcal{O}_K,$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

and any order can occur by Deuring's theorem.

• When does $\mathbb{Z}[\pi_p] = \operatorname{End}(E/\mathbb{F}_p)$?

Introduction 00●00	Square-free values 00000	Sieving the squares	Theorem on Average

 $\mathbb{Z}[\pi_p] \subseteq \operatorname{End}(E/\mathbb{F}_p) \subseteq \mathcal{O}_K,$

and any order can occur by Deuring's theorem.

• When does
$$\mathbb{Z}[\pi_p] = \operatorname{End}(E/\mathbb{F}_p)$$
?

• When does
$$\mathbb{Z}[\pi_p] = \mathcal{O}_K$$
 ?

Introduction 00●00	Square-free values 00000	Sieving the squares	Theorem on Average

 $\mathbb{Z}[\pi_p] \subseteq \operatorname{End}(E/\mathbb{F}_p) \subseteq \mathcal{O}_K,$

and any order can occur by Deuring's theorem.

• When does
$$\mathbb{Z}[\pi_p] = \operatorname{End}(E/\mathbb{F}_p)$$
?

• When does
$$\mathbb{Z}[\pi_p] = \mathcal{O}_K$$
 ?

We have

$$\mathbb{Z}[\pi_{\rho}] = \mathcal{O}_{\mathcal{K}} \Longrightarrow \mathbb{Z}[\pi_{\rho}] = \mathsf{End}(E/\mathbb{F}_{\rho}) \Longrightarrow E(\mathbb{F}_{\rho})$$
 is cyclic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	
00000	

Sieving the squares

Theorem on Average

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Serre, 1977)

Assume the GRH. Then

 $\# \{p \leq x : E(\mathbb{F}_p) \text{ is cyclic} \} \sim C_1(E)\pi(x).$

Introduction	
00000	

Sieving the squares 000000

Theorem on Average

Theorem (Serre, 1977)

Assume the GRH. Then

 $\# \{p \leq x : E(\mathbb{F}_p) \text{ is cyclic} \} \sim C_1(E)\pi(x).$

Theorem (Murty, 1983)

Let E/\mathbb{Q} with CM.

 $\# \{p \leq x : E(\mathbb{F}_p) \text{ is cyclic} \} \sim C_1(E)\pi(x).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Introduction 0000●	Square-free values 00000	Sieving the squares	Theorem on Average

Let
$$\Delta_p = \operatorname{disc}(\operatorname{End}(E/\mathbb{F}_p))$$
. Let b_p be such that $a_p^2 - 4p = b_p^2 \Delta_p$.

Introduction 0000●	Square-free values	Sieving the squares	Theorem on Average

Let
$$\Delta_p = \text{disc}(\text{End}(E/\mathbb{F}_p))$$
. Let b_p be such that $a_p^2 - 4p = b_p^2 \Delta_p$.
Then,

$$|\mathrm{III}_p|=b_p^2,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where III_p is the Tate-Shafarevic group of E_p as an elliptic curve defined over its function field $\mathbb{F}_p(E_p)$.

Introduction		Sieving the squares	Theorem on Average
00000	00000	000000	00000000

Let
$$\Delta_p = \text{disc}(\text{End}(E/\mathbb{F}_p))$$
. Let b_p be such that $a_p^2 - 4p = b_p^2 \Delta_p$.
Then,

$$|\mathrm{III}_p|=b_p^2,$$

where III_p is the Tate-Shafarevic group of E_p as an elliptic curve defined over its function field $\mathbb{F}_p(E_p)$.

Theorem (Cojocaru-Duke, 2004)

Assume the GRH. Then

 $\# \{ p \leq x : \mathbb{Z}[\pi_p] = \operatorname{End}(E/\mathbb{F}_p) \} \sim C_2(E)\pi(x).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introd	uction

Sieving the squares

Theorem on Average

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Square-free values

$$\mathbb{Z}[\pi_{\rho}] = \mathcal{O}_{K}$$

if and only if
$$a_{\rho}^{2} - 4p = \begin{cases} D & D \equiv 1 \mod 4 \text{ and square-free} \\ 4D & D \equiv 2, 3 \mod 4 \text{ and square-free} \end{cases}$$

Introd	

Sieving the squares

Theorem on Average

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Square-free values

$$\mathbb{Z}[\pi_{\boldsymbol{\rho}}] = \mathcal{O}_{\boldsymbol{K}}$$

if and only if

$$a_p^2 - 4p = \begin{cases} D & D \equiv 1 \mod 4 \text{ and square-free} \\ 4D & D \equiv 2, 3 \mod 4 \text{ and square-free} \end{cases}$$

Are there infinitely many supersingular primes congruent to $1 \mod 4$? This would give infinitely many primes p such that

$$\mathbb{Z}[\pi_p] = \mathcal{O}_K.$$

Introduction	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conjecture (Lang-Trotter conjecture)

Let K be an imaginary quadratic number field, and E an elliptic curve over \mathbb{Q} without complex multiplication. Let

$$\Pi_{E,K}(x) = \# \left\{ p \leq x : p \nmid N_E \text{ and } \mathbb{Q}(\pi_p) = K \right\}.$$

Then $\Pi_{E,K}(x) \sim C_{LT}(E,K) \frac{\sqrt{x}}{\log x}$ as $x \to \infty$.

Introduction 00000	Square-free values 00●00	Theorem on Average

Upper bounds under the GRH (Cojocaru-David, 2008)

 $\Pi_E(K;x) \ll_N x^{13/14} \log x.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Introduction 00000	Square-free values 00●00	Theorem on Average

Upper bounds under the GRH (Cojocaru-David, 2008)

$$\Pi_E(K; x) \ll_N x^{13/14} \log x.$$

Let $\mathcal{D}_E(x)$ be the set of distinct fields $K = \mathbb{Q}(\pi_p)$ for primes $p \leq x$ of good reduction. Then,

$$|\mathcal{D}_E(x)| \gg_N \frac{x^{1/14}}{(\log x)^2}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Introduction 00000	Square-free values 000●0	Sieving the squares	Theorem on Average

• Can we show that there are many distinct fields by showing there are many distinct square-free values of $a_p^2 - 4p$?

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Introduction 00000	Square-free values 000●0	Sieving the squares	Theorem on Average

• Can we show that there are many distinct fields by showing there are many distinct square-free values of $a_p^2 - 4p$?

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Introduction 00000	Square-free values 000●0	Sieving the squares	Theorem on Average

- Can we show that there are many distinct fields by showing there are many distinct square-free values of $a_p^2 4p$?
- Can we show that there are infinitely many primes such that D_p , the discriminant of $\mathbb{Q}(\pi_p)$, lies in a fixed arithmetic progression? Counting square-free values of $a_p^2 4p$ in arithmetic progressions would give an answer to that question.

Square-free values

Sieving the squares

Theorem on Average

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Curves with Complex Multiplication (CM)

Square-free values

Sieving the squares

Theorem on Average

Curves with Complex Multiplication (CM)

Example: Let $E: y^2 = x^3 - x$ with CM by $\mathbb{Z}[i]$. Let $p \equiv 1 \mod 4$ (ordinary prime). Since *E* has rational 2-torsion, a_p is even, and 4 divides $a_p^2 - 4p$.

Square-free values 0000● Sieving the squares

Theorem on Average

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Curves with Complex Multiplication (CM)

Example: Let $E: y^2 = x^3 - x$ with CM by $\mathbb{Z}[i]$. Let $p \equiv 1 \mod 4$ (ordinary prime). Since *E* has rational 2-torsion, a_p is even, and 4 divides $a_p^2 - 4p$. We have

$$4((a_p/2)^2 - p) = a_p^2 - 4p = (\pi_p - \bar{\pi}_p)^2.$$

Square-free values

Sieving the squares

Theorem on Average

Curves with Complex Multiplication (CM)

Example: Let $E: y^2 = x^3 - x$ with CM by $\mathbb{Z}[i]$. Let $p \equiv 1 \mod 4$ (ordinary prime). Since *E* has rational 2-torsion, a_p is even, and 4 divides $a_p^2 - 4p$. We have

$$4((a_p/2)^2 - p) = a_p^2 - 4p = (\pi_p - \bar{\pi}_p)^2.$$

Since *E* has CM by $\mathbb{Z}[i]$,

$$\pi_p - \bar{\pi}_p = 2bi$$

Square-free values

Sieving the squares

Theorem on Average

Curves with Complex Multiplication (CM)

Example: Let $E: y^2 = x^3 - x$ with CM by $\mathbb{Z}[i]$. Let $p \equiv 1 \mod 4$ (ordinary prime). Since *E* has rational 2-torsion, a_p is even, and 4 divides $a_p^2 - 4p$. We have

$$4((a_p/2)^2 - p) = a_p^2 - 4p = (\pi_p - \bar{\pi}_p)^2.$$

Since *E* has CM by $\mathbb{Z}[i]$,

$$\pi_p - \bar{\pi}_p = 2bi$$

and

$$(a_p/2)^2 - p = -b^2$$
 is square-free $\iff b = 1 \iff p = (a_p/2)^2 + 1.$

Introd	uction

Sieving the squares \bullet 00000

Theorem on Average

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sieving the squares

Let

$$\Pi_E^{\rm sf}(x) = \#\{p \le x : a_p^2 - 4p \text{ is square-free}\}.$$

Then,

$$\begin{aligned} \Pi^{\mathrm{sf}}_{E}(x) &= \sum_{p \leq x} \sum_{d^{2} \mid a_{p}^{2} - 4p} \mu(d) \\ &= \sum_{d \leq 2\sqrt{x}} \mu(d) \sum_{\substack{p \leq x \\ d^{2} \mid a_{p}^{2} - 4p}} 1 \end{aligned}$$

Introd	uction

Sieving the squares •00000 Theorem on Average

Sieving the squares

Let

$$\Pi_E^{\rm sf}(x)=\#\{p\leq x\,:\,a_p^2-4p\,\,\,\text{is square-free}\}.$$

Then,

$$\begin{split} \mathrm{I}_{E}^{\mathrm{sf}}(x) &= \sum_{p \leq x} \sum_{d^{2} \mid a_{p}^{2} - 4p} \mu(d) \\ &= \sum_{d \leq 2\sqrt{x}} \mu(d) \sum_{p \leq x \atop d^{2} \mid a_{p}^{2} - 4p} 1 \end{split}$$

To count the primes p such that $d^2 | a_p^2 - 4p$, we use the extension $\mathbb{Q}(E[d^2])/\mathbb{Q}$, where $\mathbb{Q}(E[d^2])$ is the field obtained by adjoining the coordinates of the d^2 -torsion points of E to \mathbb{Q} .

Sieving the squares 00000

Theorem on Average

Torsion Fields of elliptic curves

Since $E[d^2] \simeq \mathbb{Z}/d^2\mathbb{Z} \times \mathbb{Z}/d^2\mathbb{Z}$, we have

 $\operatorname{\mathsf{Gal}}\left(\mathbb{Q}(E[d^2])/\mathbb{Q}\right)\subseteq\operatorname{GL}_2(\mathbb{Z}/d^2\mathbb{Z}).$

Also, for $p \nmid dN_E$,

$$\rho_{d^2} : \operatorname{Gal}(\mathbb{Q}(E[d^2])/\mathbb{Q}) \rightarrow \operatorname{GL}_2(\mathbb{Z}/d^2\mathbb{Z})$$

 $\sigma_p \mapsto [g]$

such that

$$tr(g) \equiv a_p(E) \mod d^2$$
$$det(g) \equiv p \mod d^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction	Square-free values	Sieving the squares	Theorem on Average
00000	00000	00●000	

Let

$$\begin{array}{lll} G_E(d^2) &=& \operatorname{Im}(\rho_{d^2}) \subseteq \operatorname{GL}_2(\mathbb{Z}/d^2\mathbb{Z}) \\ C_E(d^2) &=& \{g \in G_E(d^2) \ : \ \operatorname{tr}^2 g - 4 \det g \equiv 0 \ \mathrm{mod} \ d^2\} \end{array}$$

Introduction 00000	Square-free values	Sieving the squares	Theorem on Average

Let

$$\begin{array}{lll} G_E(d^2) &=& \operatorname{Im}(\rho_{d^2}) \subseteq \operatorname{GL}_2(\mathbb{Z}/d^2\mathbb{Z}) \\ C_E(d^2) &=& \{g \in G_E(d^2) \ : \ \operatorname{tr}^2 g - 4 \det g \equiv 0 \ \mathrm{mod} \ d^2 \} \end{array}$$

Using the Chebotarev Density Theorem under the GRH (and following Murty, Murty and Saradha for a better error term), we have

$$\begin{aligned} \pi_{d^2}(x) &= \sum_{\substack{p \leq x \\ d^2|s_p^2 - 4p}} 1 = \# \left\{ p \leq x : \sigma_p \in C_E(d^2) \right\} \\ &= \frac{|C_E(d^2)|}{|G_E(d^2)|} \pi(x) + O\left(|C_E(d^2)|^{1/2} x^{1/2} \log xd \right). \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Square-free values	Sieving the squares	Theorem on Average
00000	00000	000●00	

Main term

We then write $\Pi_E^{\mathrm{sf}}(x) = \mathsf{MT} + \mathsf{ET}$, where

$$\mathsf{MT} = \pi(x) \sum_{d \le 2\sqrt{x}} \mu(d) \frac{|C_E(d^2)|}{|G_E(d^2)|}.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction 00000	Square-free values 00000	Sieving the squares	Theorem on Average

Main term

We then write $\Pi_{E}^{sf}(x) = MT + ET$, where

$$\mathsf{MT} = \pi(x) \sum_{d \le 2\sqrt{x}} \mu(d) \frac{|C_E(d^2)|}{|G_E(d^2)|}.$$

(日) (日) (日) (日) (日) (日) (日) (日)

By Serre's Theorem, there exists an integer M_E such that

• If
$$(d_1, d_2) = (d_1, M_E) = 1$$
, then
 $G_E(d_1^2 d_2^2) = G_E(d_1^2) \times G_E(d_2^2).$

• If $(d, M_E) = 1$, then $G_E(d^2) = \operatorname{GL}_2(\mathbb{Z}/d^2\mathbb{Z})$.

Introduction 00000	Square-free values 00000	Sieving the squares	Theorem on Average

Main term

We then write $\Pi_E^{\mathrm{sf}}(x) = \mathsf{MT} + \mathsf{ET}$, where

$$\mathsf{MT} = \pi(x) \sum_{d \le 2\sqrt{x}} \mu(d) \frac{|C_E(d^2)|}{|G_E(d^2)|}.$$

By Serre's Theorem, there exists an integer M_E such that

• If
$$(d_1, d_2) = (d_1, M_E) = 1$$
, then
 $G_E(d_1^2 d_2^2) = G_E(d_1^2) \times G_E(d_2^2).$

• If
$$(d, M_E) = 1$$
, then $G_E(d^2) = \operatorname{GL}_2(\mathbb{Z}/d^2\mathbb{Z})$.

Then,

$$\sum_{d=1}^{\infty} \mu(d) \frac{|C_{E}(d^{2})|}{|G_{E}(d^{2})|} = \sum_{d|M_{E}} \mu(d) \frac{|C_{E}(d^{2})|}{|G_{E}(d^{2})|} \prod_{\ell \nmid M_{E}} \left(1 - \frac{\ell^{2} + \ell - 1}{\ell^{2}(\ell^{2} - 1)}\right)$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

Introd	

Sieving the squares $0000 \bullet 0$

Theorem on Average

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Error term

Conjecture

$$\Pi_E^{\rm sf}(x) \sim C^{\rm sf}(E)\pi(x),$$

where

$$C^{\rm sf}(E) = \sum_{d \mid M_E} \mu(d) \frac{|C_E(d^2)|}{|G_E(d^2)|} \prod_{\ell \nmid M_E} \left(1 - \frac{\ell^2 + \ell - 1}{\ell^2(\ell^2 - 1)} \right)$$

Introd	

Sieving the squares

Theorem on Average

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Error term

Conjecture

$$\Pi_E^{\rm sf}(x) \sim C^{\rm sf}(E)\pi(x),$$

where

$$C^{\rm sf}(E) = \sum_{d \mid M_E} \mu(d) \frac{|C_E(d^2)|}{|G_E(d^2)|} \prod_{\ell \nmid M_E} \left(1 - \frac{\ell^2 + \ell - 1}{\ell^2(\ell^2 - 1)} \right)$$

To prove the conjecture, we need to control the error term

$$\mathsf{ET} \ \ll \ x^{1/2+\epsilon} \sum_{d \leq 2\sqrt{x}} d^3.$$

Introduction 00000	Square-free values	Sieving the squares	Theorem on Average

$$\sum_{d|P(z)} \mu(d) \sum_{\substack{p \le x \\ d^2|s_p^2 - 4p}} 1 = \pi(x) \sum_{d|P(z)} \mu(d) \frac{|C_E(d^2)|}{|G_E(d^2)|} + O\left(x^{1/2 + \epsilon} e^{3z}\right)$$

and we need to take z small to control the first error term coming from the Chebotarev Density Theorem.

Introduction 00000	Square-free values	Sieving the squares	Theorem on Average

$$\sum_{d|P(z)} \mu(d) \sum_{\substack{p \le x \\ d^2|s_p^2 - 4p}} 1 = \pi(x) \sum_{d|P(z)} \mu(d) \frac{|C_E(d^2)|}{|G_E(d^2)|} + O\left(x^{1/2 + \epsilon} e^{3z}\right)$$

and we need to take z small to control the first error term coming from the Chebotarev Density Theorem.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

We can get an upper bound by sieving, but there are no known lower bounds for $\pi^{sf}(x)$.

Introduction 00000	Square-free values	Sieving the squares	Theorem on Average

$$\sum_{d|P(z)} \mu(d) \sum_{\substack{p \le x \\ d^2|s_p^2 - 4p}} 1 = \pi(x) \sum_{d|P(z)} \mu(d) \frac{|C_E(d^2)|}{|G_E(d^2)|} + O\left(x^{1/2 + \epsilon} e^{3z}\right)$$

and we need to take z small to control the first error term coming from the Chebotarev Density Theorem.

We can get an upper bound by sieving, but there are no known lower bounds for $\pi^{\rm sf}(x)$.

The theorems of Serre and Cojocaru-Duke rely on the fact that the primes p such that $\mathbb{Z}/d\mathbb{Z} \times \mathbb{Z}/d\mathbb{Z} \leq E(\mathbb{F}_p)$, or $d^2 \mid b_p^2$, are the primes splitting completely in some extension depending on d.

Introduction Square-free values Sieving the squares **Theorem on Average**

Let *h* be a positive odd integer, and let *r* be any integer such that the greatest common divisor (r, h) is square-free. Let $\Delta(r, h)$ be the set of square-free integers congruent to *r* mod *h*, and

$$\Pi^{\mathrm{sf}}_{E,r,h}(x) = \#\{p \leq x : a_p^2 - 4p \in \Delta(r,h)\}.$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Square-free values

Sieving the squares

Theorem on Average

Let *h* be a positive odd integer, and let *r* be any integer such that the greatest common divisor (r, h) is square-free. Let $\Delta(r, h)$ be the set of square-free integers congruent to *r* mod *h*, and

$$\Pi^{\mathrm{sf}}_{E,r,h}(x)=\#\{p\leq x\,:\,a_p^2-4p\in\Delta(r,h)\}.$$

Theorem

Let $\varepsilon > 0$, and A, B such that $AB > x \log^8 x$, $A, B > x^{\varepsilon}$. Then

$$\frac{1}{4AB}\sum_{|a|\leq A, |b|\leq B}\Pi^{\mathrm{sf}}_{E(a,b),r,h}(x) = \mathfrak{C}\frac{x}{\log x} + O\left(\frac{x}{\log^2 x}\right),$$

where \mathfrak{C} is the positive constant

$$\mathfrak{C} = \frac{1}{3h} \prod_{\substack{\ell \parallel h \\ \ell \mid r}} \frac{\ell - 1}{\ell} \prod_{\substack{\ell \mid h \\ \ell \nmid r}} \frac{\ell \left(\ell - 1 - \binom{r}{\ell}\right)}{(\ell - 1) \left(\ell - \binom{r}{\ell}\right)} \prod_{\ell \nmid h} \left(1 - \frac{\ell^2 + \ell - 1}{\ell^2 (\ell^2 - 1)}\right)$$

Introduction	Square-free values	Sieving the squares	Theorem on Average
00000	00000		o●ooooooo

$$\mathfrak{C} = \frac{1}{3h} \prod_{\substack{\ell \parallel h \\ \ell \mid r}} \frac{\ell - 1}{\ell} \prod_{\substack{\ell \mid h \\ \ell \nmid r}} \frac{\ell \left(\ell - 1 - \binom{r}{\ell}\right)}{(\ell - 1) \left(\ell - \binom{r}{\ell}\right)} \prod_{\ell \nmid h} \left(1 - \frac{\ell^2 + \ell - 1}{\ell^2 (\ell^2 - 1)}\right).$$

For $\ell \nmid h$:

$$= \frac{\left|\left\{g \in \operatorname{GL}_2(\mathbb{Z}/\ell^2\mathbb{Z}) : \operatorname{tr}^2 g - 4 \det g \not\equiv 0 \bmod \ell^2\right\}\right|}{\left|\operatorname{GL}_2(\mathbb{Z}/\ell^2\mathbb{Z})\right|}$$

For $h = \ell^{\alpha} h'$, $\alpha \ge 1$ and $(h', \ell) = 1$, let $\beta = \max(\alpha, 2)$. Then:

$$= | \left\{ g \in \operatorname{GL}_2(\mathbb{Z}/\ell^{\beta}\mathbb{Z}) : \operatorname{tr}^2 g - 4 \det g \not\equiv 0 \mod \ell^2 \right.$$

and $\operatorname{tr}^2 g - 4 \det g \equiv r \mod \ell^{\alpha} \left. \right\} / |\operatorname{GL}_2(\mathbb{Z}/\ell^{\beta}\mathbb{Z})|.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Square-free values

Sieving the squares

Theorem on Average

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Towards an average over the prime fields

$$\frac{1}{4AB}\sum_{|\boldsymbol{a}|\leq A,|\boldsymbol{b}|\leq B}\Pi^{\mathrm{sf}}_{E(\boldsymbol{a},\boldsymbol{b}),r,\boldsymbol{h}}(\boldsymbol{x})$$

Square-free values

Sieving the squares

Theorem on Average

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Towards an average over the prime fields

$$\begin{split} & \frac{1}{4AB}\sum_{|a|\leq A, |b|\leq B}\Pi^{\mathrm{sf}}_{E(a,b),r,h}(x) \\ &= & \frac{1}{4AB}\sum_{p\leq x}\#\left\{|a|\leq A, |b|\leq B \ : \ a_p^2(E(a,b))-4p\in\Delta(r,h)\right\} \end{split}$$

Square-free values

Sieving the squares

Theorem on Average

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Towards an average over the prime fields

$$\begin{split} & \frac{1}{4AB} \sum_{|a| \le A, |b| \le B} \Pi^{\text{sf}}_{E(a,b),r,h}(x) \\ &= \frac{1}{4AB} \sum_{p \le x} \# \left\{ |a| \le A, |b| \le B : a_p^2(E(a,b)) - 4p \in \Delta(r,h) \right\} \\ &= \frac{1}{4AB} \sum_{p \le x} \left(\frac{2A}{p} + O(1) \right) \left(\frac{2B}{p} + O(1) \right) \times \\ & \times \# \left\{ E/\mathbb{F}_p : a_p^2(E) - 4p \in \Delta(r,h) \right\} \end{split}$$

Square-free values

Sieving the squares

Theorem on Average

Towards an average over the prime fields

$$\begin{split} &\frac{1}{4AB}\sum_{|a|\leq A, |b|\leq B}\Pi_{E(a,b),r,h}^{\mathrm{sf}}(x) \\ &= \frac{1}{4AB}\sum_{p\leq x}\#\left\{|a|\leq A, |b|\leq B : a_{p}^{2}(E(a,b))-4p\in\Delta(r,h)\right\} \\ &= \frac{1}{4AB}\sum_{p\leq x}\left(\frac{2A}{p}+O(1)\right)\left(\frac{2B}{p}+O(1)\right)\times \\ &\times\#\left\{E/\mathbb{F}_{p}:a_{p}^{2}(E)-4p\in\Delta(r,h)\right\} \\ &\sim \sum_{p\leq x}\frac{\#\left\{E/\mathbb{F}_{p}:a_{p}^{2}-4p\in\Delta(r,h)\right\}}{p^{2}} \end{split}$$

when A, B are big enough. Here, we need $A, B > x^{1+\varepsilon}$.

Introduction	Square-free values	Sieving the squares	Theorem on Average
00000	00000		000●00000

Then, the average result is equivalent to the following

Theorem

Let h be a positive odd integer, and let r be any integer such that (r, h) is square-free. Let

$$\Pi^{\mathrm{sf}}(p) \ = \# \left\{ \mathsf{E} \ \textit{over} \ \mathbb{F}_p \ : \ a_p^2 - 4p \in \Delta(r,h)
ight\}.$$

Then, as $x \to \infty$,

$$\sum_{p \le x} \Pi^{\mathrm{sf}}(p) = \frac{\mathfrak{C}}{3} \frac{x^3}{\log x} + O\left(\frac{x^3}{\log^2 x}\right),$$

where \mathfrak{C} is the constant above.

Square-free values

Sieving the squares

Theorem on Average

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Counting elliptic curves over finite fields

$$\Pi^{\mathrm{sf}}(p) = \# \left\{ E/\mathbb{F}_p : a_p^2(E) - 4p \in \Delta(r,h) \right\}$$
$$= \sum_{\substack{-2\sqrt{p} < t < 2\sqrt{p} \\ t^2 - 4p \in \Delta(r,h)}} \# \left\{ E/\mathbb{F}_p : a_p(E) = t \right\}.$$

Square-free values 00000

Sieving the squares

Theorem on Average

Counting elliptic curves over finite fields

$$\mathsf{T}^{\mathrm{sf}}(p) = \# \left\{ E/\mathbb{F}_p : a_p^2(E) - 4p \in \Delta(r,h) \right\}$$
$$= \sum_{\substack{-2\sqrt{p} < t < 2\sqrt{p} \\ t^2 - 4p \in \Delta(r,h)}} \# \left\{ E/\mathbb{F}_p : a_p(E) = t \right\}.$$

Theorem (Deuring's Theorem)

Let t be an integer such that $|t| \le 2\sqrt{p}$. The number of elliptic curves over \mathbb{F}_p with $a_p(E) = t$ is $H(t^2 - 4p)(p - 1)$.

For any D < 0, the Kronecker class number H(D) is

$$H(D) = \sum_{\substack{f^2 \mid D \\ \frac{D}{f^2} \equiv 0, 1 \mod 4}} \frac{h(D/f^2)}{w(D/f^2)}.$$

Introduction	

Square-free values

Sieving the squares

Theorem on Average

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Introduction 00000	Square-free values 00000	Sieving the squares	Theorem on Average

Introduction 00000	Square-free values 00000	Sieving the squares	Theorem on Average

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

Introduction 00000	Square-free values	Sieving the squares	Theorem on Average 000000€00

$$\sum_{p \le x} \frac{\Pi^{\rm sf}(p)}{p^2} \quad `` \sim " \quad 2 \sum_{1 \le t \le 2\sqrt{x}}^{odd} \sum_{d \le R} \mu(d) \sum_{\substack{p \le x \\ d^2 | t^2 - 4p \\ t^2 - 4p \ge r \bmod h}} \frac{h(t^2 - 4p)}{w(t^2 - 4p)p}.$$

By doing the average over elliptic curves in a family, we got rid of the difficult question of counting primes such that d^2 divides $a_p^2 - 4p$, and translate it into an average of class numbers.

Introduction	Square-free values	Sieving the squares	Theorem on Average
00000	00000		000000€00

$$\sum_{p \le x} \frac{\Pi^{\rm sf}(p)}{p^2} \quad `` \sim " \quad 2 \sum_{1 \le t \le 2\sqrt{x}}^{odd} \sum_{d \le R} \mu(d) \sum_{\substack{p \le x \\ d^2 \mid t^2 - 4p \\ t^2 - 4p \equiv r \bmod h}} \frac{h(t^2 - 4p)}{w(t^2 - 4p)p}.$$

By doing the average over elliptic curves in a family, we got rid of the difficult question of counting primes such that d^2 divides $a_p^2 - 4p$, and translate it into an average of class numbers.

By the class number formula, $h(d) = rac{\omega}{2\pi} |d|^{1/2} L(1,\chi)$, we get

$$\sim \frac{2}{3\pi} \sum_{\substack{n \leq U \\ 1 \leq t \leq 2\sqrt{x} \\ (t^2 - r, h) = 1}}^{odd} \frac{1}{n} \sum_{\substack{\alpha (\text{mod } n) \\ (t^2 - \alpha, n) = 1 \\ \alpha \equiv r \mod (n, h)}} \left(\frac{\alpha}{n}\right) \sum_{\substack{d \leq R \\ d \leq n \\ r \equiv 0 \mod (d^2, h)}}^{odd} \mu(d) \sum_{\substack{p \leq x \\ p \equiv \nu \mod [nd^2, h]}} \frac{\sqrt{4p - t^2}}{p}$$

$$\sim \frac{2}{3\pi} \sum_{\substack{n \leq U \\ 1 \leq t \leq 2\sqrt{x} \\ (t^2 - r, h) = 1}}^{odd} \frac{1}{n} \sum_{\substack{\alpha \pmod{n} \\ (t^2 - \alpha, n) = 1 \\ \alpha \equiv r \bmod (n, h)}} \left(\frac{\alpha}{n}\right) \sum_{\substack{d \leq R \\ (d, nt) = 1 \\ r \equiv 0 \mod (d^2, h)}}^{odd} \mu(d) \sum_{\substack{p \leq x \\ p \equiv \nu \mod [nd^2, h]}} \frac{\sqrt{4p - t^2}}{p}$$

We now have to count primes in certain arithmetic progression, depending on α , t, d, n, r, h, with weights $\frac{\sqrt{4p-t^2}}{p}$, which can be done using Barban–Davenport–Halberstam's Theorem to control the error counting primes in arithmetic progressions on average.

Introduction	Square-free values	Sieving the squares	Theorem on Average
00000	00000		0000000€0

$$\sim \frac{2}{3\pi} \sum_{\substack{n \leq U \\ 1 \leq t \leq 2\sqrt{x} \\ (t^2 - r, h) = 1}}^{odd} \frac{1}{n} \sum_{\substack{\alpha \pmod{n} \\ (t^2 - \alpha, n) = 1 \\ \alpha \equiv r \bmod(n, h)}} \left(\frac{\alpha}{n}\right) \sum_{\substack{d \leq R \\ (d, nt) = 1 \\ r \equiv 0 \mod(d^2, h)}}^{odd} \mu(d) \sum_{\substack{p \leq x \\ p \equiv \nu \bmod[nd^2, h]}} \frac{\sqrt{4p - t^2}}{p}$$

We now have to count primes in certain arithmetic progression, depending on α , t, d, n, r, h, with weights $\frac{\sqrt{4p-t^2}}{p}$, which can be done using Barban–Davenport–Halberstam's Theorem to control the error counting primes in arithmetic progressions on average.

Let

$$S(T) = \sum_{\substack{1 \le t \le T \\ (t^2 - r, h) = 1}}^{odd} \sum_{n \le U}^{odd} \frac{1}{n} \sum_{\substack{\alpha \pmod{n} \\ (t^2 - \alpha, n) = 1 \\ \alpha \equiv r \pmod{(n,h)}}} \left(\frac{\alpha}{n}\right) \sum_{\substack{d \le R \\ (d,nt) = 1 \\ r \equiv 0 \mod{(d^2, h)}}} \frac{\mu(d)}{\varphi([nd^2, h])}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction 00000	Square-free values 00000	Sieving the squares	Theorem on Average 00000000●
$S(T) = \sum_{\substack{1 \leq t \leq \ (t^2 - r, h)}}^{oo}$	$ \int_{T}^{dd} \sum_{n \leq U}^{odd} \frac{1}{n} \sum_{\substack{\alpha \pmod{n} \\ (t^2 - \alpha, n) = 1 \\ \alpha \equiv r \pmod{(n,h)} } }^{\alpha \pmod{n}} $	(d,nt)=1	$\frac{d}{d^2, h]}$.
Theorem			
		3	

$$S(T)\sim rac{3}{2}\mathfrak{C}T$$

where

$$\mathfrak{C} = \frac{1}{3h} \prod_{\substack{\ell \parallel h \\ \ell \mid r}} \frac{\ell - 1}{\ell} \prod_{\substack{\ell \mid h \\ \ell \nmid r}} \frac{\ell \left(\ell - 1 - \binom{r}{\ell}\right)}{(\ell - 1) \left(\ell - \binom{r}{\ell}\right)} \prod_{\ell \nmid h} \left(1 - \frac{\ell^2 + \ell - 1}{\ell^2 (\ell^2 - 1)}\right).$$

This gives the conjectural constant $C^{\text{sf}}(E, r, h)$ counting matrices in Galois groups for an "ideal curve" E with $M_E = 1$.