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Abstract

We provide a new criterion for convergence of series of positive numbers.

1 Introduction

The study of series appear everywhere in Analysis. And the first issue is to know whether the series is
convergent or not. Most of the times we need to appeal to absolute convergence and, in this way, we end
up by trying to understand series of positive numbers. There are several criteria to decide if a series of
positive numbers is convergent or not, however most of them seems to have two similar characteristics:
first, they come, in one way or another, from the Comparison Principle. In certain sense, one could
think that this fact is limiting our study of convergence of series of positive numbers. Second, none of
them gives equivalent conditions. For example D’Alambert’s, Cauchy’s or Raabe’s criteria fail when the
corresponding limit is 1.

Here we present a new criterion which gives an equivalent condition for the convergence of a series of
positive numbers, and also it does not comes from the Comparison Principle.

Theorem 1 Let ak > 0 for k ≥ 0, and SN =
∑

k≤N ak. Then,

1.
∑
ak converges if and only if

∑ ak
Sk

does.

2.
∑ ak

Sk(log(Sk+1))2 is always convergent.

Remark. The “difficult” implication of part (1) of the Theorem is already proved in a paper by Abel
in 1828, [1]. Dini in 1867 in [3] improved his result and obtained the convergence of the series

∑
n6=N

an
Sαn

for α > 1. However, their proofs, more involved than the showed here, lose enough so it is not achieved
the second part of Theorem 1.

2 Proofs.

Before proving the theorem, we should add some remarks. First let us say that Theorem 1 is in fact a
criterion for series of positive numbers. Indeed, otherwise it could happen that ak

S(k) is not well defined
for infinitely many k. But even though this is not the case, one can not ensure the result. Let us for
example consider a1 = 1 and ak = 3(−1/2)k−1 for any k ≥ 2. Then

∑
ak is convergent by Leibnitz’s

criterion. However, for any k ≥ 2, S(k) =
∑k

j=1 aj = 1
3ak, and so

∑ ak
S(k) is divergent. Also, we should

note that the second part of the theorem would not remain true by removing 1 from the logarithm. To
see this, consider ak = 1

k(k+1) . Then, Sk = 1− 1
k+1 , | logSk| < 2

k+1 , and so
∑ ak

Sk(log(Sk)2
> 1

4

∑
1

1− 1
k+1

, is
a divergent series. Notice that in this case Sk is convergent. Clearly this is the only case in which adding
1 to the argument of the logarithm is an important matter.
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2.1 Proof of the Theorem.

If S =
∑
ak is convergent, both results in the theorem are trivial. Indeed, note that in this case Sk > S−ε

for any ε > 0 and k sufficiently large depending on ε. Then, we assume S is divergent.

• Part (1). We have to prove that
∑ ak

Sk
is divergent.

Let us start by observing that

log(SK) = log

(
K∏

k=1

Sk

Sk−1

)
=

K∑
k=1

log
(

Sk

Sk−1

)

= −
K∑

k=1

log
(
Sk−1

Sk

)
= −

K∑
k=1

log
(

1−
(

1− Sk−1

Sk

))
= −

K∑
k=1

log
(

1− ak

Sk

)
. (1)

If ak 6= o(Sk), the result is trivial, (observe that always ak < Sk). Hence, we assume limk→∞
ak
Sk

= 0,
and so, for k > K0, 0 < ak

Sk
< 1

2 . Then, the inequality

x < − log(1− x) < 2x (2)

valid for any 0 < x < 1
2 , gives us for any K > K0 in (1),

log(SK) < −
K0∑
k=1

log
(

1− ak

Sk

)
+ 2

K∑
j=K0

ak

Sk
,

and the result follows.

• Part (2). Since
∑ ak

Sk(log(Sk+1))2 <
∑ ak

Sk(log(Sk))2
, it is enough to prove convergence of the second

series.

We now note, by the left part of (2), that for sufficiently large K0 so that Sk > 1 for any k ≥ K0,∑
k≤K

ak

Sk(log(Sk))2
<

∑
k≤K0

ak

Sk(log(Sk))2
−

∑
K0<k≤K

1
(log(Sk))2

log
(

1− ak

Sk

)

= CK0 +
∑

K0<k≤K

1
(log(Sk))2

log
(

Sk

Sk−1

)

= CK0 +
∑

K0<k≤K

1
(log(Sk))2

∫ Sk

Sk−1

1
t
dt

< CK0 +
∑

K0<k≤K

∫ Sk

Sk−1

1
t log(t)2

dt = CK0 +
∫ SK

SK0

1
t(log(t))2

dt

< CK0 +
1

log(SK0)

and the result follows.

3 Examples

Corollary 2
∑

k≤K
1
k diverges

Proof: Trivial from Theorem 1 and the divergence of
∑

k≤K 1.

Corollary 3 The series
∑

n
nn

n!en is divergent.
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Proof: For any n ≥ 1, the inequality

e < (1 +
1
n

)n+1,

follows from (2) in x = 1
n+1 . Hence (n+1)n+2

(n+1)!en+1 >
nn+1

n!en > · · · ≥ 1
e , and so the series

∑
n

nn+1

n!en is divergent.

Moreover, S(n) =
∑n

j=1
jj+1

j!ej >
n
e , and so

∑
n

nn

n!en
>

1
e

∑
n

nn+1

n!enS(n)
.

The result now follows by Theorem 1.

Corollary 4 Let f ′(t) ≥ 0 a decreasing function, and f(0) > 0. Then,
∑
f ′(n) diverges if and only if∑ f ′(n)

f(n) diverges. Moreover,
∑ f ′(n)

f(n)(log f(n)+1)2 always converges.

Proof: Again, in the case when
∑
f ′(n) is convergent, both results are trivial by noting that f(n) ≥ f(0),

so we will assume
∑

n≤N f ′(n)→∞ with N . Let us prove the first part of Corollary 4. Now, since

S(n) =
∑

1≤j≤n

f ′(j) <
∫ n

0

f ′(t)dt = f(n)− f(0) < f(n), (3)

we deduce that f(n)→∞ with n. Moreover,

S(n) >
∫ n

1

f ′(t)dt = f(n)− f(1) >
1
2
f(n),

for n sufficiently large. Hence, ∑
n≤N

f ′(n)
S(n)

< 2
∑
n≤N

f ′(n)
f(n)

,

and the result follows from Theorem 1.

The second part of Corollary 4 follows from the second part of Theorem 1 and (3).

Let log1(x) = log x, and for any integer j, logj+1(x) = log(logj(x)).

Corollary 5 For any integer J ,
∑

k
1

k
Q

j≤J logj k is divergent. On the other hand
∑

k
1

k
Q

j≤J logj k(logJ+1 k)2

is convergent.

Proof: In Corollary 4, take fJ(t) = logJ(t). Since f ′J(t) = 1
t

Q
j≤J−1 logj t = f ′J−1(t)

fJ−1(t)
, we just have to use

Corollary 2, Corollary 4, and apply induction. For the second part, use the second part of Corollary 4,
(note that for any J and t sufficiently large depending on J , logJ t >

1
2 logJ(t+ 1)).in the Remarks

We include one final example just to show the wide range of applications of this criterion. We will
use it to give a new proof of a well known fact in Analysis, consequence of (L2)∗ = L2.

Corollary 6 Let (X,µ) an space of measure with µ(X) < ∞. Suppose f : X → R is a measurable
function such that ∫

X

|fg|dµ <∞,

for any g ∈ L2(X). Then, f ∈ L2(X).

Proof: Without lost of generality we can assume f ≥ 0. By taking g = 1 we see that f ∈ L1(X). Let us
call Ak = {x ∈ X : k ≤ f(x) < k + 1}. Then∑

k≥0

kµ(Ak) ≤
∫

X

fdµ <∞. (4)
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Now suppose f 6∈ L2(X). Then ∑
k≥0

(k + 1)2µ(Ak) >
∫

X

f2dµ =∞,

and so, by (4) ∑
k≥0

k2µ(Ak) =∞.

Now, let us call S(k) =
∑k

j=1 j
2µ(Aj), and consider g(x) = k

S(k) for any x ∈ Ak. Then g ∈ L2(X) since∫
X

g2dµ =
∑
k≥0

k2

S2(k)
µ(Ak) <∞

by the second part of Theorem 1, (note that Sk > (log(Sk + 1))2 for k sufficiently large), meanwhile∫
X

fgdµ >
∑
k≥0

k2

S(k)
µ(Ak) =∞,

by the first part of Theorem 1. Hence, we get a contradiction and the result follows.

Clearly both, Theorem 1 and Corollary 4, seem to have a wide variety of applications, and we leave
to the interested reader to find new ones.

Acknowledgment: This note started when I was trying to prove, in an elementary way, Corollary 6. I
would like to thank J. L. Varona for pointing out the reference [4] in which [1], and [3] are mentioned. I
also want to thank Santiago Egido for sharing with me the first example described at the beginning of
Section 2.
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