Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
●00	00	0000	

Malleability of RSA moduli

Luis Dieulefait and Jorge J. Urroz, UB and UPC, Barcelona

Santander, February, 2019

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
○●○	00	0000	
·			

Problem. (Malleability of Factoring) Given and RSA modulus n find another integer n' so that the factorization of n' will help to factorize n.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
○●○	00	0000	

Problem. (Malleability of Factoring) Given and RSA modulus n find another integer n' coprime to n:) so that the factorization of n' will help to factorize n.

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	0000	

Conjecture. Factoring is not malleable.

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
○○●	00	0000	

Conjecture. Factoring is not malleable.

Theorem. Given any n = pq RSA modulus there exist another integer n' so that factoring n' allow us to factor n in polynomial time.

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
○○●	00	0000	

Conjecture. Factoring is not malleable.

Theorem. Given any n = pq RSA modulus there exist another integer n' so that factoring n' allow us to factor n in polynomial time.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $n' = 2^n - 1$

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	●○	0000	
A particul	ar case		

Theorem (L. Dieulefait and J. Jiménez Urroz, 2009)

Let $n = pq \ z < p, q < 2z$, be and RSA modulus such that either we have $2^{p-1} \not\equiv 1 \pmod{q}$ or $2^{q-1} \not\equiv 1 \pmod{p}$ and let $n' = 2^n - 1$. Then, with the factorization of n' we can find a prime divisor of n in polynomial time.

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	●○	0000	
A particul	ar case		

Theorem (L. Dieulefait and J. Jiménez Urroz, 2009)

Let $n = pq \ z < p, q < 2z$, be and RSA modulus such that either we have $2^{p-1} \not\equiv 1 \pmod{q}$ or $2^{q-1} \not\equiv 1 \pmod{p}$ and let $n' = 2^n - 1$. Then, with the factorization of n' we can find a prime divisor of n in polynomial time.

Proof To factor *n* we use an oracle \mathcal{O} that allow us to factor any given *n*' coprime to *n*. Let $S = \{r \pmod{n} \neq 1, r | n', \text{ prime}\}$

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	●○	0000	
A particul	ar case		

Theorem (L. Dieulefait and J. Jiménez Urroz, 2009)

Let $n = pq \ z < p, q < 2z$, be and RSA modulus such that either we have $2^{p-1} \not\equiv 1 \pmod{q}$ or $2^{q-1} \not\equiv 1 \pmod{p}$ and let $n' = 2^n - 1$. Then, with the factorization of n' we can find a prime divisor of n in polynomial time.

Proof To factor *n* we use an oracle \mathcal{O} that allow us to factor any given *n*' coprime to *n*. Let $S = \{r \pmod{n} \neq 1, r | n', \text{ prime}\}$

Algorithm.

- Send n' in binary form to O.
- Take $r \in S$ and compute (r 1, n) = p.

Step 1. There exist such *r*. Indeed if every prime of $2^n - 1$ is 1 modulo *n* then $2^n - 1 \equiv 1 \pmod{n}$ or $2^{n-1} \equiv 1 \pmod{n}$

$$2^{n-1}\equiv 1\pmod{p}, ext{ and } 2^{n-1}\equiv 1\pmod{q}$$

But

$$2^{n-1} = 2^{(p-1)q+q-1} \equiv 2^{q-1} \pmod{p}$$

So,

$$2^{q-1} \equiv 1 \pmod{p}$$
, and $2^{p-1} \equiv 1 \pmod{q}$

Step 1. There exist such *r*. Indeed if every prime of $2^n - 1$ is 1 modulo *n* then $2^n - 1 \equiv 1 \pmod{n}$ or $2^{n-1} \equiv 1 \pmod{n}$

$$2^{n-1}\equiv 1\pmod{p}, ext{ and } 2^{n-1}\equiv 1\pmod{q}$$

But

$$2^{n-1} = 2^{(p-1)q+q-1} \equiv 2^{q-1} \pmod{p}$$

So,

$$2^{q-1} \equiv 1 \pmod{p}$$
, and $2^{p-1} \equiv 1 \pmod{q}$

Step 2. $2^n \equiv 1 \pmod{r}$ and $2^{r-1} \equiv 1 \pmod{r}$ Hence

$$2^{(n,r-1)}\equiv 1\pmod{r}$$

and $(n, r-1) \neq 1, n$. Note that $(n, r-1) = (n, r \pmod{n} - 1)$

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	●000	
Pseudoprime	25		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The previous algorithm does not work for pseudoprime modulus.

The previous algorithm does not work for pseudoprime modulus.

Are there any?...

The previous algorithm does not work for pseudoprime modulus.

Are there any?...well... yes 341 is the smallest

The previous algorithm does not work for pseudoprime modulus.

Are there any?...well... yes 341 is the smallest

Are there infinitely many pseudoprimes?

The previous algorithm does not work for pseudoprime modulus.

Are there any?...well... yes 341 is the smallest

Are there infinitely many pseudoprimes?

Theorem. (Alford, Granville, Pomerance, 1994) There are infinitely many Charmichael numbers.

A Charmichael number is a composite number *n* such that $b^{n-1} \equiv 1 \pmod{n}$ for all (b, n) = 1. Example $561 = 3 \cdot 11 \cdot 17$.

Theorem. (Pomerance, 1981) Given x > 0, the number of pseudoprimes up to x is less than

$$x \exp(-\frac{1}{2}\log x \log \log \log x / \log \log x)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem. (Pomerance, 1981) Given x > 0, the number of pseudoprimes up to x is less than

$$x \exp(-\frac{1}{2}\log x \log \log \log x / \log \log x)$$

Proposition For large *z*, the number of RSA moduli n = pq, z < p, q < 2z pseudoprimes are less than

$$\left(\frac{z}{\log z}\right)^2 \frac{(\log\log\log z)^2}{\log z}$$

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	00●0	

Proof. $2^{(p-1,q-1)} \equiv 1 \pmod{n}$ not possible if $(p-1, q-1) < \log z$. Let $\pi(d, z) = |\{p \equiv 1 \pmod{d}, z$

$$\sum_{\substack{z < p, q < 2z \\ (p-1, q-1) > \log z}} 1 = \sum_{\log z < d < z} \pi(d, z)^2 \sim \sum_{\log z < d < z} \left(\frac{z}{\varphi(d) \log z}\right)^2$$

Since

$$\varphi(d) = d \prod_{p|d} \left(1 - \frac{1}{p} \right) > d \prod_{p < \log d} \left(1 - \frac{1}{p} \right) > \frac{Cd}{\log \log d}$$
$$\sum_{\log z < d < z} \frac{1}{\varphi(d)^2} < c \sum_{\log z < d < z} \frac{\log \log d}{d^2} < \frac{c(\log \log \log z)^2}{\log z}.$$

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	000●	

Theorem. (Barban-Davenport-Halberstam, 1963-1966)

$$\sum_{d \leq z^{1-\varepsilon}} \left| \psi(d,z) - \frac{z}{\varphi(d)} \right|^2 \ll \frac{z^2}{(\log z)^A},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

with a constant depending only in ε and A.

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
			00000000

Primitive roots and the general case.

To avoid the pseudoprime moduli, we will choose another integer m and $n' = m^n - 1$ with a prime factor not 1 modulo n.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
			00000000

Primitive roots and the general case.

To avoid the pseudoprime moduli, we will choose another integer m and $n' = m^n - 1$ with a prime factor not 1 modulo n.

Definition. Given a prime p, a primitive root modulo p is an integer so that $\langle m \rangle = \mathbb{F}_p^*$. $m^d \not\equiv 1 \pmod{p}$ for any $d \langle p - 1$.

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
			00000000

Primitive roots and the general case.

To avoid the pseudoprime moduli, we will choose another integer m and $n' = m^n - 1$ with a prime factor not 1 modulo n.

Definition. Given a prime p, a primitive root modulo p is an integer so that $\langle m \rangle = \mathbb{F}_p^*$. $m^d \not\equiv 1 \pmod{p}$ for any $d \langle p-1$.

If n = pq, q < p and m is a primitive root modulo p, $m^{n-1} \neq 1 \pmod{p}$, since $m^{q-1} \neq 1 \pmod{p}$.

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
			00000000

Question. How difficult is to find a primitive root modulo *p* without knowing *p*?.

There are $\varphi(p-1)$ primitive roots modulo p. Hence the probability to find one is

$$rac{arphi(p-1)}{p-1} = \prod_{q\mid p-1} \left(1-rac{1}{q}
ight) > \prod_{q < \log p} \left(1-rac{1}{q}
ight) > rac{c}{\log\log p}.$$

Question. How difficult is to find a primitive root modulo *p* without knowing *p*?.

There are $\varphi(p-1)$ primitive roots modulo p. Hence the probability to find one is

$$rac{arphi(p-1)}{p-1} = \prod_{q|p-1} \left(1-rac{1}{q}
ight) > \prod_{q < \log p} \left(1-rac{1}{q}
ight) > rac{c}{\log\log p}.$$

In particular a random set of size $C \log \log p$ should have positive probability to contain a primitive root modulo p. Since p < n a set of size $C \log \log n$ should have positive probability to contain a primitive root modulo p. The probability for a set of this size to contain no primitive roots is

$$\left(1 - \frac{c}{\log\log p}\right)^{C\log\log p} \sim e^{-Cc}$$

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	0000	

(E. Bach, 1997) Let g(p) the least primitive root modulo p.

 $g(p) \leq e^{\gamma} \log p (\log \log p)^2 (1 + \varepsilon).$

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	0000	00●0000000

(E. Bach, 1997) Let g(p) the least primitive root modulo p.

$$g(p) \leq e^{\gamma} \log p(\log \log p)^2 (1 + \varepsilon).$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (V. Shoup, 1992) Under GRH, $g(p) \ll (\log p)^6$

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	0000	

(E. Bach, 1997) Let g(p) the least primitive root modulo p.

$$g(p) \leq e^{\gamma} \log p(\log \log p)^2(1 + \varepsilon).$$

Theorem (V. Shoup, 1992) Under GRH, $g(p) \ll (\log p)^6$

Conjecture (Artin, 1927) Any given integer *a* not 1, -1 or a perfect square is a primitive root for a positive proportion of primes $\prod_{q} \left(1 - \frac{1}{q(q-1)}\right) \sim 0.37395.$

(日) (同) (三) (三) (三) (○) (○)

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	0000	

(E. Bach, 1997) Let g(p) the least primitive root modulo p.

$$g(p) \leq e^{\gamma} \log p(\log \log p)^2(1 + \varepsilon).$$

Theorem (V. Shoup, 1992) Under GRH, $g(p) \ll (\log p)^6$

Conjecture (Artin, 1927) Any given integer *a* not 1, -1 or a perfect square is a primitive root for a positive proportion of primes $\prod_{q} \left(1 - \frac{1}{q(q-1)}\right) \sim 0.37395.$

Theorem. (Heath-Brown, 1986) Among 3, 5, 7 there is a primitive root for infinitely many p

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	0000	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For each integer m set $n'_m = (m^n - 1)/(m - 1)$, and $S_m = \{r \pmod{n} \neq 1 : r \text{ prime } r | n'_m \}.$

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	0000	

For each integer
$$m$$
 set $n'_m = (m^n - 1)/(m - 1)$, and $S_m = \{r \pmod{n} \neq 1 : r \text{ prime } r | n'_m \}.$

Algorithm The m-ary representation of n is c independent of m

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- m=2
- Send (c,m) to \mathcal{O}
- S = m = m + 1. Return
- take $r \in S$ and compute d = (r 1, n).

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	0000	

For each integer
$$m$$
 set $n'_m = (m^n - 1)/(m - 1)$, and $S_m = \{r \pmod{n} \neq 1 : r \text{ prime } r | n'_m \}.$

Algorithm The m-ary representation of n is c independent of m

• Send (c,m) to \mathcal{O}

•
$$S = m = m + 1$$
. Return

• take $r \in S$ and compute d = (r - 1, n).

Theorem (L. Dieulefait and J. Jiménez Urroz)

Let $n = pq \ z < p, q < 2z$, be and RSA modulus . Then, under GRH the previous algorithm gives a prime divisor of n in polynomial time.

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	0000	
Proof			

Lemma Let n = pq and RSA modulus and m such that (m-1, n) = 1. Then $(n'_m, m-1) = 1$. If $r|(n'_m, m-1)$, then $n'_m = \sum_{j=0}^{n-1} m^j \equiv n \pmod{r}$.

Step 1. There exist such r. Indeed if every prime of n'_m is 1 modulo n then $m'_n \equiv 1 \pmod{n}$ or $m^{n-1} \equiv 1 \pmod{n}$

$$m^{n-1} \equiv 1 \pmod{p}$$
, and $m^{n-1} \equiv 1 \pmod{q}$

But

$$m^{n-1} = 2^{(p-1)q+q-1} \equiv m^{q-1} \pmod{p}$$

which is not possible.

Introduction 000	A particular case	Pseudoprimes 0000	Primitive roots and the general case
Proof			

Lemma Let n = pq and RSA modulus and m such that (m-1, n) = 1. Then $(n'_m, m-1) = 1$. If $r|(n'_m, m-1)$, then $n'_m = \sum_{j=0}^{n-1} m^j \equiv n \pmod{r}$.

Step 1. There exist such r. Indeed if every prime of n'_m is 1 modulo n then $m'_n \equiv 1 \pmod{n}$ or $m^{n-1} \equiv 1 \pmod{n}$

$$m^{n-1}\equiv 1 \pmod{p}, ext{ and } m^{n-1}\equiv 1 \pmod{q}$$

But

$$m^{n-1} = 2^{(p-1)q+q-1} \equiv m^{q-1} \pmod{p}$$

which is not possible.

Step 2. $m^n \equiv 1 \pmod{r}$ and $m^{r-1} \equiv 1 \pmod{r}$. Hence $m^{(n,r-1)} \equiv 1 \pmod{r}$ and $(n, r-1) \neq 1, n$. Note that $(n, r-1) = (n, r \pmod{n} - 1)$

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
			000000000

And... ¿Without cheating?

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	0000	

And... ¿Without cheating? We are looking for a number n' which helps to factorize n.

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	0000	

And... ¿Without cheating? We are looking for a number n' which helps to factorize n.

Definition. Given a field K. An elliptic curve over K is the set

$$E/K := \{(x, y) \in K \times K : y^2 = x^3 + ax + b, a, b \in K\} \cup \{O\}$$
$$4a^3 + 27b^2 \neq 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	0000	

And... ¿Without cheating? We are looking for a number n' which helps to factorize n.

Definition. Given a field K. An elliptic curve over K is the set

$$E/K := \{(x, y) \in K \times K : y^2 = x^3 + ax + b, a, b \in K\} \cup \{O\}$$
$$4a^3 + 27b^2 \neq 0.$$

Theorem. E/\mathbb{F}_q is an abelian group of size

$$|E/\mathbb{F}_q| = q + 1 - a_q$$

where

$$|a_q| \leq 2\sqrt{q}.$$

Defintion. Given an integer n = pq an elliptic curve modulo n is the set

$$E_n := E/\mathbb{F}_p \times E/\mathbb{F}_q.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	0000	

Defintion. Given an integer n = pq an elliptic curve modulo n is the set

$$E_n := E/\mathbb{F}_p \times E/\mathbb{F}_q.$$

$$|E_n| = |E/\mathbb{F}_p| \times |E/\mathbb{F}_q|.$$

<□ > < @ > < E > < E > E のQ @

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	0000	

Defintion. Given an integer n = pq an elliptic curve modulo n is the set

$$E_n := E/\mathbb{F}_p \times E/\mathbb{F}_q.$$

$$|E_n| = |E/\mathbb{F}_p| \times |E/\mathbb{F}_q|.$$

Lemma. Let n = pq with $p \approx q$. Then,

$$||E_n|-n|\leq cn^{3/4}.$$

Introduction	A particular case	Pseudoprimes	Prir
			000

Primitive roots and the general case

Theorem (L. Dieulefait and J. Jiménez Urroz, 2019)

Let n = pq, and E_n and elliptic curve modulo n. Then knowing $|E_n|$ we can factor n in polynomial time.

Theorem (L. Dieulefait and J. Jiménez Urroz, 2019)

Let n = pq, and E_n and elliptic curve modulo n. Then knowing $|E_n|$ we can factor n in polynomial time.

Proof.

Theorem (J. Cilleruelo-J. Jiménez Urroz)

In an arc of lenght $cn^{1/4}$ of the hyperbola xy = n with $x, y \ge n^{1/2}$ there are at most 4 points of integer coordinates.

Theorem (L. Dieulefait and J. Jiménez Urroz, 2019)

Let n = pq, and E_n and elliptic curve modulo n. Then knowing $|E_n|$ we can factor n in polynomial time.

Proof.

Theorem (J. Cilleruelo-J. Jiménez Urroz)

In an arc of lenght $cn^{1/4}$ of the hyperbola xy = n with $x, y \ge n^{1/2}$ there are at most 4 points of integer coordinates.

Theorem (L. Dieulefait and J. Jiménez Urroz, 2019)

Let n = pq, and E_n and elliptic curve modulo n. Then knowing $|E_n|$ we can factor n in polynomial time.

Proof.

Theorem (J. Cilleruelo-J. Jiménez Urroz)

In an arc of lenght $cn^{1/4}$ of the hyperbola xy = n with $x, y \ge n^{1/2}$ there are at most 4 points of integer coordinates.

So, we ask the oracle for the factor of E_n of size $n^{1/2}$. Note that $p + 1 - a_p$ and $q + 1 - a_q$ are two of those points.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Theorem (L. Dieulefait and J. Jiménez Urroz, 2019)

Let n = pq, and E_n and elliptic curve modulo n. Then knowing $|E_n|$ we can factor n in polynomial time.

Proof.

Theorem (J. Cilleruelo-J. Jiménez Urroz)

In an arc of lenght $cn^{1/4}$ of the hyperbola xy = n with $x, y \ge n^{1/2}$ there are at most 4 points of integer coordinates.

So, we ask the oracle for the factor of E_n of size $n^{1/2}$. Note that $p + 1 - a_p$ and $q + 1 - a_q$ are two of those points. Use Coppersmith algorithm to find p.

Theorem (Coppersmith)

If we know an integer n = pq and we know the high order log_2N bits of p, then in polynomial time in log(n) we can recover p and q.

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	0000	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

Finding the number of points of elliptic curves modulo n is equivalent to factoring n.

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	0000	

Theorem

Finding the number of points of elliptic curves modulo n is equivalent to factoring n.

Let $\hat{E}, \tilde{E}, \bar{E}$ the three possible twists of E. Then

$$\begin{split} E &= (p - a_p)(q - a_q) = n - pa_q - qa_p + a_pa_q \\ \hat{E} &= (p + a_p)(q + a_q) = n + pa_q + qa_p + a_pa_q, \\ \tilde{E} &= (p - a_p)(q + a_q) = n + qa_q - qa_p - a_pa_q, \\ \bar{E} &= (p + a_p)(q - a_q) = n - pa_q + qa_p - a_pa_q. \end{split}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	0000	000000000●

Lemma

$$\begin{aligned} |E| + |\hat{E}| + |\tilde{E}| + |\bar{E}| &= 4n\\ E\hat{E} &= \tilde{E}\bar{E}. \end{aligned}$$

Then, knowing *E* and \hat{E} , we compute its product, $M = E\hat{E}$ and its sum $L = E + \hat{E}$, and we have

$$\tilde{E}\bar{E} = M$$

 $\tilde{E} + \bar{E} = 4n - L$

so \tilde{E} and \bar{E} are the solutions of the quadratic polynomial $X^2 - (4n - L)X + M$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case
000	00	0000	000000000●

Lemma

$$\begin{split} |E| + |\hat{E}| + |\tilde{E}| + |\bar{E}| = 4n \\ E\hat{E} &= \tilde{E}\bar{E}. \end{split}$$

Then, knowing *E* and \hat{E} , we compute its product, $M = E\hat{E}$ and its sum $L = E + \hat{E}$, and we have

$$\tilde{E}\bar{E} = M$$

 $\tilde{E} + \bar{E} = 4n - L$

so \tilde{E} and \bar{E} are the solutions of the quadratic polynomial $X^2 - (4n - L)X + M$.

 $gcd(E + \overline{E}, n) = p$