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Problem. (Malleability of Factoring) Given and RSA modulus n
find another integer n′

coprime to n :)

so that the factorization of
n′ will help to factorize n.
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Theorem. Given any n = pq RSA modulus there exist another
integer n′ so that factoring n′ allow us to factor n in polynomial
time.

n′ = 2n − 1
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A particular case

Theorem (L. Dieulefait and J. Jiménez Urroz, 2009)

Let n = pq z < p, q < 2z, be and RSA modulus such that either
we have 2p−1 6≡ 1 (mod q) or 2q−1 6≡ 1 (mod p) and let
n′ = 2n − 1. Then, with the factorization of n′ we can find a prime
divisor of n in polynomial time.

Proof To factor n we use an oracle O that allow us to factor any
given n‘ coprime to n. Let S = {r (mod n) 6= 1, r |n′, prime}

Algorithm.

Send n′ in binary form to O.

Take r ∈ S and compute (r − 1, n) = p.
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Step 1. There exist such r . Indeed if every prime of 2n − 1 is 1
modulo n then 2n − 1 ≡ 1 (mod n) or 2n−1 ≡ 1 (mod n)

2n−1 ≡ 1 (mod p), and 2n−1 ≡ 1 (mod q)

But
2n−1 = 2(p−1)q+q−1 ≡ 2q−1 (mod p)

So,
2q−1 ≡ 1 (mod p), and 2p−1 ≡ 1 (mod q)

Step 2. 2n ≡ 1 (mod r) and 2r−1 ≡ 1 (mod r) Hence

2(n,r−1) ≡ 1 (mod r)

and (n, r − 1) 6= 1, n. Note that (n, r − 1) = (n, r (mod n)− 1)
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Pseudoprimes

Definition. An integer n so that 2n − 1 ≡ 1 (mod n) is called a
pseudoprime.

The previous algorithm does not work for pseudoprime modulus.

Are there any?...

well... yes 341 is the smallest

Are there infinitely many pseudoprimes?

Theorem. (Alford, Granville, Pomerance, 1994) There are
infinitely many Charmichael numbers.

A Charmichael number is a composite number n such that
bn−1 ≡ 1 (mod n) for all (b, n)) = 1. Example 561 = 3 · 11 · 17.
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Theorem. (Pomerance, 1981) Given x > 0, the number of
pseudoprimes up to x is less than

x exp(−1

2
log x log log log x/ log log x)

Proposition For large z , the number of RSA moduli n = pq,
z < p, q < 2z pseudoprimes are less than(

z

log z

)2 (log log log z)2

log z
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Proof.
2(p−1,q−1) ≡ 1 (mod n) not possible if (p − 1, q − 1) < log z . Let
π(d , z) = |{p ≡ 1 (mod d), z < p < 2zprime }|.

∑
z<p,q<2z

(p−1,q−1)>log z

1 =
∑

log z<d<z

π(d , z)2 ∼
∑

log z<d<z

(
z

ϕ(d) log z

)2

Since

ϕ(d) = d
∏
p|d

(
1− 1

p

)
> d

∏
p<log d

(
1− 1

p

)
>

Cd

log log d

∑
log z<d<z

1

ϕ(d)2
< c

∑
log z<d<z

log log d

d2
<

c(log log log z)2

log z
.
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Theorem. (Barban-Davenport-Halberstam, 1963-1966)

∑
d≤z1−ε

∣∣∣∣ψ(d , z)− z

ϕ(d)

∣∣∣∣2 � z2

(log z)A
,

with a constant depending only in ε and A.
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Primitive roots and the general case.

To avoid the pseudoprime moduli, we will choose another integer
m and n′ = mn − 1 with a prime factor not 1 modulo n.

Definition. Given a prime p, a primitive root modulo p is an
integer so that < m >= F∗p. md 6≡ 1 (mod p) for any d < p − 1.

If n = pq, q < p and m is a primitive root modulo p, mn−1 6≡ 1
(mod n), since mq−1 6≡ 1 (mod p).
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Question. How difficult is to find a primitive root modulo p
without knowing p?.

There are ϕ(p − 1) primitive roots modulo p. Hence the
probability to find one is

ϕ(p − 1)

p − 1
=
∏

q|p−1

(
1− 1

q

)
>

∏
q<log p

(
1− 1

q

)
>

c

log log p
.

In particular a random set of size C log log p should have positive
probability to contain a primitive root modulo p. Since p < n a set
of size C log log n should have positive probability to contain a
primitive root modulo p. The probability for a set of this size to
contain no primitive roots is(

1− c

log log p

)C log log p

∼ e−Cc .
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Results.
(E. Bach, 1997) Let g(p) the least primitive root modulo p.

g(p) ≤ eγ log p(log log p)2(1 + ε).

Theorem (V. Shoup, 1992) Under GRH, g(p)� (log p)6

Conjecture (Artin, 1927) Any given integer a not 1,−1 or a
perfect square is a primitive root for a positive proportion of primes∏

q

(
1− 1

q(q−1)

)
∼ 0.37395.

Theorem. (Heath-Brown, 1986) Among 3, 5, 7 there is a primitive
root for infinitely many p
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For each integer m set n′m = (mn − 1)/(m − 1), and
Sm = {r (mod n) 6= 1 : r prime r |n′m}.

Algorithm The m-ary representation of n is c independent of m

m=2

Send (c ,m) to O
S =, m = m + 1. Return

take r ∈ S and compute d = (r − 1, n).

Theorem (L. Dieulefait and J. Jiménez Urroz)

Let n = pq z < p, q < 2z, be and RSA modulus . Then, under
GRH the previous algorithm gives a prime divisor of n in
polynomial time.
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Proof

Lemma Let n = pq and RSA modulus and m such that
(m − 1, n) = 1. Then (n′m,m − 1) = 1. If r |(n′m,m − 1), then
n′m =

∑n−1
j=0 mj ≡ n (mod r).

Step 1. There exist such r . Indeed if every prime of n′m is 1
modulo n then m′n ≡ 1 (mod n) or mn−1 ≡ 1 (mod n)

mn−1 ≡ 1 (mod p), and mn−1 ≡ 1 (mod q)

But
mn−1 = 2(p−1)q+q−1 ≡ mq−1 (mod p)

which is not possible.

Step 2. mn ≡ 1 (mod r) and mr−1 ≡ 1 (mod r). Hence

m(n,r−1) ≡ 1 (mod r)

and (n, r − 1) 6= 1, n. Note that (n, r − 1) = (n, r (mod n)− 1)
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And... ¿Without cheating?

We are looking for a number n′ which
helps to factorize n.

Defintion. Given a field K . An elliptic curve over K is the set

E/K :=
{

(x , y) ∈ K × K : y2 = x3 + ax + b, a, b ∈ K
}
∪ {O}

4a3 + 27b2 6= 0.

Theorem. E/Fq is an abelian group of size

|E/Fq| = q + 1− aq

where
|aq| ≤ 2

√
q.
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Defintion. Given an integer n = pq an elliptic curve modulo n is
the set

En := E/Fp × E/Fq.

|En| = |E/Fp| × |E/Fq|.

Lemma. Let n = pq with p ≈ q. Then,

||En| − n| ≤ cn3/4.
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Theorem (L. Dieulefait and J. Jiménez Urroz, 2019)

Let n = pq, and En and elliptic curve modulo n. Then knowing
|En| we can factor n in polynomial time.

Proof.

Theorem (J. Cilleruelo-J. Jiménez Urroz)

In an arc of lenght cn1/4 of the hyperbola xy = n with x , y ≥ n1/2

there are at most 4 points of integer coordinates.

So, we ask the oracle for the factor of En of size n1/2. Note that
p + 1− ap and q + 1− aq are two of those points.

Use
Coppersmith algorithm to find p.

Theorem (Coppersmith)

If we know an integer n = pq and we know the high order log2N
bits of p, then in polynomanl time in log(n) we can recover p and
q.
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In an arc of lenght cn1/4 of the hyperbola xy = n with x , y ≥ n1/2

there are at most 4 points of integer coordinates.

So, we ask the oracle for the factor of En of size n1/2. Note that
p + 1− ap and q + 1− aq are two of those points.

Use
Coppersmith algorithm to find p.

Theorem (Coppersmith)

If we know an integer n = pq and we know the high order log2N
bits of p, then in polynomanl time in log(n) we can recover p and
q.



Introduction A particular case Pseudoprimes Primitive roots and the general case

Theorem (L. Dieulefait and J. Jiménez Urroz, 2019)
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Theorem

Finding the number of points of elliptic curves modulo n is
equivalent to factoring n.

Let Ê , Ẽ , Ē the three possible twists of E . Then

E = (p − ap)(q − aq) = n − paq − qap + apaq

Ê = (p + ap)(q + aq) = n + paq + qap + apaq,

Ẽ = (p − ap)(q + aq) = n + qaq − qap − apaq,

Ē = (p + ap)(q − aq) = n − paq + qap − apaq.
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Lemma

|E |+ |Ê |+ |Ẽ |+ |Ē | = 4n

E Ê = Ẽ Ē .

Then, knowing E and Ê , we compute its product, M = E Ê and its
sum L = E + Ê , and we have

Ẽ Ē = M

Ẽ + Ē = 4n − L

so Ẽ and Ē are the solutions of the quadratic polynomial
X 2 − (4n − L)X + M.

gcd(E + Ē , n) = p
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