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A particular case

Theorem (L. Dieulefait and J. Jiménez Urroz, 2009)

Let n = pq z < p, q < 2z, be and RSA modulus such that either
we have 2p−1 6≡ 1 (mod q) or 2q−1 6≡ 1 (mod p) and let
n′ = 2n − 1. Then, with the factorization of n′ we can find a prime
divisor of n in polynomial time.

Proof To factor n we use an oracle O that allow us to factor any
given n‘ coprime to n. Let S = {r (mod n) 6= 1, r |n′, prime}

Algorithm.

Send n′ in binary form to O.

Take r ∈ S and compute (r − 1, n) = p.
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Step 1. There exist such r . Indeed if every prime of 2n − 1 is 1
modulo n then 2n − 1 ≡ 1 (mod n) or 2n−1 ≡ 1 (mod n)

2n−1 ≡ 1 (mod p), and 2n−1 ≡ 1 (mod q)

But
2n−1 = 2(p−1)q+q−1 ≡ 2q−1 (mod p)

So,
2q−1 ≡ 1 (mod p), and 2p−1 ≡ 1 (mod q)

Step 2. 2n ≡ 1 (mod r) and 2r−1 ≡ 1 (mod r) Hence

2(n,r−1) ≡ 1 (mod r)

and (n, r − 1) 6= 1, n. Note that (n, r − 1) = (n, r (mod n)− 1)
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Pseudoprimes

Definition. An integer n so that 2n − 1 ≡ 1 (mod n) is called a
pseudoprime.

The previous algorithm does not work for pseudoprime modulus.

Are there any?...

well... yes 341 is the smallest

Are there infinitely many pseudoprimes?

Theorem. (Alford, Granville, Pomerance, 1994) There are
infinitely many Charmichael numbers.

A Charmichael number is a composite number n such that
bn−1 ≡ 1 (mod n) for all (b, n)) = 1. Example 561 = 3 · 11 · 17.
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Theorem. (Pomerance, 1981) Given x > 0, the number of
pseudoprimes up to x is less than

x exp(−1

2
log x log log log x/ log log x)

Proposition For large z , the number of RSA moduli n = pq,
z < p, q < 2z pseudoprimes are less than(

z

log z

)2 (log log z)2

log z
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Proof.
2(p−1,q−1) ≡ 1 (mod n) not possible if (p − 1, q − 1) < log z . Let
π(d , z) = |{p ≡ 1 (mod d), z < p < 2zprime }|.

∑
z<p,q<2z

(p−1,q−1)>log z

1 =
∑

log z<d<z

π(d , z)2 ∼
∑

log z<d<z

(
z

ϕ(d) log z

)2

Since

ϕ(d) = d
∏
p|d

(
1− 1

p

)
> d

∏
p<log d

(
1− 1

p

)
>

Cd

log log d

∑
log z<d<z

1

ϕ(d)2
< c

∑
log z<d<z

(log log d)2

d2
<

c(log log z)2

log z
.
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Theorem. (Barban-Davenport-Halberstam, 1963-1966)

∑
d≤z1−ε

∣∣∣∣ψ(d , z)− z

ϕ(d)

∣∣∣∣2 � z2

(log z)A
,

with a constant depending only in ε and A.
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Primitive roots and the general case.

To avoid the pseudoprime moduli, we will choose another integer
m and n′ = mn − 1 with a prime factor not 1 modulo n.

Definition. Given a prime p, a primitive root modulo p is an
integer so that < m >= F∗p. md 6≡ 1 (mod p) for any d < p − 1.

If n = pq, q < p and m is a primitive root modulo p, mn−1 6≡ 1
(mod n), since mq−1 6≡ 1 (mod p).
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Question. How difficult is to find a primitive root modulo p
without knowing p?.

There are ϕ(p − 1) primitive roots modulo p. Hence the
probability to find one is

ϕ(p − 1)

p − 1
=
∏

q|p−1

(
1− 1

q

)
>

∏
q<log p

(
1− 1

q

)
>

c

log log p
.

In particular a random set of size C log log p should have positive
probability to contain a primitive root modulo p. Since p < n a set
of size C log log n should have positive probability to contain a
primitive root modulo p. The probability for a set of this size to
contain no primitive roots is(

1− c

log log p

)C log log p

∼ e−Cc .
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Results.
(E. Bach, 1997) Let g(p) the least prime primitive root modulo p.
Heuristically we have

g(p) ≤ eγ log p(log log p)2(1 + ε).

Theorem (V. Shoup, 1992) Under GRH, g(p)� (log p)6

Conjecture (Artin, 1927) Any given integer a not 1,−1 or a
perfect square is a primitive root for a positive proportion of
primes,∏

q

(
1− 1

q(q−1)

)
∼ 0.37395, for squarefree a 6= 1 (mod 4).

Theorem. (Heath-Brown, 1986) Among 3, 5, 7 there is a primitive
root for infinitely many p
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For each integer m set n′m = (mn − 1)/(m − 1), and
Sm = {r (mod n) 6= 1 : r prime r |n′m}.

Algorithm The m-ary representation of n′m is c independent of m

m=2

Send (c ,m) to O
S =, m = m + 1. Return

take r ∈ S and compute d = (r − 1, n).

Theorem (L. Dieulefait and J. Jiménez Urroz)

Let n = pq z < p, q < 2z, be and RSA modulus . Then, under
GRH the previous algorithm gives a prime divisor of n in
polynomial time.
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Proof

Lemma Let n = pq and RSA modulus and m such that
(m − 1, n) = 1. Then (n′m,m − 1) = 1. If r |(n′m,m − 1), then
n′m =

∑n−1
j=0 mj ≡ n (mod r).

Step 1. There exist such r . Indeed if every prime of n′m is 1
modulo n then n′m ≡ 1 (mod n) or mn−1 ≡ 1 (mod n)

mn−1 ≡ 1 (mod p), and mn−1 ≡ 1 (mod q)

But
mn−1 = m(p−1)q+q−1 ≡ mq−1 (mod p)

which is not possible.

Step 2. mn ≡ 1 (mod r) and mr−1 ≡ 1 (mod r). Hence

m(n,r−1) ≡ 1 (mod r)

and (n, r − 1) 6= 1, n. Note that (n, r − 1) = (n, r (mod n)− 1)
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And... ¿Without cheating?

We are looking for a number n′ which
helps to factorize n.

elliPtiC cUuuuurvesssss
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Arithmeticorum, 1670, Diophanti Alexandrini
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Find the integral solutions of x2 + y2 = z2

Find the rationals solutions of x2 + y2 = 1

y = t(x − 1) , then x = t2−1
t2+1

y = 2t
t2+1
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Find the rational solutions of x3 + y3 = 1
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We parametrize by y = t(x − 1), to get

(t3 + 1)x2 + (1− 2t3)x + (1 + t3) = 0
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Changing variables x = u + t, y = u − t, we get

2u3 + 6ut2 = 1

Multiplying by (6/u)3, and letting 6/u = X , 36t/u = Y , we get

Y 2 = X 3 − 432.
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Every cubic can be written as y2 = x3 + ax + b,

Definition

Given a field K . An elliptic curve over K is the set

E/K :=
{

(x , y) ∈ K × K : y2 = x3 + ax + b, a, b ∈ K
}
∪ {O}

4a3 + 27b2 6= 0.
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Key point on the theory of elliptic curves:

3 = 2 + 1

(E (Q),+) is a finitely generated abelian group

E (Q) ' Zr × Etors(Q)

Group law: x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2

y3 = −
(

y2 − y1
x2 − x1

)
x3 −

(
y1x2 − y2x1

x2 − x1

)

Theorem

(Mazur, 1978) If Cn denotes the cyclic group of order n, then the
groups that appear as Etors(Q) are Cn with 1 ≤ n ≤ 10, C12 and
C2 × C2, C2 × C4, C2 × C6, and C2 × C8.

The rank, r , is highly unknown.



Introduction A particular case Pseudoprimes Primitive roots and the general case Elliptic Curves

Key point on the theory of elliptic curves:

3 = 2 + 1

(E (Q),+) is a finitely generated abelian group

E (Q) ' Zr × Etors(Q)

Group law: x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2

y3 = −
(

y2 − y1
x2 − x1

)
x3 −

(
y1x2 − y2x1

x2 − x1

)

Theorem

(Mazur, 1978) If Cn denotes the cyclic group of order n, then the
groups that appear as Etors(Q) are Cn with 1 ≤ n ≤ 10, C12 and
C2 × C2, C2 × C4, C2 × C6, and C2 × C8.

The rank, r , is highly unknown.
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Very nice. But what do we do now? Can we find points?

On the elliptic curve y2 = x3 + 877x , the smallest non trivial point
is

x =
375494528127162193105504069942092792346201

6215987776871505425463220780697238044100

Try to generalize Hasse’s principle: Every quadratic form has
integer solutions, if and only if has solutions in every completion of
Q

Corollary

x2 + 2y2 = 5z2 has no non-trivial integer solutions.
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Theorem (Hasse, 1930)

E/Fq is an abelian group of size

|E/Fq| = q + 1− aq

where
|aq| ≤ 2

√
q.

Example Consider the curve y2 = x3 − 1 and q ≡ 2 (mod 3).
Then, E (Fq) = q + 1.
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Defintion. Given an integer n = pq an elliptic curve modulo n is
the set

En := E/Fp × E/Fq.

|En| = |E/Fp| × |E/Fq|.

Lemma. Let n = pq with p ≈ q. Then,

||En| − n| ≤ cn3/4.
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Theorem (L. Dieulefait and J. Jiménez Urroz, 2019)

Let n = pq, and En and elliptic curve modulo n. Then knowing the
factors of |En| we can factor n in polynomial time.

Proof.

Theorem (J. Cilleruelo-J. Jiménez Urroz)

In an arc of lenght cn1/4 of the hyperbola xy = n there are at most
4 points of integer coordinates.

So, we ask the oracle for the factors of En of size n1/2. Note that
p + 1− ap and q + 1− aq are two of those points.

Use
Coppersmith algorithm to find p.

Theorem (Coppersmith)

If we know an integer n = pq and we know the high order 1
4 log2N

bits of p, then we can recover p and q in polynomial time in log(n)
.
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Theorem

Finding the number of points of elliptic curves modulo n is
equivalent to factoring n.

N. Kunihiro and K. Koyama in communications of NTT science lab
prove to be computationally equivalent, assuming uniform
distribution of ap.

S. Martin, P. Morillo and J. Villar find an algorithm that with input
the order of a point, find the factorization of n with positive
probability.
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Let Ê , Ẽ , Ē the three possible twists of E . Then

E = (p − ap)(q − aq) = n − paq − qap + apaq

Ê = (p + ap)(q + aq) = n + paq + qap + apaq,

Ẽ = (p − ap)(q + aq) = n + qaq − qap − apaq,

Ē = (p + ap)(q − aq) = n − paq + qap − apaq.
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Lemma

|E |+ |Ê |+ |Ẽ |+ |Ē | = 4n

E Ê = Ẽ Ē .

Then, knowing E and Ê , we compute its product, M = E Ê and its
sum L = E + Ê , and we have

Ẽ Ē = M

Ẽ + Ē = 4n − L

so Ẽ and Ē are the solutions of the quadratic polynomial
X 2 − (4n − L)X + M.

gcd(E + Ē , n) = p
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