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Conjecture. Factoring is not malleable.

Theorem. Given any n = pg RSA modulus there exist another
integer n’ so that factoring n” allow us to factor n in polynomial
time.

n=2"-1
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Theorem (L. Dieulefait and J. Jiménez Urroz, 2009)

Let n=pqg z < p,q < 2z, be and RSA modulus such that either
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n' = 2" — 1. Then, with the factorization of n we can find a prime
divisor of n in polynomial time.
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A particular case

Theorem (L. Dieulefait and J. Jiménez Urroz, 2009)

Let n=pqg z < p,q < 2z, be and RSA modulus such that either
we have 2P~1 # 1 (mod q) or 2971 # 1 (mod p) and let

n' = 2" — 1. Then, with the factorization of n we can find a prime
divisor of n in polynomial time.

Proof To factor n we use an oracle O that allow us to factor any
given n' coprime to n. Let S = {r (mod n) # 1, r|n’, prime}

Algorithm.
@ Send ' in binary form to O.
e Take r € S and compute (r — 1, n) = p.
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Step 1. There exist such r. Indeed if every prime of 27 — 1 is 1
modulo n then 2" — 1 =1 (mod n) or 2"~ =1 (mod n)

2" =1 (mod p), and 2" 1 =1 (mod q)

But
on=1 _ o(p=1)g+q-1 — 9q-1 (mod p)

So,
2971 =1 (mod p), and 2"t =1 (mod q)
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Step 1. There exist such r. Indeed if every prime of 27 — 1 is 1
modulo n then 2" — 1 =1 (mod n) or 2"~ =1 (mod n)

2" =1 (mod p), and 2" 1 =1 (mod q)

But
on=1 _ o(p=1)g+q-1 — 9q-1 (mod p)

So,
2971 =1 (mod p), and 2"t =1 (mod q)

Step 2. 2" =1 (mod r) and 2" =1 (mod r) Hence
2(n=1) =1 (mod r)

and (n,r —1) # 1, n. Note that (n,r —1) = (n,r (mod n) — 1)



Pseudoprimes
®000

Pseudoprimes

Definition. An integer n so that 2" — 1 =1 (mod n) is called a
pseudoprime.



Pseudoprimes
®000

Pseudoprimes

Definition. An integer n so that 2" — 1 =1 (mod n) is called a
pseudoprime.

The previous algorithm does not work for pseudoprime modulus.



Pseudoprimes
®000

Pseudoprimes

Definition. An integer n so that 2" — 1 =1 (mod n) is called a
pseudoprime.

The previous algorithm does not work for pseudoprime modulus.

Are there any?...



Pseudoprimes
®000

Pseudoprimes

Definition. An integer n so that 2" — 1 =1 (mod n) is called a
pseudoprime.

The previous algorithm does not work for pseudoprime modulus.

Are there any?...well... yes 341 is the smallest



Pseudoprimes
®000

Pseudoprimes

Definition. An integer n so that 2" — 1 =1 (mod n) is called a
pseudoprime.

The previous algorithm does not work for pseudoprime modulus.
Are there any?...well... yes 341 is the smallest

Are there infinitely many pseudoprimes?



Pseudoprimes
®000

Pseudoprimes

Definition. An integer n so that 2" — 1 =1 (mod n) is called a
pseudoprime.

The previous algorithm does not work for pseudoprime modulus.
Are there any?...well... yes 341 is the smallest
Are there infinitely many pseudoprimes?

Theorem. (Alford, Granville, Pomerance, 1994) There are
infinitely many Charmichael numbers.

A Charmichael number is a composite number n such that
b"t =1 (mod n) for all (b, n)) = 1. Example 561 = 3 - 11 - 17.
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Theorem. (Pomerance, 1981) Given x > 0, the number of
pseudoprimes up to x is less than

1
X exp(—E log x log log log x/ log log x)
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Theorem. (Pomerance, 1981) Given x > 0, the number of
pseudoprimes up to x is less than

1
X exp(—E log x log log log x/ log log x)

Proposition For large z, the number of RSA moduli n = pgq,
z < p,q < 2z pseudoprimes are less than

z \? (loglog z)?
log z log z
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Proof.
2(p=1,6-1) = 1 (mod n) not possible if (p —1,q — 1) < logz. Let
7(d,z) =|{p=1 (mod d),z < p < 2zprime }|.

2
zZ
E 1= g d,z)? ~ E —_—
m(e2) <<p(d) |0g2>
z<p,q<2z log z<d<z log z<d<z
(p—1,g—1)>log z

Since

D=all(1-5) > T (1-}) > giega

pld p<log d

Z 1 ¢ Z (Ioglogd)2<c(|og|ogz)2.

d? log z

log z<d<z log z<d<z
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Theorem. (Barban-Davenport-Halberstam, 1963-1966)

>

d§21_5

Z2
(log 2)A”

¥(d, z) — <

w(zd)’

with a constant depending only in € and A.
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Primitive roots and the general case.

To avoid the pseudoprime moduli, we will choose another integer
m and n’ = m" — 1 with a prime factor not 1 modulo n.

Definition. Given a prime p, a primitive root modulo p is an
integer so that < m >=TF%. m9 # 1 (mod p) for any d < p —1.

If n=pq, g < pand mis a primitive root modulo p, m"~! # 1
(mod n), since m9~1 £ 1 (mod p).
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Question. How difficult is to find a primitive root modulo p
without knowing p?.

There are ¢(p — 1) primitive roots modulo p. Hence the
probability to find one is

D) L6

qlp—1 q<logp



Primitive roots and the general case
0®0000

Question. How difficult is to find a primitive root modulo p
without knowing p?.

There are ¢(p — 1) primitive roots modulo p. Hence the
probability to find one is

soi)P 11) = 11 <1_ t17> - 1l (1_:1> g |0g|i>gp’
qlp—1 q<logp
In particular a random set of size C loglog p should have positive
probability to contain a primitive root modulo p. Since p < n a set
of size Cloglog n should have positive probability to contain a
primitive root modulo p. The probability for a set of this size to
contain no primitive roots is

c Cloglogp
<1 - > ~ e*CC.
log log p
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Primitive roots and the general case
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Results.
(E. Bach, 1997) Let g(p) the least prime primitive root modulo p.
Heuristically we have

g(p) < € log p(log log p)*(1 + €).

Theorem (V. Shoup, 1992) Under GRH, g(p) < (log p)°

Conjecture (Artin, 1927) Any given integer a not 1, —1 or a
perfect square is a primitive root for a positive proportion of
primes,

I1, (1 - ﬁ) ~ 0.37395, for squarefree a # 1 (mod 4).

Theorem. (Heath-Brown, 1986) Among 3, 5,7 there is a primitive
root for infinitely many p



Primitive roots and the general case
000e00

For each integer m set n, = (m" —1)/(m — 1), and
Sm={r (mod n) # 1:r prime r|n,}.



Primitive roots and the general case
000e00

For each integer m set n, = (m" —1)/(m — 1), and
Sm={r (mod n) # 1:r prime r|n,}.

Algorithm The m-ary representation of n/, is ¢ independent of m
® m=2
e Send (¢, m) to O
@ S= m=m+1. Return
@ take r € S and compute d = (r — 1, n).



Primitive roots and the general case
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For each integer m set n, = (m" —1)/(m — 1), and
Sm={r (mod n) # 1:r prime r|n,}.

Algorithm The m-ary representation of n/, is ¢ independent of m
® m=2
e Send (¢, m) to O
@ S= m=m+1. Return
@ take r € S and compute d = (r — 1, n).

Theorem (L. Dieulefait and J. Jiménez Urroz)

Let n=pqg z < p,q < 2z, be and RSA modulus . Then, under
GRH the previous algorithm gives a prime divisor of n in
polynomial time.
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Lemma Let n = pg and RSA modulus and m such that
(m—1,n)=1. Then (n,,,m—1)=1. If r|(n},,m — 1), then

n, = ZJ'-':_(} m/ =n (mod r).

Step 1. There exist such r. Indeed if every prime of n/ is 1
modulo n then n’, =1 (mod n) or m"~1 =1 (mod n)

n-1—-1

m (mod p), and m™ 1 =1 (mod q)

But
m" 1 = mp—ata-1 = pa-1 (mod p)

which is not possible.
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Lemma Let n = pg and RSA modulus and m such that
(m—1,n)=1. Then (n,,,m—1)=1. If r|(n},,m — 1), then

m»

n, = ZJ'-':_(} m/ =n (mod r).

Step 1. There exist such r. Indeed if every prime of n/ is 1

modulo n then n’, =1 (mod n) or m"~1 =1 (mod n)
m"™ =1 (modp), and m" 1 =1 (mod q)

But
m" 1 = mp—ata-1 = pa-1 (mod p)

which is not possible.

Step 2. m" =1 (mod r) and m"~1 =1 (mod r). Hence
m™=) =1 (mod r)

and (n,r — 1) # 1, n. Note that (n,r —1) = (n,r (mod n) = 1)
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And... jWithout cheating? We are looking for a number n’ which
helps to factorize n.
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OBSERVATIO DOMINI PETRI DE FERMAT.
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Find the integral solutions of x? 4 y? = 22

Find the rationals solutions of x?>+ y? =1

t2—1 2t

y=t(x—1) thenx =7 y=p5
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Find the rational solutions of x3+y3 =1

B
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We parametrize by y = t(x — 1), to get

B+ + Q-2+ (1+t)=0
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Changing variables x = u+t, y = u—t, we get
203 +6ut’> =1

Multiplying by (6/u)3, and letting 6/u = X,36t/u =Y, we get
Y? = X3 —432.
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Definition

Given a field K. An elliptic curve over K is the set

E/K:={(x,y) e Kx K : y*=x>+ax+b,a,be K} U{O}
433 + 27 £ 0.
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Key point on the theory of elliptic curves:
3=2+1
(E(Q),+) is a finitely generated abelian group
E(Q) ~Z" X Eors(Q)

2
2 — Y1
Group law: X3 = 2=y — X1 — Xo
X2 — X1

Y2—n yixe — ya2X1
X2 — X1 X2 — X1

(Mazur, 1978) If C, denotes the cyclic group of order n, then the
groups that appear as E;ors(Q) are C, with 1 < n <10, G2 and
C2 X C2, C2 X C4, C2 X C@, and C2 X Cg.

The rank, r, is highly unknown.
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Very nice. But what do we do now? Can we find points?

On the elliptic curve y? = x3 + 877x, the smallest non trivial point
is

~375494528127162193105504069942092792346201
~ 6215987776871505425463220780697238044100

Try to generalize Hasse's principle: Every quadratic form has
integer solutions, if and only if has solutions in every completion of

Q

x? 4+ 2y? = 522 has no non-trivial integer solutions.
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Theorem (Hasse, 1930)

E/F, is an abelian group of size
|E/Fql =q+1-aq

where

|ag| <2V/q.

Example Consider the curve y?> = x3 — 1 and ¢ =2 (mod 3).
Then, E(Fg) =q+ 1.
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Defintion. Given an integer n = pq an elliptic curve modulo n is
the set
E,:= E/F, x E/F,.
|En| = |E/Fp| X |E/Fql.

Lemma. Let n = pg with p~ q. Then,

|Eq| — n| < en®/%.
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Theorem (L. Dieulefait and J. Jiménez Urroz, 2019)

Let n = pq, and E,, and elliptic curve modulo n. Then knowing the
factors of |E,| we can factor n in polynomial time.

Proof.

Theorem (J. Cilleruelo-J. Jiménez Urroz)
1/4

In an arc of lenght cn
4 points of integer coordinates.

of the hyperbola xy = n there are at most

So, we ask the oracle for the factors of E, of size n'/2. Note that
p+1—apand g+ 1— a, are two of those points. Use
Coppersmith algorithm to find p.

Theorem (Coppersmith)

If we know an integer n = pq and we know the high order %/ngN
bits of p, then we can recover p and q in polynomial time in log(n)
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Finding the number of points of elliptic curves modulo n is
equivalent to factoring n.

N. Kunihiro and K. Koyama in communications of NTT science lab
prove to be computationally equivalent, assuming uniform
distribution of ap.

S. Martin, P. Morillo and J. Villar find an algorithm that with input
the order of a point, find the factorization of n with positive
probability.



Let E, E, E the three possible twists of E. Then

E= (P - ap)(q aq) — pag — qap + apaq
E=(p+ap)(qg+aqg) =n+ pag+ qap + apag,
E= (p—ap)(q+ aqg) = n+ qaqg — qap — apag,
E=(p+ap)(q— aq) = n— pag + qap — apaq.



|E| + |E| + |E| + |E| = 4n
EE = EE.

Then, knowing E and E we compute its product, M = EE and its
sum L = E + E, and we have

me
<

E =
+E=4n—-1

me

so E and E are the solutions of the quadratic polynomial
X% —(4n — L)X + M.



|E| + |E| + |E| + |E| = 4n
EE = EE.

Then, knowing E and E we compute its product, M = EE and its
sum L = E + E, and we have

me
<

E =
+E=4n—-1

me

so E and E are the solutions of the quadratic polynomial
X% —(4n — L)X + M.

ged(E+E,n)=p
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