Malleability of RSA moduli

Luis Dieulefait and Jorge J. Urroz, UB and UPC, Barcelona

Popayan, June, 2019

Problem. (Malleability of Factoring) Given and RSA modulus n find another integer n^{\prime} so that the factorization of n^{\prime} will help to factorize n.

Problem. (Malleability of Factoring) Given and RSA modulus n find another integer n^{\prime} coprime to $n:$) so that the factorization of n^{\prime} will help to factorize n.

Conjecture. Factoring is not malleable.

Conjecture. Factoring is not malleable.
Theorem. Given any $n=p q$ RSA modulus there exist another integer n^{\prime} so that factoring n^{\prime} allow us to factor n in polynomial time.

Conjecture. Factoring is not malleable.
Theorem. Given any $n=p q$ RSA modulus there exist another integer n^{\prime} so that factoring n^{\prime} allow us to factor n in polynomial time.
$n^{\prime}=2^{n}-1$

A particular case

Theorem (L. Dieulefait and J. Jiménez Urroz, 2009)

Let $n=p q z<p, q<2 z$, be and RSA modulus such that either we have $2^{p-1} \not \equiv 1(\bmod q)$ or $2^{q-1} \not \equiv 1(\bmod p)$ and let $n^{\prime}=2^{n}-1$. Then, with the factorization of n^{\prime} we can find a prime divisor of n in polynomial time.

A particular case

Theorem (L. Dieulefait and J. Jiménez Urroz, 2009)

Let $n=p q z<p, q<2 z$, be and RSA modulus such that either we have $2^{p-1} \not \equiv 1(\bmod q)$ or $2^{q-1} \not \equiv 1(\bmod p)$ and let $n^{\prime}=2^{n}-1$. Then, with the factorization of n^{\prime} we can find a prime divisor of n in polynomial time.

Proof To factor n we use an oracle \mathcal{O} that allow us to factor any given n^{\prime} coprime to n. Let $S=\left\{r(\bmod n) \neq 1, r \mid n^{\prime}\right.$, prime $\}$

A particular case

Theorem (L. Dieulefait and J. Jiménez Urroz, 2009)

Let $n=p q z<p, q<2 z$, be and RSA modulus such that either we have $2^{p-1} \not \equiv 1(\bmod q)$ or $2^{q-1} \not \equiv 1(\bmod p)$ and let $n^{\prime}=2^{n}-1$. Then, with the factorization of n^{\prime} we can find a prime divisor of n in polynomial time.

Proof To factor n we use an oracle \mathcal{O} that allow us to factor any given n^{\prime} coprime to n. Let $S=\left\{r(\bmod n) \neq 1, r \mid n^{\prime}\right.$, prime $\}$

Algorithm.

- Send n^{\prime} in binary form to \mathcal{O}.
- Take $r \in S$ and compute $(r-1, n)=p$.

Step 1. There exist such r. Indeed if every prime of $2^{n}-1$ is 1 modulo n then $2^{n}-1 \equiv 1(\bmod n)$ or $2^{n-1} \equiv 1(\bmod n)$

$$
2^{n-1} \equiv 1 \quad(\bmod p), \text { and } 2^{n-1} \equiv 1 \quad(\bmod q)
$$

But

$$
2^{n-1}=2^{(p-1) q+q-1} \equiv 2^{q-1} \quad(\bmod p)
$$

So,

$$
2^{q-1} \equiv 1 \quad(\bmod p), \text { and } 2^{p-1} \equiv 1 \quad(\bmod q)
$$

Step 1. There exist such r. Indeed if every prime of $2^{n}-1$ is 1 modulo n then $2^{n}-1 \equiv 1(\bmod n)$ or $2^{n-1} \equiv 1(\bmod n)$

$$
2^{n-1} \equiv 1 \quad(\bmod p), \text { and } 2^{n-1} \equiv 1 \quad(\bmod q)
$$

But

$$
2^{n-1}=2^{(p-1) q+q-1} \equiv 2^{q-1} \quad(\bmod p)
$$

So,

$$
2^{q-1} \equiv 1 \quad(\bmod p), \text { and } 2^{p-1} \equiv 1 \quad(\bmod q)
$$

Step 2. $2^{n} \equiv 1(\bmod r)$ and $2^{r-1} \equiv 1(\bmod r)$ Hence

$$
2^{(n, r-1)} \equiv 1 \quad(\bmod r)
$$

and $(n, r-1) \neq 1, n$. Note that $(n, r-1)=(n, r(\bmod n)-1)$

Pseudoprimes

Definition. An integer n so that $2^{n}-1 \equiv 1(\bmod n)$ is called a pseudoprime.

Pseudoprimes

Definition. An integer n so that $2^{n}-1 \equiv 1(\bmod n)$ is called a pseudoprime.

The previous algorithm does not work for pseudoprime modulus.

Pseudoprimes

Definition. An integer n so that $2^{n}-1 \equiv 1(\bmod n)$ is called a pseudoprime.

The previous algorithm does not work for pseudoprime modulus.

Are there any?...

Pseudoprimes

Definition. An integer n so that $2^{n}-1 \equiv 1(\bmod n)$ is called a pseudoprime.

The previous algorithm does not work for pseudoprime modulus.

Are there any?...well... yes 341 is the smallest

Pseudoprimes

Definition. An integer n so that $2^{n}-1 \equiv 1(\bmod n)$ is called a pseudoprime.

The previous algorithm does not work for pseudoprime modulus.

Are there any?...well... yes 341 is the smallest

Are there infinitely many pseudoprimes?

Pseudoprimes

Definition. An integer n so that $2^{n}-1 \equiv 1(\bmod n)$ is called a pseudoprime.

The previous algorithm does not work for pseudoprime modulus.

Are there any?...well... yes 341 is the smallest

Are there infinitely many pseudoprimes?

Theorem. (Alford, Granville, Pomerance, 1994) There are infinitely many Charmichael numbers.

A Charmichael number is a composite number n such that $b^{n-1} \equiv 1(\bmod n)$ for all $\left.(b, n)\right)=1$. Example $561=3 \cdot 11 \cdot 17$.

Theorem. (Pomerance, 1981) Given $x>0$, the number of pseudoprimes up to x is less than

$$
x \exp \left(-\frac{1}{2} \log x \log \log \log x / \log \log x\right)
$$

Theorem. (Pomerance, 1981) Given $x>0$, the number of pseudoprimes up to x is less than

$$
x \exp \left(-\frac{1}{2} \log x \log \log \log x / \log \log x\right)
$$

Proposition For large z, the number of RSA moduli $n=p q$, $z<p, q<2 z$ pseudoprimes are less than

$$
\left(\frac{z}{\log z}\right)^{2} \frac{(\log \log z)^{2}}{\log z}
$$

Proof.

$2^{(p-1, q-1)} \equiv 1(\bmod n)$ not possible if $(p-1, q-1)<\log z$. Let $\pi(d, z)=\mid\{p \equiv 1(\bmod d), z<p<2 z$ prime $\} \mid$.

$$
\sum_{\substack{z<p, q<2 z \\(p-1, q-1)>\log z}} 1=\sum_{\log z<d<z} \pi(d, z)^{2} \sim \sum_{\log z<d<z}\left(\frac{z}{\varphi(d) \log z}\right)^{2}
$$

Since

$$
\begin{gathered}
\varphi(d)=d \prod_{p \mid d}\left(1-\frac{1}{p}\right)>d \prod_{p<\log d}\left(1-\frac{1}{p}\right)>\frac{C d}{\log \log d} \\
\sum_{\log z<d<z} \frac{1}{\varphi(d)^{2}}<c \sum_{\log z<d<z} \frac{(\log \log d)^{2}}{d^{2}}<\frac{c(\log \log z)^{2}}{\log z} .
\end{gathered}
$$

Theorem. (Barban-Davenport-Halberstam, 1963-1966)

$$
\sum_{d \leq z^{1-\varepsilon}}\left|\psi(d, z)-\frac{z}{\varphi(d)}\right|^{2} \ll \frac{z^{2}}{(\log z)^{A}}
$$

with a constant depending only in ε and A.

Primitive roots and the general case.

To avoid the pseudoprime moduli, we will choose another integer m and $n^{\prime}=m^{n}-1$ with a prime factor not 1 modulo n.

Primitive roots and the general case.

To avoid the pseudoprime moduli, we will choose another integer m and $n^{\prime}=m^{n}-1$ with a prime factor not 1 modulo n.

Definition. Given a prime p, a primitive root modulo p is an integer so that $<m>=\mathbb{F}_{p}^{*} . m^{d} \not \equiv 1(\bmod p)$ for any $d<p-1$.

Primitive roots and the general case.

To avoid the pseudoprime moduli, we will choose another integer m and $n^{\prime}=m^{n}-1$ with a prime factor not 1 modulo n.

Definition. Given a prime p, a primitive root modulo p is an integer so that $<m>=\mathbb{F}_{p}^{*} . m^{d} \not \equiv 1(\bmod p)$ for any $d<p-1$.

If $n=p q, q<p$ and m is a primitive root modulo $p, m^{n-1} \not \equiv 1$ $(\bmod n)$, since $m^{q-1} \not \equiv 1(\bmod p)$.

Question. How difficult is to find a primitive root modulo p without knowing p ?.

There are $\varphi(p-1)$ primitive roots modulo p. Hence the probability to find one is

$$
\frac{\varphi(p-1)}{p-1}=\prod_{q \mid p-1}\left(1-\frac{1}{q}\right)>\prod_{q<\log p}\left(1-\frac{1}{q}\right)>\frac{c}{\log \log p} .
$$

Question. How difficult is to find a primitive root modulo p without knowing p ?.

There are $\varphi(p-1)$ primitive roots modulo p. Hence the probability to find one is

$$
\frac{\varphi(p-1)}{p-1}=\prod_{q \mid p-1}\left(1-\frac{1}{q}\right)>\prod_{q<\log p}\left(1-\frac{1}{q}\right)>\frac{c}{\log \log p} .
$$

In particular a random set of size $C \log \log p$ should have positive probability to contain a primitive root modulo p. Since $p<n$ a set of size $C \log \log n$ should have positive probability to contain a primitive root modulo p. The probability for a set of this size to contain no primitive roots is

$$
\left(1-\frac{c}{\log \log p}\right)^{C \log \log p} \sim e^{-C c}
$$

Results.

(E. Bach, 1997) Let $g(p)$ the least prime primitive root modulo p. Heuristically we have

$$
g(p) \leq e^{\gamma} \log p(\log \log p)^{2}(1+\varepsilon)
$$

Results.

(E. Bach, 1997) Let $g(p)$ the least prime primitive root modulo p. Heuristically we have

$$
g(p) \leq e^{\gamma} \log p(\log \log p)^{2}(1+\varepsilon)
$$

Theorem (V. Shoup, 1992) Under GRH, $g(p) \ll(\log p)^{6}$

Results.

(E. Bach, 1997) Let $g(p)$ the least prime primitive root modulo p. Heuristically we have

$$
g(p) \leq e^{\gamma} \log p(\log \log p)^{2}(1+\varepsilon) .
$$

Theorem (V. Shoup, 1992) Under GRH, $g(p) \ll(\log p)^{6}$
Conjecture (Artin, 1927) Any given integer a not $1,-1$ or a perfect square is a primitive root for a positive proportion of primes,
$\prod_{q}\left(1-\frac{1}{q(q-1)}\right) \sim 0.37395$, for squarefree $a \neq 1(\bmod 4)$.

Results.

(E. Bach, 1997) Let $g(p)$ the least prime primitive root modulo p. Heuristically we have

$$
g(p) \leq e^{\gamma} \log p(\log \log p)^{2}(1+\varepsilon) .
$$

Theorem (V. Shoup, 1992) Under GRH, $g(p) \ll(\log p)^{6}$
Conjecture (Artin, 1927) Any given integer a not $1,-1$ or a perfect square is a primitive root for a positive proportion of primes,
$\prod_{q}\left(1-\frac{1}{q(q-1)}\right) \sim 0.37395$, for squarefree $a \neq 1(\bmod 4)$.
Theorem. (Heath-Brown, 1986) Among 3, 5, 7 there is a primitive root for infinitely many p

For each integer m set $n_{m}^{\prime}=\left(m^{n}-1\right) /(m-1)$, and $S_{m}=\left\{r(\bmod n) \neq 1: r\right.$ prime $\left.r \mid n_{m}^{\prime}\right\}$.

For each integer m set $n_{m}^{\prime}=\left(m^{n}-1\right) /(m-1)$, and $S_{m}=\left\{r(\bmod n) \neq 1: r\right.$ prime $\left.r \mid n_{m}^{\prime}\right\}$.

Algorithm The m-ary representation of n_{m}^{\prime} is c independent of m

- $\mathrm{m}=2$
- Send (c, m) to \mathcal{O}
- $S=m=m+1$. Return
- take $r \in S$ and compute $d=(r-1, n)$.

For each integer m set $n_{m}^{\prime}=\left(m^{n}-1\right) /(m-1)$, and $S_{m}=\left\{r(\bmod n) \neq 1: r\right.$ prime $\left.r \mid n_{m}^{\prime}\right\}$.

Algorithm The m-ary representation of n_{m}^{\prime} is c independent of m

- $m=2$
- Send (c, m) to \mathcal{O}
- $S=m=m+1$. Return
- take $r \in S$ and compute $d=(r-1, n)$.

Theorem (L. Dieulefait and J. Jiménez Urroz)

Let $n=p q z<p, q<2 z$, be and RSA modulus. Then, under GRH the previous algorithm gives a prime divisor of n in polynomial time.

Proof

Lemma Let $n=p q$ and RSA modulus and m such that $(m-1, n)=1$. Then $\left(n_{m}^{\prime}, m-1\right)=1$. If $r \mid\left(n_{m}^{\prime}, m-1\right)$, then $n_{m}^{\prime}=\sum_{j=0}^{n-1} m^{j} \equiv n(\bmod r)$.

Step 1. There exist such r. Indeed if every prime of n_{m}^{\prime} is 1 modulo n then $n_{m}^{\prime} \equiv 1(\bmod n)$ or $m^{n-1} \equiv 1(\bmod n)$

$$
m^{n-1} \equiv 1 \quad(\bmod p), \text { and } m^{n-1} \equiv 1 \quad(\bmod q)
$$

But

$$
m^{n-1}=m^{(p-1) q+q-1} \equiv m^{q-1} \quad(\bmod p)
$$

which is not possible.

Proof

Lemma Let $n=p q$ and RSA modulus and m such that $(m-1, n)=1$. Then $\left(n_{m}^{\prime}, m-1\right)=1$. If $r \mid\left(n_{m}^{\prime}, m-1\right)$, then $n_{m}^{\prime}=\sum_{j=0}^{n-1} m^{j} \equiv n(\bmod r)$.

Step 1. There exist such r. Indeed if every prime of n_{m}^{\prime} is 1 modulo n then $n_{m}^{\prime} \equiv 1(\bmod n)$ or $m^{n-1} \equiv 1(\bmod n)$

$$
m^{n-1} \equiv 1 \quad(\bmod p), \text { and } m^{n-1} \equiv 1 \quad(\bmod q)
$$

But

$$
m^{n-1}=m^{(p-1) q+q-1} \equiv m^{q-1} \quad(\bmod p)
$$

which is not possible.
Step 2. $m^{n} \equiv 1(\bmod r)$ and $m^{r-1} \equiv 1(\bmod r)$. Hence

$$
m^{(n, r-1)} \equiv 1 \quad(\bmod r)
$$

and $(n, r-1) \neq 1, n$. Note that $(n, r-1)=(n, r(\bmod n)-1)$

And... ¿Without cheating?

And... ¿Without cheating? We are looking for a number n^{\prime} which helps to factorize n.

And... ¿Without cheating? We are looking for a number n^{\prime} which helps to factorize n.

elliPtiC cUuuuurvesssss

Arithmeticorum, 1670, Diophanti Alexandrini

inceruallum mumerorum2. minorautem
 bue luperaddere 10, Ter igitur 2, adfci: tis vnitaribus to, aquartur $+\mathrm{N},+4$, \&
 farisfaciunt qualtionit
spibxove
N QYAES?

 r. diuidatur in duos quadratos. Ponatur primus 1 Q.Oporcetigitur $16-1$ Q. Hzq es elfe quadrato, Fingo quziratum anumieris quatque voiratinu quod continer lanis ipfius 16. ello 22 N . -4 . ple igitur quadratus crit $4 \mathrm{Q}+16 .-16 \mathrm{~N} . \mathrm{hax}$ 玉qqabuntur vaitatibus i6-1 16 . Commanis adiciatut vtrimque defedus, \&s fimilibus zuferan
tur fimilia, fient $5 Q$. x quales 16 N. \& fit ${ }_{i n}$ tur f. 4 Erititigitur ahter quadratorum
 16. \& verquic andrues efl.

OBSERVATIO DOMINI PETRI DE FERMAT.

 Co gencraliter willus in infinetrim iltra quadratsm poreflatem in duos cinfdom nowinis fas of diuidere cwiws rinHans marginis exiguitas non sateret.
QVESTIO 1X.
$\mathbf{R}^{V \text { nivs }}$ oportest quadratum 16 tur ruffics pimi taris quadratos. Pona tur furfis primi farns i N. alterius ver vnitatum, cuot conflat latus diaidendi, Efto itaque N. - 4. enate quadrati, hic quidem $1 Q$. ille vero $4 Q+16 .-16 \mathrm{~N}$. Cxterum volo virumque fimal xquari viututbus 16 . ljitirs $5 \geqslant 16 .-16 \mathrm{~N}$.

OBSERVATIO DOMINI PETRI DE FERMAT.

Vbum autem in duos cubos, aut quadratoquadratum in duos quadratoquadrat , ó generaliter nullam in infinitum vitra quadratum poteffatem in duos eiufdem nominis fas eft diuidere cuius rei demonflrationem mirabilem fane detexi. Hanc marginis exiguitas non caperet.

Find the integral solutions of $x^{2}+y^{2}=z^{2}$

Find the integral solutions of $x^{2}+y^{2}=z^{2}$
Find the rationals solutions of $x^{2}+y^{2}=1$

Find the integral solutions of $x^{2}+y^{2}=z^{2}$
Find the rationals solutions of $x^{2}+y^{2}=1$

Find the integral solutions of $x^{2}+y^{2}=z^{2}$
Find the rationals solutions of $x^{2}+y^{2}=1$

$$
y=t(x-1)
$$

Find the integral solutions of $x^{2}+y^{2}=z^{2}$
Find the rationals solutions of $x^{2}+y^{2}=1$

$$
y=t(x-1), \text { then } x=\frac{t^{2}-1}{t^{2}+1} \quad y=\frac{2 t}{t^{2}+1}
$$

Find the rational solutions of $x^{3}+y^{3}=1$

Find the rational solutions of $x^{3}+y^{3}=1$

We parametrize by $y=t(x-1)$, to get

$$
\left(t^{3}+1\right) x^{2}+\left(1-2 t^{3}\right) x+\left(1+t^{3}\right)=0
$$

Changing variables $x=u+t, y=u-t$, we get

$$
2 u^{3}+6 u t^{2}=1
$$

Changing variables $x=u+t, y=u-t$, we get

$$
2 u^{3}+6 u t^{2}=1
$$

Multiplying by $(6 / u)^{3}$, and letting $6 / u=X, 36 t / u=Y$, we get

$$
Y^{2}=X^{3}-432
$$

Changing variables $x=u+t, y=u-t$, we get

$$
2 u^{3}+6 u t^{2}=1
$$

Multiplying by $(6 / u)^{3}$, and letting $6 / u=X, 36 t / u=Y$, we get

$$
Y^{2}=X^{3}-432
$$

Every cubic can be written as $y^{2}=x^{3}+a x+b$,

Every cubic can be written as $y^{2}=x^{3}+a x+b$,

Definition

Given a field K. An elliptic curve over K is the set

$$
\begin{aligned}
& E / K:=\left\{(x, y) \in K \times K: y^{2}=x^{3}+a x+b, a, b \in K\right\} \cup\{O\} \\
& 4 a^{3}+27 b^{2} \neq 0 .
\end{aligned}
$$

Every cubic can be written as $y^{2}=x^{3}+a x+b$,

Definition

Given a field K. An elliptic curve over K is the set

$$
\begin{aligned}
& E / K:=\left\{(x, y) \in K \times K: y^{2}=x^{3}+a x+b, a, b \in K\right\} \cup\{O\} \\
& 4 a^{3}+27 b^{2} \neq 0 .
\end{aligned}
$$

Key point on the theory of elliptic curves:

Key point on the theory of elliptic curves:

$$
3=2+1
$$

Key point on the theory of elliptic curves:

$$
3=2+1
$$

$(E(\mathbb{Q}),+)$ is a finitely generated abelian group

$$
E(\mathbb{Q}) \simeq \mathbb{Z}^{r} \times E_{\text {tors }}(\mathbb{Q})
$$

Key point on the theory of elliptic curves:

$$
3=2+1
$$

$(E(\mathbb{Q}),+)$ is a finitely generated abelian group

$$
E(\mathbb{Q}) \simeq \mathbb{Z}^{r} \times E_{\text {tors }}(\mathbb{Q})
$$

Group law: $\quad x_{3}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}-x_{1}-x_{2}$

$$
y_{3}=-\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) x_{3}-\left(\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}\right)
$$

Key point on the theory of elliptic curves:

$$
3=2+1
$$

$(E(\mathbb{Q}),+)$ is a finitely generated abelian group

$$
E(\mathbb{Q}) \simeq \mathbb{Z}^{r} \times E_{\text {tors }}(\mathbb{Q})
$$

Group law: $\quad x_{3}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}-x_{1}-x_{2}$

$$
y_{3}=-\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) x_{3}-\left(\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}\right)
$$

Theorem

(Mazur, 1978) If C_{n} denotes the cyclic group of order n, then the groups that appear as $E_{\text {tors }}(\mathbb{Q})$ are C_{n} with $1 \leq n \leq 10, C_{12}$ and $C_{2} \times C_{2}, C_{2} \times C_{4}, C_{2} \times C_{6}$, and $C_{2} \times C_{8}$.

Key point on the theory of elliptic curves:

$$
3=2+1
$$

$(E(\mathbb{Q}),+)$ is a finitely generated abelian group

$$
E(\mathbb{Q}) \simeq \mathbb{Z}^{r} \times E_{\text {tors }}(\mathbb{Q})
$$

Group law: $\quad x_{3}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}-x_{1}-x_{2}$

$$
y_{3}=-\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) x_{3}-\left(\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}\right)
$$

Theorem

(Mazur, 1978) If C_{n} denotes the cyclic group of order n, then the groups that appear as $E_{\text {tors }}(\mathbb{Q})$ are C_{n} with $1 \leq n \leq 10, C_{12}$ and $C_{2} \times C_{2}, C_{2} \times C_{4}, C_{2} \times C_{6}$, and $C_{2} \times C_{8}$.

The rank, r, is highly unknown.

Very nice. But what do we do now? Can we find points?

Very nice. But what do we do now? Can we find points?
On the elliptic curve $y^{2}=x^{3}+877 x$, the smallest non trivial point is

$$
x=\frac{375494528127162193105504069942092792346201}{6215987776871505425463220780697238044100}
$$

Very nice. But what do we do now? Can we find points?
On the elliptic curve $y^{2}=x^{3}+877 x$, the smallest non trivial point is

$$
x=\frac{375494528127162193105504069942092792346201}{6215987776871505425463220780697238044100}
$$

Try to generalize Hasse's principle: Every quadratic form has integer solutions, if and only if has solutions in every completion of \mathbb{Q}

Very nice. But what do we do now? Can we find points?
On the elliptic curve $y^{2}=x^{3}+877 x$, the smallest non trivial point is

$$
x=\frac{375494528127162193105504069942092792346201}{6215987776871505425463220780697238044100}
$$

Try to generalize Hasse's principle: Every quadratic form has integer solutions, if and only if has solutions in every completion of \mathbb{Q}

Corollary

$x^{2}+2 y^{2}=5 z^{2}$ has no non-trivial integer solutions.

Theorem (Hasse, 1930)

E / \mathbb{F}_{q} is an abelian group of size

$$
\left|E / \mathbb{F}_{q}\right|=q+1-a_{q}
$$

where

$$
\left|a_{q}\right| \leq 2 \sqrt{q} .
$$

Theorem (Hasse, 1930)

E / \mathbb{F}_{q} is an abelian group of size

$$
\left|E / \mathbb{F}_{q}\right|=q+1-a_{q}
$$

where

$$
\left|a_{q}\right| \leq 2 \sqrt{q}
$$

Example Consider the curve $y^{2}=x^{3}-1$ and $q \equiv 2(\bmod 3)$. Then, $E\left(\mathbb{F}_{q}\right)=q+1$.

Defintion. Given an integer $n=p q$ an elliptic curve modulo n is the set

$$
E_{n}:=E / \mathbb{F}_{p} \times E / \mathbb{F}_{q}
$$

Defintion. Given an integer $n=p q$ an elliptic curve modulo n is the set

$$
\begin{aligned}
E_{n} & :=E / \mathbb{F}_{p} \times E / \mathbb{F}_{q} \\
\left|E_{n}\right| & =\left|E / \mathbb{F}_{p}\right| \times\left|E / \mathbb{F}_{q}\right|
\end{aligned}
$$

Defintion. Given an integer $n=p q$ an elliptic curve modulo n is the set

$$
\begin{aligned}
E_{n} & :=E / \mathbb{F}_{p} \times E / \mathbb{F}_{q} \\
\left|E_{n}\right| & =\left|E / \mathbb{F}_{p}\right| \times\left|E / \mathbb{F}_{q}\right|
\end{aligned}
$$

Lemma. Let $n=p q$ with $p \approx q$. Then,

$$
\left|\left|E_{n}\right|-n\right| \leq c n^{3 / 4} .
$$

Theorem (L. Dieulefait and J. Jiménez Urroz, 2019)

Let $n=p q$, and E_{n} and elliptic curve modulo n. Then knowing the factors of $\left|E_{n}\right|$ we can factor n in polynomial time.

Theorem (L. Dieulefait and J. Jiménez Urroz, 2019)

Let $n=p q$, and E_{n} and elliptic curve modulo n. Then knowing the factors of $\left|E_{n}\right|$ we can factor n in polynomial time.

Proof.

Theorem (J. Cilleruelo-J. Jiménez Urroz)

In an arc of lenght $c n^{1 / 4}$ of the hyperbola $x y=n$ there are at most 4 points of integer coordinates.

Theorem (L. Dieulefait and J. Jiménez Urroz, 2019)

Let $n=p q$, and E_{n} and elliptic curve modulo n. Then knowing the factors of $\left|E_{n}\right|$ we can factor n in polynomial time.

Proof.

Theorem (J. Cilleruelo-J. Jiménez Urroz)

In an arc of lenght $c n^{1 / 4}$ of the hyperbola $x y=n$ there are at most 4 points of integer coordinates.

So, we ask the oracle for the factors of E_{n} of size $n^{1 / 2}$. Note that $p+1-a_{p}$ and $q+1-a_{q}$ are two of those points.

Theorem (L. Dieulefait and J. Jiménez Urroz, 2019)

Let $n=p q$, and E_{n} and elliptic curve modulo n. Then knowing the factors of $\left|E_{n}\right|$ we can factor n in polynomial time.

Proof.

Theorem (J. Cilleruelo-J. Jiménez Urroz)

In an arc of lenght $c n^{1 / 4}$ of the hyperbola $x y=n$ there are at most 4 points of integer coordinates.

So, we ask the oracle for the factors of E_{n} of size $n^{1 / 2}$. Note that $p+1-a_{p}$ and $q+1-a_{q}$ are two of those points. Use Coppersmith algorithm to find p.

Theorem (Coppersmith)

If we know an integer $n=p q$ and we know the high order $\frac{1}{4} \log _{2} N$ bits of p, then we can recover p and q in polynomial time in $\log (n)$

Theorem

Finding the number of points of elliptic curves modulo n is equivalent to factoring n.

Theorem

Finding the number of points of elliptic curves modulo n is equivalent to factoring n.
N. Kunihiro and K. Koyama in communications of NTT science lab prove to be computationally equivalent, assuming uniform distribution of a_{p}.

Theorem

Finding the number of points of elliptic curves modulo n is equivalent to factoring n.
N. Kunihiro and K. Koyama in communications of NTT science lab prove to be computationally equivalent, assuming uniform distribution of a_{p}.
S. Martin, P. Morillo and J. Villar find an algorithm that with input the order of a point, find the factorization of n with positive probability.

Let $\hat{E}, \tilde{E}, \bar{E}$ the three possible twists of E. Then

$$
\begin{aligned}
& E=\left(p-a_{p}\right)\left(q-a_{q}\right)=n-p a_{q}-q a_{p}+a_{p} a_{q} \\
& \hat{E}=\left(p+a_{p}\right)\left(q+a_{q}\right)=n+p a_{q}+q a_{p}+a_{p} a_{q}, \\
& \tilde{E}=\left(p-a_{p}\right)\left(q+a_{q}\right)=n+q a_{q}-q a_{p}-a_{p} a_{q}, \\
& \bar{E}=\left(p+a_{p}\right)\left(q-a_{q}\right)=n-p a_{q}+q a_{p}-a_{p} a_{q} .
\end{aligned}
$$

Lemma

$$
\begin{aligned}
& |E|+|\hat{E}|+|\tilde{E}|+|\bar{E}|=4 n \\
& E \hat{E}=\tilde{E} \bar{E} .
\end{aligned}
$$

Then, knowing E and \hat{E}, we compute its product, $M=E \hat{E}$ and its sum $L=E+\hat{E}$, and we have

$$
\begin{aligned}
& \tilde{E} \bar{E}=M \\
& \tilde{E}+\bar{E}=4 n-L
\end{aligned}
$$

so \tilde{E} and \bar{E} are the solutions of the quadratic polynomial $X^{2}-(4 n-L) X+M$.

Lemma

$$
\begin{aligned}
& |E|+|\hat{E}|+|\tilde{E}|+|\bar{E}|=4 n \\
& E \hat{E}=\tilde{E} \bar{E} .
\end{aligned}
$$

Then, knowing E and \hat{E}, we compute its product, $M=E \hat{E}$ and its sum $L=E+\hat{E}$, and we have

$$
\begin{aligned}
& \tilde{E} \bar{E}=M \\
& \tilde{E}+\bar{E}=4 n-L
\end{aligned}
$$

so \tilde{E} and \bar{E} are the solutions of the quadratic polynomial $X^{2}-(4 n-L) X+M$.
$\operatorname{gcd}(E+\bar{E}, n)=p$

