Introduction	A particular case	Pseudoprimes	Primitive roots and the general case	Elliptic Curves
•00	00	0000	000000	000000

Malleability of RSA moduli

Luis Dieulefait and Jorge J. Urroz, UB and UPC, Barcelona

Popayan, June, 2019

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case	Elliptic Curves
000				

Problem. (Malleability of Factoring) Given and RSA modulus n find another integer n' so that the factorization of n' will help to factorize n.

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case	Elliptic Curves
○●○	00	0000		000000

Problem. (Malleability of Factoring) Given and RSA modulus n find another integer n' coprime to n:) so that the factorization of n' will help to factorize n.

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case	Elliptic Curves
000				

Conjecture. Factoring is not malleable.

Introduction 00●	A particular case	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves 000000

Conjecture. Factoring is not malleable.

Theorem. Given any n = pq RSA modulus there exist another integer n' so that factoring n' allow us to factor n in polynomial time.

・ロト・日本・モト・モート ヨー うへで

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves 000000

Conjecture. Factoring is not malleable.

Theorem. Given any n = pq RSA modulus there exist another integer n' so that factoring n' allow us to factor n in polynomial time.

 $n' = 2^n - 1$

Introduction 000	A particular case ●0	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves
A partic	ular case			

Theorem (L. Dieulefait and J. Jiménez Urroz, 2009)

Let $n = pq \ z < p, q < 2z$, be and RSA modulus such that either we have $2^{p-1} \not\equiv 1 \pmod{q}$ or $2^{q-1} \not\equiv 1 \pmod{p}$ and let $n' = 2^n - 1$. Then, with the factorization of n' we can find a prime divisor of n in polynomial time.

Introduction 000	A particular case ●○	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves
A				
A partic	cular case			

Theorem (L. Dieulefait and J. Jiménez Urroz, 2009)

Let $n = pq \ z < p, q < 2z$, be and RSA modulus such that either we have $2^{p-1} \not\equiv 1 \pmod{q}$ or $2^{q-1} \not\equiv 1 \pmod{p}$ and let $n' = 2^n - 1$. Then, with the factorization of n' we can find a prime divisor of n in polynomial time.

Proof To factor *n* we use an oracle \mathcal{O} that allow us to factor any given *n*' coprime to *n*. Let $S = \{r \pmod{n} \neq 1, r | n', \text{ prime}\}$

Introduction 000	A particular case ●0	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves
A partic	ular case			

Theorem (L. Dieulefait and J. Jiménez Urroz, 2009)

Let $n = pq \ z < p, q < 2z$, be and RSA modulus such that either we have $2^{p-1} \not\equiv 1 \pmod{q}$ or $2^{q-1} \not\equiv 1 \pmod{p}$ and let $n' = 2^n - 1$. Then, with the factorization of n' we can find a prime divisor of n in polynomial time.

Proof To factor *n* we use an oracle \mathcal{O} that allow us to factor any given *n*' coprime to *n*. Let $S = \{r \pmod{n} \neq 1, r | n', \text{ prime}\}$

Algorithm.

- Send n' in binary form to O.
- Take $r \in S$ and compute (r-1, n) = p.

Introduction 000	A particular case ⊙●	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

Step 1. There exist such *r*. Indeed if every prime of $2^n - 1$ is 1 modulo *n* then $2^n - 1 \equiv 1 \pmod{n}$ or $2^{n-1} \equiv 1 \pmod{n}$

$$2^{n-1} \equiv 1 \pmod{p}$$
, and $2^{n-1} \equiv 1 \pmod{q}$

But

$$2^{n-1} = 2^{(p-1)q+q-1} \equiv 2^{q-1} \pmod{p}$$

So,

$$2^{q-1} \equiv 1 \pmod{p}$$
, and $2^{p-1} \equiv 1 \pmod{q}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 000	A particular case ⊙●	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

Step 1. There exist such *r*. Indeed if every prime of $2^n - 1$ is 1 modulo *n* then $2^n - 1 \equiv 1 \pmod{n}$ or $2^{n-1} \equiv 1 \pmod{n}$

$$2^{n-1} \equiv 1 \pmod{p}$$
, and $2^{n-1} \equiv 1 \pmod{q}$

But

$$2^{n-1} = 2^{(p-1)q+q-1} \equiv 2^{q-1} \pmod{p}$$

So,

$$2^{q-1} \equiv 1 \pmod{p}$$
, and $2^{p-1} \equiv 1 \pmod{q}$

Step 2. $2^n \equiv 1 \pmod{r}$ and $2^{r-1} \equiv 1 \pmod{r}$ Hence

$$2^{(n,r-1)} \equiv 1 \pmod{r}$$

and $(n, r-1) \neq 1, n$. Note that $(n, r-1) = (n, r \pmod{n} - 1)$

Introduction 000	A particular case	Pseudoprimes ●000	Primitive roots and the general case	Elliptic Curves
Pseudop	rimes			

Introduction 000	A particular case	Pseudoprimes ●000	Primitive roots and the general case	Elliptic Curves
Pseudop	rimes			

The previous algorithm does not work for pseudoprime modulus.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction 000	A particular case	Pseudoprimes ●000	Primitive roots and the general case	Elliptic Curves
Pseudon	rimes			

The previous algorithm does not work for pseudoprime modulus.

Are there any?...

Introduction 000	A particular case	Pseudoprimes ●000	Primitive roots and the general case	Elliptic Curves
Pseudon	rimes			

The previous algorithm does not work for pseudoprime modulus.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Are there any?...well... yes 341 is the smallest

Introduction 000	A particular case	Pseudoprimes ●000	Primitive roots and the general case	Elliptic Curves
Pseudon	rimes			

The previous algorithm does not work for pseudoprime modulus.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Are there any?...well... yes 341 is the smallest

Are there infinitely many pseudoprimes?

Introduction 000	A particular case	Pseudoprimes ●000	Primitive roots and the general case	Elliptic Curves
Pseudon	rimes			

The previous algorithm does not work for pseudoprime modulus.

Are there any?...well... yes 341 is the smallest

Are there infinitely many pseudoprimes?

Theorem. (Alford, Granville, Pomerance, 1994) There are infinitely many Charmichael numbers.

A Charmichael number is a composite number *n* such that $b^{n-1} \equiv 1 \pmod{n}$ for all (b, n) = 1. Example $561 = 3 \cdot 11 \cdot 17$.

Introduction 000	A particular case 00	Pseudoprimes 0●00	Primitive roots and the general case	Elliptic Curves

Theorem. (Pomerance, 1981) Given x > 0, the number of pseudoprimes up to x is less than

$$x \exp(-\frac{1}{2}\log x \log \log \log x / \log \log x)$$

Introduction 000	A particular case 00	Pseudoprimes 0●00	Primitive roots and the general case	Elliptic Curves

Theorem. (Pomerance, 1981) Given x > 0, the number of pseudoprimes up to x is less than

$$x \exp(-\frac{1}{2}\log x \log \log \log x / \log \log x)$$

Proposition For large *z*, the number of RSA moduli n = pq, z < p, q < 2z pseudoprimes are less than

$$\left(\frac{z}{\log z}\right)^2 \frac{(\log\log z)^2}{\log z}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction 000	A particular case 00	Pseudoprimes 00●0	Primitive roots and the general case	Elliptic Curves

Proof. $2^{(p-1,q-1)} \equiv 1 \pmod{n}$ not possible if $(p-1, q-1) < \log z$. Let $\pi(d, z) = |\{p \equiv 1 \pmod{d}, z$

$$\sum_{\substack{z < p, q < 2z \\ (p-1, q-1) > \log z}} 1 = \sum_{\log z < d < z} \pi(d, z)^2 \sim \sum_{\log z < d < z} \left(\frac{z}{\varphi(d) \log z}\right)^2$$

Since

$$\varphi(d) = d \prod_{p|d} \left(1 - \frac{1}{p}\right) > d \prod_{p < \log d} \left(1 - \frac{1}{p}\right) > \frac{Cd}{\log \log d}$$
$$\sum_{\log z < d < z} \frac{1}{\varphi(d)^2} < c \sum_{\log z < d < z} \frac{(\log \log d)^2}{d^2} < \frac{c(\log \log z)^2}{\log z}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction 000	A particular case 00	Pseudoprimes 000●	Primitive roots and the general case	Elliptic Curves

Theorem. (Barban-Davenport-Halberstam, 1963-1966)

$$\sum_{d \leq z^{1-\varepsilon}} \left| \psi(d,z) - \frac{z}{\varphi(d)} \right|^2 \ll \frac{z^2}{(\log z)^A},$$

・ロト・日本・モト・モート ヨー うへで

with a constant depending only in ε and A.

Introduction 000	A particular case	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves
-				

Primitive roots and the general case.

To avoid the pseudoprime moduli, we will choose another integer m and $n' = m^n - 1$ with a prime factor not 1 modulo n.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 000	A particular case	Pseudoprimes 0000	Primitive roots and the general case ●00000	Elliptic Curves

Primitive roots and the general case.

To avoid the pseudoprime moduli, we will choose another integer m and $n' = m^n - 1$ with a prime factor not 1 modulo n.

Definition. Given a prime p, a primitive root modulo p is an integer so that $\langle m \rangle = \mathbb{F}_p^*$. $m^d \not\equiv 1 \pmod{p}$ for any $d \langle p - 1$.

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case	Elliptic Curves
000	00	0000	●00000	

Primitive roots and the general case.

To avoid the pseudoprime moduli, we will choose another integer m and $n' = m^n - 1$ with a prime factor not 1 modulo n.

Definition. Given a prime p, a primitive root modulo p is an integer so that $\langle m \rangle = \mathbb{F}_p^*$. $m^d \not\equiv 1 \pmod{p}$ for any d .

If n = pq, q < p and m is a primitive root modulo p, $m^{n-1} \neq 1 \pmod{p}$, since $m^{q-1} \neq 1 \pmod{p}$.

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case	Elliptic Curves
			00000	

Question. How difficult is to find a primitive root modulo p without knowing p?.

There are $\varphi(p-1)$ primitive roots modulo p. Hence the probability to find one is

$$rac{arphi(p-1)}{p-1} = \prod_{q\mid p-1} \left(1-rac{1}{q}
ight) > \prod_{q < \log p} \left(1-rac{1}{q}
ight) > rac{c}{\log\log p}.$$

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case	Elliptic Curves
			00000	

Question. How difficult is to find a primitive root modulo p without knowing p?.

There are $\varphi(p-1)$ primitive roots modulo p. Hence the probability to find one is

$$rac{arphi(p-1)}{p-1} = \prod_{q|p-1} \left(1-rac{1}{q}
ight) > \prod_{q < \log p} \left(1-rac{1}{q}
ight) > rac{c}{\log\log p}.$$

In particular a random set of size $C \log \log p$ should have positive probability to contain a primitive root modulo p. Since p < n a set of size $C \log \log n$ should have positive probability to contain a primitive root modulo p. The probability for a set of this size to contain no primitive roots is

$$\left(1 - \frac{c}{\log\log p}\right)^{C\log\log p} \sim e^{-Cc}$$

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

(E. Bach, 1997) Let g(p) the least prime primitive root modulo p. Heuristically we have

$$g(p) \leq e^{\gamma} \log p(\log \log p)^2(1 + \varepsilon).$$

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case	Elliptic Curves
000	00	0000	00●000	

(E. Bach, 1997) Let g(p) the least prime primitive root modulo p. Heuristically we have

$$g(p) \leq e^{\gamma} \log p(\log \log p)^2(1 + \varepsilon).$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (V. Shoup, 1992) Under GRH, $g(p) \ll (\log p)^6$

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

(E. Bach, 1997) Let g(p) the least prime primitive root modulo p. Heuristically we have

 $g(p) \leq e^{\gamma} \log p(\log \log p)^2(1 + \varepsilon).$

Theorem (V. Shoup, 1992) Under GRH, $g(p) \ll (\log p)^6$

Conjecture (Artin, 1927) Any given integer a not 1, -1 or a perfect square is a primitive root for a positive proportion of primes,

$$\prod_q \left(1 - rac{1}{q(q-1)}
ight) \sim$$
 0.37395, for squarefree $a
eq 1 \pmod{4}.$

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

(E. Bach, 1997) Let g(p) the least prime primitive root modulo p. Heuristically we have

 $g(p) \leq e^{\gamma} \log p (\log \log p)^2 (1 + \varepsilon).$

Theorem (V. Shoup, 1992) Under GRH, $g(p) \ll (\log p)^6$

Conjecture (Artin, 1927) Any given integer a not 1, -1 or a perfect square is a primitive root for a positive proportion of primes,

$$\prod_q \left(1 - rac{1}{q(q-1)}
ight) \sim$$
 0.37395, for squarefree $a
eq 1 \pmod{4}.$

Theorem. (Heath-Brown, 1986) Among 3, 5, 7 there is a primitive root for infinitely many p

Introduction 000	A particular case	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For each integer m set $n'_m = (m^n - 1)/(m - 1)$, and $S_m = \{r \pmod{n} \neq 1 : r \text{ prime } r | n'_m \}.$

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

For each integer m set $n'_m = (m^n - 1)/(m - 1)$, and $S_m = \{r \pmod{n} \neq 1 : r \text{ prime } r | n'_m \}.$

Algorithm The *m*-ary representation of n'_m is *c* independent of *m*

- m=2
- Send (c,m) to \mathcal{O}
- S = m = m + 1. Return
- take $r \in S$ and compute d = (r 1, n).

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case	Elliptic Curves
000	00	0000	000000	

For each integer m set $n'_m = (m^n - 1)/(m - 1)$, and $S_m = \{r \pmod{n} \neq 1 : r \text{ prime } r | n'_m \}.$

Algorithm The *m*-ary representation of n'_m is *c* independent of *m*

- m=2
- Send (c, m) to \mathcal{O}
- S = m = m + 1. Return
- take $r \in S$ and compute d = (r 1, n).

Theorem (L. Dieulefait and J. Jiménez Urroz)

Let $n = pq \ z < p, q < 2z$, be and RSA modulus . Then, under GRH the previous algorithm gives a prime divisor of n in polynomial time.

Introduction 000	A particular case	Pseudoprimes 0000	Primitive roots and the general case 0000●0	Elliptic Curves
Proof				

Lemma Let n = pq and RSA modulus and m such that (m-1, n) = 1. Then $(n'_m, m-1) = 1$. If $r|(n'_m, m-1)$, then $n'_m = \sum_{j=0}^{n-1} m^j \equiv n \pmod{r}$.

Step 1. There exist such r. Indeed if every prime of n'_m is 1 modulo n then $n'_m \equiv 1 \pmod{n}$ or $m^{n-1} \equiv 1 \pmod{n}$

$$m^{n-1} \equiv 1 \pmod{p}$$
, and $m^{n-1} \equiv 1 \pmod{q}$

But

$$m^{n-1} = m^{(p-1)q+q-1} \equiv m^{q-1} \pmod{p}$$

which is not possible.

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case 0000●0	Elliptic Curves
Proof				

Lemma Let n = pq and RSA modulus and m such that (m-1, n) = 1. Then $(n'_m, m-1) = 1$. If $r|(n'_m, m-1)$, then $n'_m = \sum_{j=0}^{n-1} m^j \equiv n \pmod{r}$.

Step 1. There exist such r. Indeed if every prime of n'_m is 1 modulo n then $n'_m \equiv 1 \pmod{n}$ or $m^{n-1} \equiv 1 \pmod{n}$

$$m^{n-1} \equiv 1 \pmod{p}$$
, and $m^{n-1} \equiv 1 \pmod{q}$

But

$$m^{n-1} = m^{(p-1)q+q-1} \equiv m^{q-1} \pmod{p}$$

which is not possible.

Step 2. $m^n \equiv 1 \pmod{r}$ and $m^{r-1} \equiv 1 \pmod{r}$. Hence $m^{(n,r-1)} \equiv 1 \pmod{r}$ and $(n, r-1) \neq 1$ n. Note that $(n, r-1) = (n, r \pmod{n} - 1)$

and $(n, r-1) \neq 1, n$. Note that $(n, r-1) = (n, r, (mod_n), -1) = (n, r, (mod_n), -1)$

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case	Elliptic Curves
000		0000	00000●	000000

And... ¿Without cheating?

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case	Elliptic Curves
000	00	0000	00000●	

And... ¿Without cheating? We are looking for a number n' which helps to factorize n.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case	Elliptic Curves
000	00	0000	00000●	

And... ¿Without cheating? We are looking for a number n' which helps to factorize n.

elliPtiC cUuuuurvesssss

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A particular case

Pseudoprimes

Primitive roots and the general case

Elliptic Curves •00000

(日) (周) (日) (日) (日) (0) (0)

Arithmeticorum, 1670, Diophanti Alexandrini

Arithmeticorum Liber II. internallum numerorum a, minor quitem c' isie à des sollos beas c' isie a' S. de-

IN. mour ideo major i N. + z. Oporter on des destuie & peridue & richarigene itaque 4 N. ++ 4. triplos effe ad a. & ad- i) u' f. E in imuizen af i. epic men

IN STAESTIONEM FIL

CONDITIONIS appoint estem merio efi que le appoint percedenti quationi, all estas Calied requirit quan ve quadratos internalli menerorum de miner internallo quadratorum, de Cascore sidem hie estan locum habebure, ve manifelhum ell.

PROPOSITE M quadratum dinidere TON Viewaghing verpégieur datio de

16. dinidatur in duos quadratos. Ponatur Javeir eit Jie vergezeinne, est veräffte b primus r Q. Oportet igitur 16 - r Q. aqua- approx Jundiense aner. Jukres des andles effe quadrato. Fingo quadratum i nu. das of soiles dictioner mat ime in m tatibus 16 -r Q. Communis adiiciatur Arfen & mitte im prein er Leifen Etrobus 16 - L. Santa and Santa a 16. de veerque quadratus eft. einermien far. e al d'is munichers man

princtionarila, ine amidue of, sai bu indense whatano.

OBSERVATIO DOMINI PETRI DE FERMAT.

Cice generaliter wallam in infnitum vitra quadratum poteflatem in duas einf dem neminis fas of dividere enine rei demenfirationem mirabilem fanc detexi.

R Vn. s.v.s. oportest quadentum 16 Enter di miles ele ef menfporte ditur rurfies peimi latus i N. alterius verò i no moires madere e' iele, i 3 no iries quotcunque numerorum cum defoctu tot ce bene deren Arider a' iene bei ni dosvoltatum, quoce contrat lans dividendi. Effo travers N eventy on the set of Caterum volo verimque finul aquai por The dva hume correlievelter () of vintenbus 16. Igitor y Q \rightarrow 16. –16 N. e. durante dage i el tradella té l' tradell

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

OBSERVATIO DOMINI PETRI DE FERMAT.

Voum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos & generaliter nullam in infinitum vitra quadratum potestatem in duos eiusdem nominis fas est diuidere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

Find the integral solutions of
$$x^2 + y^2 = z^2$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Introduction 000	A particular case	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Find the integral solutions of
$$x^2 + y^2 = z^2$$

Find the rationals solutions of
$$x^2 + y^2 = 1$$

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

Find the integral solutions of
$$x^2 + y^2 = z^2$$

Find the rationals solutions of $x^2 + y^2 = 1$

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case	Elliptic Curves
000	00	0000		00●000

Find the integral solutions of
$$x^2 + y^2 = z^2$$

Find the rationals solutions of $x^2 + y^2 = 1$

$$y=t(x-1)$$

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

Find the integral solutions of
$$x^2 + y^2 = z^2$$

Find the rationals solutions of
$$x^2 + y^2 = 1$$

$$y = t(x - 1)$$
, then $x = \frac{t^2 - 1}{t^2 + 1}$ $y = \frac{2t}{t^2 + 1}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Introduction 000	A particular case	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

Find the rational solutions of $x^3 + y^3 = 1$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves
			о о	

Find the rational solutions of $x^3 + y^3 = 1$

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

We parametrize by
$$y = t(x - 1)$$
, to get

$$(t^3 + 1)x^2 + (1 - 2t^3)x + (1 + t^3) = 0$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

Changing variables x = u + t, y = u - t, we get

 $2u^3 + 6ut^2 = 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

In O	troduction 00	A particular case	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves 00000●			
	Changing variables $x = u + t$, $y = u - t$, we get							
	$2u^3 + 6ut^2 = 1$							
	Multipl	ying by $(6/u)^3$,	and letting 6	u = X, 36t/u = Y, we get	et			

$$Y^2 = X^3 - 432.$$

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

Every cubic can be written as $y^2 = x^3 + ax + b$,

Introd 000		A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves
	Every c	ubic can be wr	itten as $y^2 =$	$x^3 + ax + b$,	
I	Definiti	on			
	Given a	n field K. An el	liptic curve ov	ver K is the set	
	E/	$K := \{(x, y) \in$	$K \times K : y^2$	$= x^3 + ax + b, a, b \in K \}$	J{ 0 }
	4 <i>a</i> ³	$b^3+27b^2\neq 0.$			

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Key point on the theory of elliptic curves:

Introduction A particular case Pseudoprimes Primitive roots and the general case Elliptic Curves 000 000 0000 00000 00000

Key point on the theory of elliptic curves:

3 = 2 + 1

Key point on the theory of elliptic curves:

3 = 2 + 1

 $(E(\mathbb{Q}), +)$ is a finitely generated abelian group

 $E(\mathbb{Q}) \simeq \mathbb{Z}^r \times E_{tors}(\mathbb{Q})$

3 = 2 + 1

 $(E(\mathbb{Q}),+)$ is a finitely generated abelian group

$$E(\mathbb{Q}) \simeq \mathbb{Z}' \times E_{\text{tors}}(\mathbb{Q})$$

Group law:
$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2$$
$$y_3 = -\left(\frac{y_2 - y_1}{x_2 - x_1}\right) x_3 - \left(\frac{y_1 x_2 - y_2 x_1}{x_2 - x_1}\right)$$

Key point on the theory of elliptic curves:

3 = 2 + 1

 $(E(\mathbb{Q}),+)$ is a finitely generated abelian group

$$E(\mathbb{Q}) \simeq \mathbb{Z}^r \times E_{\text{tors}}(\mathbb{Q})$$

Group law:
$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2$$
$$y_3 = -\left(\frac{y_2 - y_1}{x_2 - x_1}\right)x_3 - \left(\frac{y_1x_2 - y_2x_1}{x_2 - x_1}\right)$$

Theorem

(Mazur, 1978) If C_n denotes the cyclic group of order n, then the groups that appear as $E_{tors}(\mathbb{Q})$ are C_n with $1 \le n \le 10$, C_{12} and $C_2 \times C_2$, $C_2 \times C_4$, $C_2 \times C_6$, and $C_2 \times C_8$.

Key point on the theory of elliptic curves:

3 = 2 + 1

 $(E(\mathbb{Q}),+)$ is a finitely generated abelian group

$$E(\mathbb{Q}) \simeq \mathbb{Z}^r \times E_{\text{tors}}(\mathbb{Q})$$

Group law:
$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2$$
$$y_3 = -\left(\frac{y_2 - y_1}{x_2 - x_1}\right)x_3 - \left(\frac{y_1x_2 - y_2x_1}{x_2 - x_1}\right)$$

Theorem

(Mazur, 1978) If C_n denotes the cyclic group of order n, then the groups that appear as $E_{tors}(\mathbb{Q})$ are C_n with $1 \le n \le 10$, C_{12} and $C_2 \times C_2$, $C_2 \times C_4$, $C_2 \times C_6$, and $C_2 \times C_8$.

The rank, r, is highly unknown.

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

Very nice. But what do we do now? Can we find points?

	. /				
Intro 000	duction	A particular case	Pseudoprimes	Primitive roots and the general case	Elliptic Curves

Very nice. But what do we do now? Can we find points?

On the elliptic curve $y^2 = x^3 + 877x$, the smallest non trivial point is

 $x = \frac{375494528127162193105504069942092792346201}{6215987776871505425463220780697238044100}$

・ロト・日本・モート モー うへぐ

Very nice. But what do we do now? Can we find points?

On the elliptic curve $y^2 = x^3 + 877x$, the smallest non trivial point is

$x = \frac{375494528127162193105504069942092792346201}{6215987776871505425463220780697238044100}$

Try to generalize Hasse's principle: Every quadratic form has integer solutions, if and only if has solutions in every completion of $\mathbb Q$

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

Very nice. But what do we do now? Can we find points?

On the elliptic curve $y^2 = x^3 + 877x$, the smallest non trivial point is

$x = \frac{375494528127162193105504069942092792346201}{6215987776871505425463220780697238044100}$

Try to generalize Hasse's principle: Every quadratic form has integer solutions, if and only if has solutions in every completion of $\mathbb Q$

(日) (同) (三) (三) (三) (○) (○)

Corollary

 $x^2 + 2y^2 = 5z^2$ has no non-trivial integer solutions.

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

Theorem (Hasse, 1930)

 E/\mathbb{F}_q is an abelian group of size

$$|E/\mathbb{F}_q| = q + 1 - a_q$$

where

$$|a_q| \leq 2\sqrt{q}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

Theorem (Hasse, 1930)

 E/\mathbb{F}_q is an abelian group of size

$$|E/\mathbb{F}_q| = q + 1 - a_q$$

where

$$|a_q| \leq 2\sqrt{q}.$$

Example Consider the curve $y^2 = x^3 - 1$ and $q \equiv 2 \pmod{3}$. Then, $E(\mathbb{F}_q) = q + 1$.

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case	Elliptic Curves
000	00	0000		000000

Defintion. Given an integer n = pq an elliptic curve modulo n is the set

$$E_n := E/\mathbb{F}_p \times E/\mathbb{F}_q.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

Defintion. Given an integer n = pq an elliptic curve modulo n is the set

$$E_n := E/\mathbb{F}_p \times E/\mathbb{F}_q.$$

$$|E_n| = |E/\mathbb{F}_p| \times |E/\mathbb{F}_q|.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

Defintion. Given an integer n = pq an elliptic curve modulo n is the set

$$E_n := E/\mathbb{F}_p \times E/\mathbb{F}_q.$$

$$|E_n| = |E/\mathbb{F}_p| \times |E/\mathbb{F}_q|.$$

Lemma. Let n = pq with $p \approx q$. Then,

$$||E_n|-n|\leq cn^{3/4}.$$

A particular case

Pseudoprimes

Primitive roots and the general case $_{\rm OOOOOO}$

Elliptic Curves

Theorem (L. Dieulefait and J. Jiménez Urroz, 2019)

Let n = pq, and E_n and elliptic curve modulo n. Then knowing the factors of $|E_n|$ we can factor n in polynomial time.

A particular case

Pseudoprimes

Primitive roots and the general case $_{\rm OOOOOO}$

Elliptic Curves

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (L. Dieulefait and J. Jiménez Urroz, 2019)

Let n = pq, and E_n and elliptic curve modulo n. Then knowing the factors of $|E_n|$ we can factor n in polynomial time.

Proof.

Theorem (J. Cilleruelo-J. Jiménez Urroz)

In an arc of lenght $cn^{1/4}$ of the hyperbola xy = n there are at most 4 points of integer coordinates.

Pseudoprimes 0000 Primitive roots and the general case $_{\rm OOOOOO}$

Elliptic Curves

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (L. Dieulefait and J. Jiménez Urroz, 2019)

Let n = pq, and E_n and elliptic curve modulo n. Then knowing the factors of $|E_n|$ we can factor n in polynomial time.

Proof.

Theorem (J. Cilleruelo-J. Jiménez Urroz)

In an arc of lenght $cn^{1/4}$ of the hyperbola xy = n there are at most 4 points of integer coordinates.

So, we ask the oracle for the factors of E_n of size $n^{1/2}$. Note that $p + 1 - a_p$ and $q + 1 - a_q$ are two of those points.
Introduction 000 Pseudoprimes 0000 Primitive roots and the general case $_{\rm OOOOOO}$

Elliptic Curves

Theorem (L. Dieulefait and J. Jiménez Urroz, 2019)

Let n = pq, and E_n and elliptic curve modulo n. Then knowing the factors of $|E_n|$ we can factor n in polynomial time.

Proof.

Theorem (J. Cilleruelo-J. Jiménez Urroz)

In an arc of lenght $cn^{1/4}$ of the hyperbola xy = n there are at most 4 points of integer coordinates.

So, we ask the oracle for the factors of E_n of size $n^{1/2}$. Note that $p + 1 - a_p$ and $q + 1 - a_q$ are two of those points. Use Coppersmith algorithm to find p.

Theorem (Coppersmith)

If we know an integer n = pq and we know the high order $\frac{1}{4}log_2N$ bits of p, then we can recover p and q in polynomial time in log(n)

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Theorem

Finding the number of points of elliptic curves modulo n is equivalent to factoring n.

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

Theorem

Finding the number of points of elliptic curves modulo n is equivalent to factoring n.

N. Kunihiro and K. Koyama in communications of NTT science lab prove to be computationally equivalent, assuming uniform distribution of a_p .

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

Theorem

Finding the number of points of elliptic curves modulo n is equivalent to factoring n.

N. Kunihiro and K. Koyama in communications of NTT science lab prove to be computationally equivalent, assuming uniform distribution of a_p .

S. Martin, P. Morillo and J. Villar find an algorithm that with input the order of a point, find the factorization of n with positive probability.

Introduction 000	A particular case 00	Pseudoprimes 0000	Primitive roots and the general case	Elliptic Curves

Let $\hat{E}, \tilde{E}, \bar{E}$ the three possible twists of E. Then

$$\begin{split} E &= (p - a_p)(q - a_q) = n - pa_q - qa_p + a_pa_q \\ \hat{E} &= (p + a_p)(q + a_q) = n + pa_q + qa_p + a_pa_q, \\ \tilde{E} &= (p - a_p)(q + a_q) = n + qa_q - qa_p - a_pa_q, \\ \bar{E} &= (p + a_p)(q - a_q) = n - pa_q + qa_p - a_pa_q. \end{split}$$

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case	Elliptic Curves
000	00	0000		000000

Lemma

$$\begin{aligned} |E| + |\hat{E}| + |\tilde{E}| + |\bar{E}| &= 4n\\ E\hat{E} &= \tilde{E}\bar{E}. \end{aligned}$$

Then, knowing *E* and \hat{E} , we compute its product, $M = E\hat{E}$ and its sum $L = E + \hat{E}$, and we have

$$\widetilde{E}\overline{E} = M$$
 $\widetilde{E} + \overline{E} = 4n - L$

so \tilde{E} and \bar{E} are the solutions of the quadratic polynomial $X^2 - (4n - L)X + M$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	A particular case	Pseudoprimes	Primitive roots and the general case	Elliptic Curves
000	00	0000		000000

Lemma

$$\begin{aligned} |E| + |\hat{E}| + |\tilde{E}| + |\bar{E}| &= 4n\\ E\hat{E} &= \tilde{E}\bar{E}. \end{aligned}$$

Then, knowing *E* and \hat{E} , we compute its product, $M = E\hat{E}$ and its sum $L = E + \hat{E}$, and we have

$$\widetilde{E}\overline{E} = M$$
 $\widetilde{E} + \overline{E} = 4n - L$

so \tilde{E} and \bar{E} are the solutions of the quadratic polynomial $X^2 - (4n - L)X + M$.

 $gcd(E + \overline{E}, n) = p$