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Abstract

We solve the diophantine equations z* +dy? = 2P ford = 2 and d = 3
and any prime p > 349 and p > 131 respectively. The method consists in
generalizing the ideas applied by Frey, Ribet and Wiles in the solution of
Fermat’s Last Theorem, and by Ellenberg in the solution of the equation
z* 4+ y? = 2P, and we use Q-curves, modular forms and inner twists. In
principle our method can be applied to solve this type of equations for
other values of d.

1 Introduction

One of the consequences of the so called abc conjecture is that, for any integers
a, 3,7, the generalized Fermat equation, ax”+8y* = 72!, has only finitely many
solutions in integers, x,y, z,r, s, t, satisfying (z,y,z) = land 1/r+1/s+1/t < 1,
excepting 17 + 23 = 32. One piece of evidence towards this fact is the proof of
Fermat’s Last Theorem, or the case when r,s,t such that 1/r+1/s+ 1/t <1
are fixed, in which the existence of only finitely many primitive solutions, i.e.
with (z,y, z) = 1, is already proved by Darmon and Granville in [D-G]. Hence,
in general, it is not strange to expect that a given diophantine equation as the
one in the title,

at  dy® = 2P, (1)

will not have any non-trivial primitive solution. Indeed, the main result of this
paper is the following theorem related to cases d = 2 and d = 3.

Theorem 1 The diophantine equation z*+ dy? = 2P, does not have non-trivial
primitive solutions (x,y, z,d, p) with (z,y,z) =1, d =2 and p > 349 prime, or
d =3 and p > 131 prime.
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Since the proof of Fermat’s Last Theorem, analogous results have been proved
to be true for many equations similar to (1), (see [Dal, [D-M] or [R3]), using in
all these cases the same kind of technique, which very briefly is as follows: if a
primitive solution to the diophantine equation would exist, one could construct
an elliptic curve, associated to that solution, which would have too many good
properties which can not be verified all together and, hence, lead to a contra-
diction. In particular, the mod p Galois representation attached to this curve
will be unramified at most of the primes of bad reduction of the curve, where p
is the prime appearing as an exponent in (1). However, completing the previous
outline in a concrete example is very far from obvious. One of the main obstacles
that appears is that, to prove non-existence of certain solution (A, B,C'), one
needs to prove that the associated curve, if it exists, should be modular. Then, a
careful search among the modular forms in the appropriate spaces would give us
the desired contradiction. When the elliptic curve is defined over the rationals,
modularity is a consequence of the papers by Breuil, Conrad, Diamond, Taylor
and Wiles [W], [TW] and [BCDT], proving the Shimura-Taniyama conjecture.
However, in general, it is not possible to associate a rational elliptic curve to
the problem, or it is even more convenient to attach a curve defined over a
number field. This is for example the case in the papers [Da], [E1] or [Di2].
The natural objects to deal with, when considering a general number field, K,
are Q-curves, i.e. elliptic curves defined over K that are isogenous to all their
Galois conjugates by Gal(K/Q). Indeed, in [R2] Ribet gives a characterization
of Q-curves as the elliptic curves that are quotients of abelian varieties of GLo-
type, and these varieties are, according to the generalized Shimura-Taniyama
conjecture, precisely those constructed by Shimura associated to a newform of
some congruence subgroup I'1 (N). Hence, at least under this hypothesis, one
could find the L-series of a Q-curve as a product of L-series of newforms of this
subgroup. In this case we will say that the curve is modular. In our case, given
a primitive solution to equation (1) we associate the curve

Ea ey = y? =23+ 442% + Q(A2 +rB)z, (2)

where 72 = —d. The 2-isogeny in page 302 of [Si] makes the curve EiaBc) a

Q-curve of degree 2 completely defined over the field K = Q(v/—d,v—2). It is

also worthwhile to note that this curve, with discriminant A = 512(A4%+rB)CP?,

64(542—3rB)*
Cpr(A2+rB)

bad reduction, and any such prime is in fact a divisor of C.

and j-invariant j = , has semistable reduction at any odd prime of

Modularity of Q-curves has been proved by Ellenberg and Skinner, [E-S],
under a local condition at 3. We will use this result, together with certain gen-
eralizations of results of Manoharmayum on Serre’s conjecture in characteristic
7, to check that the Q-curves in (2) are indeed modular, making the first step
towards the proof of the theorem. How to get a contradiction from this fact
depends heavily on the concrete example, and we will describe it, in each of our
cases, in the following sections.



Although the strategy could apply to other values of d, in practice, it gets

more and more complicated: observe that in particular our Q-curve will be
defined over a field depending on d, and the method will involve computations
on the Fourier coefficients of modular forms of level growing with d. Also, since
the method requires that in some spaces of modular forms none of them has
certain inner twists, it may be the case that for some values of d the method
can not be applied.
On the other hand, the case d = 2 is somehow easier and will be treated in a
slightly different way. Hence, as we have already mentioned, in this paper we
will restrict to two particular choices, d = 2 and d = 3, dedicating to each of
them a separate section.

Acknowledgment: We would like to thank Jordi Quer for his carefull
reading of the paper, in particular the section related to Theorem 4. Also,
we thank the referee for his many comments and suggestions, done with care,
which, among other things, helped us to improve the bounds in Theorem 1.

2 The diophantine equation z* 4 2y? = 7.
The main result of this section is the following theorem.

Theorem 2 The diophantine equation z* + 2y? = 2P does not have non-trivial
primitive solutions for p > 349.

In this case, given a primitive solution (A, B,C) of the equation in the title,
the associated elliptic curve Ey, p oy = y* = 2° + 4A42? + 2(A? + rB)z, for
r € Q(v/—=2) a squareroot of —2, is a modular Q-curve completely defined over
the imaginary quadratic field K = Q(y/—2). Observe that, since the field of
complete definition is unramified at 3, and the curve has good or semistable
reduction at primes dividing 3, modularity of the curve is a direct application of
the results in [E-S]. We proceed to solve the diophantine equation by following
the idea introduced by Frey for Fermat’s Last Theorem, and already used in
[E1] and [Da] for the case of Q-curves over Q(¢). The curve does have semistable
reduction at any odd prime of bad reduction, and we have to divide in two cases
depending on the factorization of C.

Case (i): C is not divisible by 3.

In this case, from the equation A* + 2B% = CP and the assumption that the
solution is primitive, we conclude that C' is relatively prime to 6, thus since
CP = A* +2B? > 3, it has an odd prime factor ¢ > 3.

We consider the Weil restriction V' of E4 p ¢y, a GLa-type abelian surface de-
fined over Q. Modularity of the Q-curve means modularity of V, i.e., of the
two-dimensional Galois representations attached to it. These Galois representa-
tions py.» have field of coefficients Q(v/2) because the Q-curve has degree 2 (cf.
[E1], [Di2]). Most of the ramification of these Galois representations is at the



primes ¢ dividing C, where the curve has semistable reduction, (and therefore,
ramification is unipotent at any such ¢ provided that it is unramified in K, i.e.,
that ¢ > 2), and the idea is to consider a prime 7 | p in Q(v/2) and the residual
mod 7 representation py,.: since each odd prime appears with multiplicity di-
visible by p in the discriminant of the Q-curve, we know that the restriction to
the Galois group of K of py ., and therefore also py , itself, will be unramified
at any prime ¢ > 2 (this is basically the same trick used by Frey in connection
to Fermat’s Last Theorem).

Therefore, the conductor of py , is a power of 2, and we want to compute it.
First, using Tate’s algorithm, (cf. [Si]), we find the conductor of E{ p ¢y at
the prime 2 € K dividing 2 to be either 2'° or 2'2, depending on the parity of
B, (observe that A is always odd because the solution A, B, C is primitive). We
then apply the formula in [Mi] relating the conductor of an elliptic curve to the
conductor of its Weil restriction to obtain that the 2-part of the conductor of V'
is either 216 or 2'8. Since V is an abelian surface of GLy-type, the conductor of
pv.x is the square root of the conductor of V, thus has 2-part equal to 2% or 29.
We conclude that the conductor of py. . is exactly 28 or 2° (as it is well-known
that in presence of wild ramification the conductor does not decrease when re-
ducing mod p).

At this point, we have almost all ingredients, (as in the proof of Fermat’s last
theorem), to say that py ., corresponds to a modular form of weight 2 and
level 256 or 512. This is because V' is modular, and also because we can use
lowering-the-level results of Ribet, to ensure that we can take the modular form
of minimal level. We are just lacking one ingredient: for the above claims to
make sense, we have to be sure that py . is irreducible. Since we are in case (i),
there is a prime of semistable reduction, ¢, not dividing 6, and we can apply
Ellenberg’s generalization to Q-curves of results of Mazur (cf. [E1], Proposition
3.2) and conclude that for p > 13 the residual representation is in fact irre-
ducible.

From now on, we assume that p > 13. We have proved that there is a newform f
of weight 2 and level 256 or 512 such that one of its attached residual character-
istic p representations must be irreducible and isomorphic to py, .. We consider
one by one the newforms in these two spaces, 22 in total by [St], and see that this
is impossible. Whenever the modular form f has complex multiplication, this is
the case treated in [E1] and we will derive a contradiction from this congruence
by using the method developed there. Contradiction follows from the fact that
for a newform with complex multiplication, as it is well-known, the attached
{-adic and residual mod £ representations have all “small image” because they
are potentially abelian, more precisely, the residual image is contained in the
normalizer of a Cartan subgroup. On the other hand, the results of [E1] show
that Galois representations coming from Q-curves defined over a quadratic field
K having bad semistable reduction at some prime ¢ 1 6 have large image for
every p > pg, with py depending only of the field K and the degree d of the
Q-curve (cf. loc. cit., Propositions 3.4 and 3.6), thus they can not be equivalent
to those attached to a modular form with Complex Multiplication. In our case
the field is Q(v/—2), and d = 2 and we obtain, by Lemma 8 below, po = 349.



Therefore, it only remains to consider the case of modular forms without com-
plex multiplication. In this case, the contradiction will be derived from the
following observation. The Galois representation py . is attached to V, and V
is the Weil restriction of a Q-curve. As it is well-known (cf. [Da2] for a similar
situation) this implies that py , has an “inner twist”, namely, that for any prime
t where py . is unramified if we call a; = trace py . (Frob t), then it holds:

ai =Y(t)ar (*)

where ¢ is the involution in Gal(Q(v/2)/Q) and 1 is the quadratic character
corresponding to the extension K/Q. In more concrete terms, this means that
for any unramified place t:

« a; = 21/2, for some rational integer z, if t = 5, 7mod 8, or

ea; €EZift=1,3mod8.

Using this information and the Weil bound for the coefficients a; it is enough
to derive a contradiction. This method works provided that in the spaces that
we are considering none of the newforms f satisfy simultaneously the two con-
ditions: f does not have complex multiplication and f has field of coefficients
Q(v/2) and an inner twist as in (*).

No newform in the spaces of level 256 and 512 satisfies these two conditions
and so with a few computations we conclude the proof. In fact we only use the
eigenvalue c3 of the newforms without complex multiplication in these spaces.
Actually, all newforms in the space of level 256 have complex multiplication,
and the newforms of level 512 without complex multiplication are, up to Galois
conjugation, the following five (in the notation of [St]):

512A1,512B1,512D1,512F1, 512G1

the eigenvalue cs of the first four of them is ¢3 = ++v/2, and the last one has
C3 = :t\/é

The required computations are as follows:

The mod p congruence between f and py , implies that a; = ¢; mod p for every
t unramified. Since we are assuming 31 C, V has good reduction at 3, thus we
have: a3 = c3modp ().

From the inner twist (*) and the Weil bound |as| < 2v/3 we conclude that the
only possible values of a3 are:

a3 =0,+1,+2+3

Therefore, since ¢5 = 4+v/2 or +1/6 we see that the congruence (**) can not
hold whenever p > 13. This, together with the analysis done for the complex
multiplication case concludes the proof in case (i) for p > 349.

Case (ii): C is divisible by 3

First of all, we have to check that the residual representation py,, is irreducible.
If there is a prime ¢ > 3 dividing C this follows as we have already recalled from
the results in [E1] for any p > 13. So here, to prove irreducibility, we only have



to consider the case C'= 3*. In this case the conductor of pv.x is exactly 3 -2¢,
with e = 8 or 9. Now we assume that p > 17. The inner twist implies that
a7 € Z, and it follows from the Weil bound that |a;7| < 8 (the representation is
unramified at 17 because it only ramifies at 2, 3 and p > 17). Suppose that py, -
is reducible. Since the Galois representation is attached to an abelian variety
and a weight 2 modular form, it is well-known that in the residually reducible

case one has:
—S.8. ~v 1

Pvx =€EDE X

where Y is the mod p cyclotomic character and ¢ is a character with cond(g)? |
condpy .. In our case, this implies that cond(e) | 16 and in particular that
€(17) = 1. Thus, evaluating both sides of the congruence at 17 we obtain:
a17 =1+ 17mod p. Using the information we have on a17 we see that for any
prime p > 23 this congruence can not hold, thus proving irreducibility for such
primes.

Having shown irreducibility, we can handle any case where 3 | C' using raising-
the-level results of Ribet. Namely, in such a case the mod p congruence between
the modular Galois representation py . and the p-adic representation corre-
sponding to a modular form f of level 256 or 512 implies in particular that one
can raise the level of f adding the prime 3 modulo p. As it is well-known, this
implies in particular that the eigenvalue c3 of f must satisfy:

¢c3 = +4modp

and using the values of the eigenvalues c3 of all newforms in the two spaces
considered we easily check that this congruence is not satisfied by any prime
p > 17. This gives the desired contradiction in Case (ii).

3 The equation z* 4 3y? = 2
This section includes the proof of the following theorem.

Theorem 3 The diophantine equation x* + 3y? = 2P does not have non-trivial
primitive solutions for p > 131.

Again the proof will rely on the modularity of the associated elliptic curve
E{AB,C}, given in (2) with 72 = —3 or, in fact, of its Weil restriction. Indeed, as
we mentioned, Q-curves are quotients of abelian varieties of GLa-type. However,
in order to be modular, we want to consider only special cases of Q-curves,
namely such that the abelian variety W ::ResK/Q(E A,B,c) where K is the
field of complete definition of the curve, is itself of GLy-type. In this case one
could find the appropriate level N of the modular forms by the formula which
relates the conductor of a variety with its restriction of scalars. In the paper
[Q2], Theorem 5.4, Quer gives a sufficient condition for a given Q-curve, C'/K,
to have Weil restriction of GLo-type, in terms of the Schur class of certain
cohomology class. We now include that theorem for convenience of the reader.



For any embedding s : K — Q we can choose an isogeny ¢, : C — *C. With
this we built the 2-cocycle for the trivial action of Gg on Q,

CK($7 t) = (7255 S¢t¢;tla (3)

and we call £ (C) € H?(K/Q,Q*) its cohomology class. In page 287 of [Q2] it is
proved that £ (C) only depends on C. Any two cocycles in H2(K/Q, Q*) can be
viewed as taking values into Q , considered as a Gal(K/Q)-module with trivial
action. We will call the Schur class of cx, (or its cohomology class £x (C)), tot
the image of cx into H2(K/Q,Q").

Theorem 4 (Quer) Let C be a Q-curve without complex multiplication com-
pletely defined over a minimal splitting field K such that i (C) has trivial Schur
class, with a quadratic splitting character for §x(C). Then Resg;q(C) is of
GLs-type.

In order to apply the theorem in our particular case, we have first to ensure
that we start with a non-CM curve. This is the content of the following lemma.

Lemma 5 The curve Egy p cy, with d = 3, does not have complex multiplica-
tion.

Proof: The proof is the same as Proposition 6.1 of [P]. Indeed, since (3, 4) =1
we can reduce E{4 p cy modulo the prime p € Z[1 + 11/=3] above 3 to obtain
an elliptic curve E,, such that |E,| = 2, and so with End(E,) ® Q ~ Q(/-2).
On the other hand, it is easy to see that j can not be a rational number. The
result follows, as in [P], by noting that End(E(4 p,c)) ® Q —End(E,) ®Q, and
any elliptic curve over Q with complex multiplication by a field of class number
one has to have rational j-invariant.

The next step in order to apply Theorem 4 is to control the Schur class of the
curve By p oy. We will use the notation in [Q1]. In this way let M = Q (v/-3)
and N =Q (\/—2), the fields of definition of the curve and isogeny respectively,
so M N is the field of complete definition as a Q-curve. From the explicit
equation for the isogeny from F (a,B,0} tO its Galois conjugate, we can compute

the 2-cocycle cprn(s,t) and then its sign cz\i/[N to obtain
C?\EZIN = Ca,B, o = {17 _3}a ﬁ = {L _2}

Although &y (E{A7B7C}) does not have trivial Schur class, in [Q1] it is proved
the existence of certain extension of M, K, and an integer v € K, such that the
twist

E3A7B7C} = yy? = 2% + 4A2% + 2(A? +rB)z, (4)

has & K(E? B c}) with trivial Schur class. Moreover, in the same paper, it is
also given a method to find both the field K and the twist v. In particular

In page 304 of [Q2] there is a misprint in the definition of Schur class. It should be
replaced H2(Gg, Q") by H2(G,Q").



K = LM, where L is a cyclic extension L/Q with Dirichlet character & such
that Infle.] = (1,3)(—1,—2). The Dirichlet character for the quadratic field
Q(v/6) already has this property, and so we can take L = Q(v/6). We now have
all the ingredients to apply Theorem 3.1 of [Q1] in order to find . In particular,
LNM =Qand so e =1 and, since K = MN = ML, we can take a; = —
and by = —2, (for precise definitions see [Q1] page 195: Decomposition of K).
Now, by choosing oy = —2 + /6, an element of norm Ng/m(a1) = —2, and
ap = vV/—=2++/=3, it is easy to find 3, in (1) of [Q1] to obtain, choosing = = —%
in the same formula, v =2 + V6. Hence, the curve

E) 5o i=yy* =23 + 4A2° + 2(A® 4+ rB)z,

is the quotient of an abelian variety of GLo-type, concretely, its Weil restriction
W to Q.

Our next step will be proving that, in fact, W is modular. Let us recall that
W is an abelian variety of dimension 4, of GLs-type, and such that the corre-
sponding two-dimensional Galois representations pyy, ) have field of coefficients
Q(v/2,i) and two inner twists (because it comes from a Q-curve of degree 2
over the biquadratic field K, see page 226 of [P] for a similar situation). Hence,
the traces a; of this compatible family of Galois representations, at unramified
places, satisfy the following rule:

. a; € Z, if t totally splits in K.

. a; = 21/2, for some integer z, if ¢ splits in L and is inert in M.

« a; = zi, for some integer z, if ¢ splits in M and is inert in L.

. a; = 2v/—2, for some integer z, if ¢ is inert in L and M.

(cf. Theorem 5.4 of [Q2])

Since the field K is ramified at 3, the modularity of W does not follow from
an easy application of [E-S] as in the case d = 2. Thus, in order to prove modu-
larity we will apply (a slight generalization of) the results of Manoharmayum (cf.
[Ma] and [J-M]) proving Serre’s conjecture for the field of 7 elements. Since the
abelian variety W has good or semistable reduction at 7 (because the Q-curve
has semistable reduction at every odd prime of bad reduction) it is enough to
prove, (cf. [Dil]), that one of the attached residual representations in character-
istic 7 is reducible or modular to conclude modularity of W. Since modularity is
well-known in the case of solvable image, we only have to prove modularity for
one of the mod 7 representations assuming that it has non-solvable image. Let
p7 be such a residual representation. By solvable base change, it is enough to
prove modularity of the restriction of p7 to the Galois group of L, and we know
from the inner twists of W that this restriction has coefficients in F7 (because 2
is a square mod 7). As we will see in the next paragraph (when computing the
conductor and inner twists of W) this restriction is also unramified at 3. The
results in [Ma] and [J-M] prove modularity in this context, except that they
require the condition that 3 is unramified in L, which is not satisfied in our
case. However, if we inspect the proof of this result we find that using recent
modularity lifting results of Kisin, (cf. [K1]), and generalizations to ramified



number fields by Gee, (cf. [G]), this restriction is no longer necessary. In fact,
modularity is proved by showing the existence of an elliptic curve over a solvable
extension X of L whose mod 7 representation agrees with the restriction to the
Galois group of X of pr, then it only remains to prove modularity of such elliptic
curve. It is shown that the curve can be chosen such that the corresponding
mod 3 Galois representation is surjective, and X can be chosen such that X/L
is unramified at 3. Then as in Wiles’ proof of Fermat’s Last Theorem we know
that this residual representation is modular, due to results of Langlands and
Tunnell. The condition 3 unramified in L (therefore also in X) is used by Jarvis
and Manoharmayum to apply a modularity lifting result and conclude that F
is modular, but now using the results of Kisin and Gee we know that even for
our field L we can conclude modularity of E and this concludes the proof that
W is modular.

Remark: Due to recent works of Khare-Wintenberger, Kisin and the first
author, Serre’s modularity conjecture has been established in full generality (cf.
[K-W], [K2] and [Di3]). Serre’s conjecture implies (as proved by Ribet in [R2])
the generalized Shimura-Taniyama conjecture, i.e., the modularity of all abelian
varieties over Q of GLy type, thus in particular the modularity of W can be seen
as a particular case of this much more general result.

To compute the 2-part and the 3-part of the conductor of W we first get the

conductor of EZ 5 o over K, and then apply the formula in [Mi]. Let us stress
that in particular the curve E} BC has good reduction at primes of K dividing
3 (this follows from the fact that the solution A, B,C' is primitive, thus 3 { A),
so the 3-part of the conductor of W comes just from base changing from K to
Q (also, since K/L is unramified at 3, there is no ramification at 3 if we just
consider the intermediate base change from K to L). In this way we obtain that
the 3-part is 3 and the 2-part is 2¢ with e = 3,5,6 or 7. The determinant of the
representations pw, is ex where x is the ¢-adic cyclotomic character and € the
quadratic character corresponding to the quadratic field L.
We apply again Frey’s trick and, based on the shape of the discriminant of the
curve E7 , o, we deduce that for any prime 7 | p in the field of coefficients,
the residual representation py . loses the ramification at any prime dividing C,
which are primes of semistable reduction of the curve (we also know that 34 C
because the solution is primitive). Thus, the conductor of gy, . is 3 - 2¢ with
e=3,5,6o0r7.

Observe that any primitive solution verifying A* + 382 = C? must have C
coprime with 3 (as we already mentioned) and odd, because if A and B were
both odd then A*+3B? = 4 mod 8 which can not be a p-th power. Hence C must
have some prime divisor ¢ > 3, which will be a prime of semistable reduction of
E} 5 ¢. Thus, the technical condition needed to apply the results in [E1] and
conclude that for p larger than a certain bound pw, is irreducible and its image
is not contained in the normalizer of a Cartan subgroup hold. In particular, we



have irreducibility for p > 13. Thus, for p > 13, the residual representation py . .
should coincide with the residual representation corresponding to a newform of
weight 2, level 3 - 2¢, and nebentypus ¢, for e = 3,5,6 or 7. We also know,
by the Shimura correspondence,(see [Sh1], Theorem 7.14, and [R1], Proposition
2.3) that the extension Q(a1,as,...,a, ) generated by the coefficients of the
modular form coincide with the algebra of endomorphisms of W which, in this
case, is Q(v/—1,v/—2) by Theorem 5.4 of [Q2]. See also Theorem 3.1 of [Q1]
and observe that we already have an element o3 of norm —2. Finally we can
obtain the Nebentypus of the form since it coincides, as it was conjectured by
Serre in [Se|, with the splitting character ¢ of {x(Ea p,c}y). One can find a
proof of this fact in Theorem 5.12 of [P].

We eliminate as in the previous example all cases of modular forms with CM
(Complex Multiplication) because the results of [E1] ensure large image for p
sufficiently large and this contradicts a congruence with a CM newform. Again
Lemma 8 applied for the field Q(v/—3) gives the result for every p > 131.

The rest of the modular forms (those without CM) in the four spaces that we
have to consider are eliminated by using the precise information on the coeffi-
cients a; due to the existence of two inner twists and, as in the previous section,
by comparing a few coefficients and using the Weil bound we easily show that
for any p > 131 and any newform f with eigenvalues ¢; in one of the four spaces
considered there is a small prime ¢ such that the congruence a; = ¢; modp is
impossible. We have computed the required eigenvalues of these newforms using
SAGE (cf. [St2]).

More precisely, we have to consider all newforms of weight 2, nebentypus € and
level 24, 96,192 and 384: in the level 24 and 96 cases all newforms have CM. In
the level 192 case there are some newforms without CM, and we compute all
possible values of ¢; for them and we obtain: c¢; = +2v/3. In the level 384 case,
there are again some newforms without CM, but they satisfy: c; = +21/—6 or
+2¢/-2.

Using these eigenvalues we have enough to derive a contradiction:

a) Level 192, nebentypus ¢ and weight 2 without CM: c5 = £2v/3. From the
description of the inner twists and the Weil bound we know that the coefficient
as of our representation is of the form z+/2, for an integer z with |z| < 3. Then,
for any p > 13 the congruence as = cs modp does not hold. Observe that 5
is an unramified prime for py,. because the curve EZ 5 ¢ can not ramify at 5
(just observe that 51 C because CP = A* + 3B?).

b) Level 384, nebentypus ¢ and weight 2 without CM: ¢; = +2v/—6 or +2/—2.
First assume that 7 is an unramified prime for pw . Then we know from the
inner twists and the Weil bound that a; = zi for an integer z with |z| < 5.
Then, for any p > 17 the congruence a7 = ¢7 mod p does not hold.

Now suppose that py, . ramifies at 7 (ramification will be unipotent, 7 being
a prime of bad semistable reduction of EJ ; ). In this case the congruence
between the mod p Galois representation attached to f and pw,r implies that
one can raise the level of f modulo p, adding the prime 7. For this to hold,

10



as it is well-known (condition for level-raising), it is necessary that it holds:
c7 = 8 mod p. This congruence is not satisfied by any prime p > 11.

4 An explicit bound for the prime p.

In both of the previous sections, to exclude the cases in which the modular form
has complex multiplication, one has to compute a concrete bound, pg, such that
for any given prime p > pg, the Galois representations coming from Q-curves
defined over a quadratic field K having bad semistable reduction at most places
have large image, and then getting a contradiction. We compute this bound
exactly as in [E1] for the case considered there. The difference now is that, in
any of the two cases in this paper, the fields to be considered have character
of conductor at most 8 which will provide slightly different bounds than that
obtained in [E1].

Let F be a Petersson-orthogonal basis for S3(I'g(N)), x a Dirichlet character,
and let us write

(avaX)N = Zam(f)7L<f®X71)a

feF

where, f = > o an(f)g™. Also, if M|N we will let (am,, Ly)X to be the
contribution to (ay,, Ly)n of the forms coming from level M. As in [El], any
prime for which the inner product?

(a1, Lx)i;new = (a1, Ly)pz = p(0* = 1) (a1 — p X (P)ap, Ly)p (5)
is different from zero, would suffices to guarantee large image of the residual

pv,» Galois representation. The bound will follow directly from Theorem 1 of
[E2], and Lemma 3.13 of [E1], which we now include for completeness.

Theorem 6 (Ellenberg) Let x be a Dirichlet character of conductor q, and N
and integer N > 400, N { q. Let o be a real number with ¢*/2n < o <
Ngq/log N. Then we can write

am, Ly ) N| = Ay (m)e=2mm/oNloe N _ pG) 4 B By — Fy + (am, B(oN log N)),
X
where

« |(am, B(cNlog N))| < 30 (400/399)3e2™ ¢>m3/2N~1/2d(N)N~27o/7"

JE < 1376773m3/20_10gNe—N/(Zﬂ'malogN)’

0E2

IN

SToCH(7/2)m 2o N3/ (log N)?,

oE3

IN

§<2(3/2)ﬂ_30m3/2N—1/2 log Nd(N) e—N/(QTrmUlogN)7

« E®) <167°m Z min[%(b(q)c_1 log c, %oNlogle/Qc_‘g/Qd(c)].
¢>0,N|e

2The identity (5) is proved in Lemma 3.12 of [E1].
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As we said, we also need the following explicit bound

Lemma 7 (Ellenberg) Let p be a prime, m a positive integer, x a quadratic
character of conductor q prime to p. Then

(@m, Ly)p < 2\/§m1/27(m)(1 _ 6—27r/q\/5) (47T + 16C(3/2)2 2 —3/2)

Remark: In [E2] the author only proves a version of this lemma valid only for
m a multiple of p. However, as he himself mention in [E3], the result is valid as
stated in Lemma 7.

With these two results on hand we can prove the following.

Lemma 8 We have |(a1, Ly);> """ # 0 whenever

e p > 349 and x is a Dirichlet character of order at most 8.
e p > 131 and x is a Dirichlet character of order at most 3.

The proof of the lemma is a direct application of Theorem 6 and Lemma 7
to our case. We sketch the proof for the first part of the lemma and, hence,
we suppose ¢ < 8. The proof for the second part is exactly the same but just
changing the value ¢ of the conductor. In order to use Theorem 6 we will choose
o = ¢*/2m. With those values let p > 457 be a given prime and x = ?’T%NlogN
where N will be either p or p?. Hence we get, for m = 1, N = p?,

(a1, B(z)),| < 5760 €>™(400/399)%p3,

E, < 1032471'2 logpe P /(12810gp)
65536 _
By < 555 133 log )2((7/2)2,

By < X28((3/2)%rp " e7P /128108 Jog p,

| /\

P
E®) < 12807%(log p)?p~2 4+ 5302 10gppt <<2 3/2) — Zﬂ)
k=1

In order to get the bound for E() we have split the sum in Theorem 6 depending
on whether ¢ > p? or not. We just have to note that all the functions appearing
are decreasing in p to get, with the help of maple,

|(a1,Ly)p2 —4m| <9.16,

by substituting p = 353. On the other hand, the same argument, but now using
Lemma 7 instead gives us

g 1|(ap, L))yl <0.33 and

I, L)l < 3.06

12



for all p > 353. The result follows by (5).
Substituting ¢ by 3 instead of 8 we get the bounds

(a1, Ly)p2 — 47| < 9.6,
1
71
L‘
p?—1

‘(avax)p| <0.35

(a1, Ly)p| < 2.05,

for any p > 137 which gives the second part of the lemma.
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