Some Problems on the Arithmetic of Elliptic Curves

J. Jiménez Urroz, UPC

Kolkata, February, 2017

1800 BCE

The first historical find of an arithmetical nature is a fragment of a table: the broken clay tablet Plimpton 322 (Larsa, Mesopotamia, ca. 1800 BCE) contains a list of "Pythagorean triples", i.e., integers a, b, c such that

$$
a^{2}+b^{2}=c^{2}
$$

Diophanti Alexandrini, (Third century)

'Here lies Diophantus,' the wonder behold. Through art algebraic, the stone tells how old: 'God gave him his boyhood one-sixth of his life. One twelfth more as youth while whiskers grew rife; And then yet one-seventh ere marriage begun; In five years there came a bouncing new son. Alas, the dear child of master and sage. After attaining half the measure of his father's life chill fate took him. After consoling his fate by the science of numbers for four years, he ended his life.'

Diophanti Alexandrini, (Third century)

'Here lies Diophantus,' the wonder behold. Through art algebraic, the stone tells how old: 'God gave him his boyhood one-sixth of his life. One twelfth more as youth while whiskers grew rife; And then yet one-seventh ere marriage begun; In five years there came a bouncing new son. Alas, the dear child of master and sage. After attaining half the measure of his father's life chill fate took him. After consoling his fate by the science of numbers for four years, he ended his life.'

Diophanti Alexandrini, (Third century)

'Here lies Diophantus,' the wonder behold. Through art algebraic, the stone tells how old: 'God gave him his boyhood one-sixth of his life. One twelfth more as youth while whiskers grew rife; And then yet one-seventh ere marriage begun; In five years there came a bouncing new son. Alas, the dear child of master and sage. After attaining half the measure of his father's life chill fate took him. After consoling his fate by the science of numbers for four years, he ended his life.'

$$
\frac{x}{6}+\frac{x}{12}
$$

Diophanti Alexandrini, (Third century)

'Here lies Diophantus,' the wonder behold. Through art algebraic, the stone tells how old: 'God gave him his boyhood one-sixth of his life. One twelfth more as youth while whiskers grew rife; And then yet one-seventh ere marriage begun; In five years there came a bouncing new son. Alas, the dear child of master and sage. After attaining half the measure of his father's life chill fate took him. After consoling his fate by the science of numbers for four years, he ended his life.'

$$
\frac{x}{6}+\frac{x}{12}+\frac{x}{7}
$$

Diophanti Alexandrini, (Third century)

'Here lies Diophantus,' the wonder behold. Through art algebraic, the stone tells how old: 'God gave him his boyhood one-sixth of his life. One twelfth more as youth while whiskers grew rife; And then yet one-seventh ere marriage begun; In five years there came a bouncing new son. Alas, the dear child of master and sage. After attaining half the measure of his father's life chill fate took him. After consoling his fate by the science of numbers for four years, he ended his life.'

$$
\frac{x}{6}+\frac{x}{12}+\frac{x}{7}+5
$$

Diophanti Alexandrini, (Third century)

'Here lies Diophantus,' the wonder behold. Through art algebraic, the stone tells how old: 'God gave him his boyhood one-sixth of his life. One twelfth more as youth while whiskers grew rife; And then yet one-seventh ere marriage begun; In five years there came a bouncing new son. Alas, the dear child of master and sage. After attaining half the measure of his father's life chill fate took him. After consoling his fate by the science of numbers for four years, he ended his life.'

$$
\frac{x}{6}+\frac{x}{12}+\frac{x}{7}+5+\frac{x}{2}
$$

Diophanti Alexandrini, (Third century)

'Here lies Diophantus,' the wonder behold. Through art algebraic, the stone tells how old: 'God gave him his boyhood one-sixth of his life. One twelfth more as youth while whiskers grew rife; And then yet one-seventh ere marriage begun; In five years there came a bouncing new son. Alas, the dear child of master and sage. After attaining half the measure of his father's life chill fate took him. After consoling his fate by the science of numbers for four years, he ended his life.'

$$
\frac{x}{6}+\frac{x}{12}+\frac{x}{7}+5+\frac{x}{2}+4
$$

Diophanti Alexandrini, (Third century)

'Here lies Diophantus,' the wonder behold. Through art algebraic, the stone tells how old: 'God gave him his boyhood one-sixth of his life. One twelfth more as youth while whiskers grew rife; And then yet one-seventh ere marriage begun; In five years there came a bouncing new son. Alas, the dear child of master and sage. After attaining half the measure of his father's life chill fate took him. After consoling his fate by the science of numbers for four years, he ended his life.'

$$
\frac{x}{6}+\frac{x}{12}+\frac{x}{7}+5+\frac{x}{2}+4=x
$$

Diophanti Alexandrini, (Third century)

'Here lies Diophantus,' the wonder behold. Through art algebraic, the stone tells how old: 'God gave him his boyhood one-sixth of his life. One twelfth more as youth while whiskers grew rife; And then yet one-seventh ere marriage begun; In five years there came a bouncing new son. Alas, the dear child of master and sage. After attaining half the measure of his father's life chill fate took him. After consoling his fate by the science of numbers for four years, he ended his life.'

$$
\begin{aligned}
& \frac{x}{6}+\frac{x}{12}+\frac{x}{7}+5+\frac{x}{2}+4=x \\
& x=84 \ldots \text { can you do it faster? }
\end{aligned}
$$

Arithmeticorum, 1621, 1670, Diophanti Alexandrini

 forn. . Erit czgo ain
 soicivele
IN QYAESTIONEM VIT.

QVESTIO VIII

 elo 22 N . -4 . ple igitur quad phas 16 . $4 \mathrm{Q}+16,-16 \mathrm{~N} . \mathrm{hac}$ quin quibus $16-10$ C
 vtrimque defedus, \&\& fimilibus suferan-
tur fimlia, fient $5 Q . x$ quales 16 N. \& fit 1 N . 4 Eritigiticur ahter quadratorum
 16. \& verique quadratus ell.

OBSERVATIO DOMINI PETRI DE FERMAT.
 doms nominis fas of dividere cwins rai dome jifrationew mirabilem fane detexio Hens marginis exignitis non sofores
QY武STIO 1X.
$\mathbf{R}^{V \text { nivs }}$ oportest quadratum io tur ruffics primi tanis quadratos. Pona tur furfis primi faths i N. alterius ven viitatum, cuot conflat latus dicuidendi, Efto itaque N. - 4. enate quadrati, hic quidem $1 Q$. ille vero $4 Q-16 .-16 \mathrm{~N}$. Cxterum volo virumque finul xquari vnitathus 16 . lgitur ; $\mathrm{C} \rightarrow 16$. -16 N

OBSERVATIO DOMINI PETRI DE FERMAT.

คVbum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos Sé generaliter nullam in infinitum viltra quadratum poteftatem in duos eiufdem nominis fas eft diuidere cuius rei demonflrationem mirabilem fane detexi. Hanc marginis exiguitas non caperet.

Find the integral solutions of $x^{2}+y^{2}=z^{2}$

Find the integral solutions of $x^{2}+y^{2}=z^{2}$
Find the rationals solutions of $x^{2}+y^{2}=1$

Find the integral solutions of $x^{2}+y^{2}=z^{2}$
Find the rationals solutions of $x^{2}+y^{2}=1$

Find the integral solutions of $x^{2}+y^{2}=z^{2}$
Find the rationals solutions of $x^{2}+y^{2}=1$

$$
y=t(x-1)
$$

Find the integral solutions of $x^{2}+y^{2}=z^{2}$
Find the rationals solutions of $x^{2}+y^{2}=1$

$$
y=t(x-1), \text { then } x=\frac{t^{2}-1}{t^{2}+1} \quad y=\frac{2 t}{t^{2}+1}
$$

Find the integral solutions to $x^{3}+y^{3}=z^{3}$,

Find the integral solutions to $x^{3}+y^{3}=z^{3}$, is like finding rational solutions of $x^{3}+y^{3}=1$

Find the integral solutions to $x^{3}+y^{3}=z^{3}$, is like finding rational solutions of $x^{3}+y^{3}=1$

We parametrize by $y=t(x-1)$, to get

$$
\left(t^{3}+1\right) x^{2}+\left(1-2 t^{3}\right) x+\left(1+t^{3}\right)=0
$$

Changing variables $x=u+t, y=u-t$, we get

$$
2 u^{3}+6 u t^{2}=1
$$

Changing variables $x=u+t, y=u-t$, we get

$$
2 u^{3}+6 u t^{2}=1
$$

Multiplying by $(6 / u)^{3}$, and letting $6 / u=X, 36 t / u=Y$, we get

$$
Y^{2}=X^{3}-432
$$

Changing variables $x=u+t, y=u-t$, we get

$$
2 u^{3}+6 u t^{2}=1
$$

Multiplying by $(6 / u)^{3}$, and letting $6 / u=X, 36 t / u=Y$, we get

$$
Y^{2}=X^{3}-432
$$

Every cubic can be written as $y^{2}=x^{3}+a x+b$,

Every cubic can be written as $y^{2}=x^{3}+a x+b$,

Definition

Given a field K. An elliptic curve over K is the set

$$
\begin{aligned}
& E / K:=\left\{(x, y) \in K \times K: y^{2}=x^{3}+a x+b, a, b \in K\right\} \cup\{O\} \\
& 4 a^{3}+27 b^{2} \neq 0 .
\end{aligned}
$$

Every cubic can be written as $y^{2}=x^{3}+a x+b$,

Definition

Given a field K. An elliptic curve over K is the set

$$
\begin{aligned}
& E / K:=\left\{(x, y) \in K \times K: y^{2}=x^{3}+a x+b, a, b \in K\right\} \cup\{O\} \\
& 4 a^{3}+27 b^{2} \neq 0 .
\end{aligned}
$$

Key point on the theory of elliptic curves:

Key point on the theory of elliptic curves:

$$
3=2+1
$$

Key point on the theory of elliptic curves:

$$
3=2+1
$$

$(E(\mathbb{Q}),+)$ is a finitely generated abelian group

$$
E(\mathbb{Q}) \simeq \mathbb{Z}^{r} \times E_{\text {tors }}(\mathbb{Q})
$$

Key point on the theory of elliptic curves:

$$
3=2+1
$$

$(E(\mathbb{Q}),+)$ is a finitely generated abelian group

$$
E(\mathbb{Q}) \simeq \mathbb{Z}^{r} \times E_{\text {tors }}(\mathbb{Q})
$$

Group law: $\quad x_{3}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}-x_{1}-x_{2}$

$$
y_{3}=-\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) x_{3}-\left(\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}\right)
$$

Key point on the theory of elliptic curves:

$$
3=2+1
$$

$(E(\mathbb{Q}),+)$ is a finitely generated abelian group

$$
E(\mathbb{Q}) \simeq \mathbb{Z}^{r} \times E_{\text {tors }}(\mathbb{Q})
$$

Group law: $\quad x_{3}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}-x_{1}-x_{2}$

$$
y_{3}=-\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) x_{3}-\left(\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}\right)
$$

Theorem

(Mazur, 1978) If C_{n} denotes the cyclic group of order n, then the groups that appear as $E_{\text {tors }}(\mathbb{Q})$ are C_{n} with $1 \leq n \leq 10, C_{12}$ and $C_{2} \times C_{2}, C_{2} \times C_{4}, C_{2} \times C_{6}$, and $C_{2} \times C_{8}$.

Key point on the theory of elliptic curves:

$$
3=2+1
$$

$(E(\mathbb{Q}),+)$ is a finitely generated abelian group

$$
E(\mathbb{Q}) \simeq \mathbb{Z}^{r} \times E_{\text {tors }}(\mathbb{Q})
$$

Group law: $\quad x_{3}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}-x_{1}-x_{2}$

$$
y_{3}=-\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) x_{3}-\left(\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}\right)
$$

Theorem

(Mazur, 1978) If C_{n} denotes the cyclic group of order n, then the groups that appear as $E_{\text {tors }}(\mathbb{Q})$ are C_{n} with $1 \leq n \leq 10, C_{12}$ and $C_{2} \times C_{2}, C_{2} \times C_{4}, C_{2} \times C_{6}$, and $C_{2} \times C_{8}$.

The rank, r, is highly unknown.

Very nice. But what do we do now? Can we find points?

Very nice. But what do we do now? Can we find points?
On the elliptic curve $y^{2}=x^{3}+877 x$, the smallest non trivial point is

$$
x=\frac{375494528127162193105504069942092792346201}{6215987776871505425463220780697238044100}
$$

Very nice. But what do we do now? Can we find points?
On the elliptic curve $y^{2}=x^{3}+877 x$, the smallest non trivial point is

$$
x=\frac{375494528127162193105504069942092792346201}{6215987776871505425463220780697238044100}
$$

Try to generalize Hasse's principle: Every quadratic form has integer solutions, if and only if has solutions in every completion of Q

Very nice. But what do we do now? Can we find points?
On the elliptic curve $y^{2}=x^{3}+877 x$, the smallest non trivial point is

$$
x=\frac{375494528127162193105504069942092792346201}{6215987776871505425463220780697238044100}
$$

Try to generalize Hasse's principle: Every quadratic form has integer solutions, if and only if has solutions in every completion of \mathbb{Q}

Corollary
$x^{2}+2 y^{2}=5 z^{2}$ has no non-trivial integer solutions.

Very nice. But what do we do now? Can we find points?
On the elliptic curve $y^{2}=x^{3}+877 x$, the smallest non trivial point is

$$
x=\frac{375494528127162193105504069942092792346201}{6215987776871505425463220780697238044100}
$$

Try to generalize Hasse's principle: Every quadratic form has integer solutions, if and only if has solutions in every completion of \mathbb{Q}

Corollary
$x^{2}+2 y^{2}=5 z^{2}$ has no non-trivial integer solutions.
Unfortunately Hasse's principle does not hold on cubics, as shown by Selmer's example (1957), $3 x^{3}+4 y^{3}+5 z^{3}=0$.

The idea is to wrap all the local information together in one object which contains all the arithmetic information of the elliptic curve.

The idea is to wrap all the local information together in one object which contains all the arithmetic information of the elliptic curve.

$$
L(E, s)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}}
$$

where, for p, prime, $a_{p}=p+1-\left|E\left(\mathbb{F}_{p}\right)\right|$ and for general n we have

The idea is to wrap all the local information together in one object which contains all the arithmetic information of the elliptic curve.

$$
L(E, s)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}},
$$

where, for p, prime, $a_{p}=p+1-\left|E\left(\mathbb{F}_{p}\right)\right|$ and for general n we have

$$
L(E, s)=\prod_{p \mid \Delta} \frac{1}{1-a_{p} p^{s}} \prod_{p \nmid \Delta, p r i m e} \frac{1}{1-a_{p} p^{s}+p^{1-2 s}}
$$

The idea is to wrap all the local information together in one object which contains all the arithmetic information of the elliptic curve.

$$
L(E, s)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}}
$$

where, for p, prime, $a_{p}=p+1-\left|E\left(\mathbb{F}_{p}\right)\right|$ and for general n we have

$$
L(E, s)=\prod_{p \mid \Delta} \frac{1}{1-a_{p} p^{s}} \prod_{p \nmid \Delta, p r i m e} \frac{1}{1-a_{p} p^{s}+p^{1-2 s}}
$$

Conjecture:(Birch-Swinnerton Dyer) The order of vanishing at $s=1$ is $r=\operatorname{rank}(E(\mathbb{Q}))$.

The idea is to wrap all the local information together in one object which contains all the arithmetic information of the elliptic curve.

$$
L(E, s)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}}
$$

where, for p, prime, $a_{p}=p+1-\left|E\left(\mathbb{F}_{p}\right)\right|$ and for general n we have

$$
L(E, s)=\prod_{p \mid \Delta} \frac{1}{1-a_{p} p^{s}} \prod_{p \nmid \Delta, p r i m e} \frac{1}{1-a_{p} p^{s}+p^{1-2 s}}
$$

Conjecture:(Birch-Swinnerton Dyer) The order of vanishing at $s=1$ is $r=\operatorname{rank}(E(\mathbb{Q}))$.

This is like a generalization of the prime number theorem. $\zeta(s)=\sum \frac{1}{n^{s}}=\prod_{p}\left(1-p^{-s}\right)^{-1}$

Theorem (Hasse, 1930)
$\left|a_{p}\right| \leq 2 \sqrt{p}$.

Theorem (Hasse, 1930)

$\left|a_{p}\right| \leq 2 \sqrt{p}$.
Example Consider the curve $y^{2}=x^{3}-1$ and $q \equiv 2(\bmod 3)$. Then, $E\left(\mathbb{F}_{q}\right)=q+1$.

Theorem (Hasse, 1930)

$$
\left|a_{p}\right| \leq 2 \sqrt{p}
$$

Example Consider the curve $y^{2}=x^{3}-1$ and $q \equiv 2(\bmod 3)$.
Then, $E\left(\mathbb{F}_{q}\right)=q+1$.
Consider the endomorphism $\sigma: E_{p} \rightarrow E_{p}$ given by $\sigma(x, y)=\left(x^{p}, y^{p}\right)$. Then $\left|E\left(\mathbb{F}_{p}\right)\right|=|\operatorname{ker}(1-\sigma)|=\operatorname{deg}(1-\sigma)$.

Theorem (Hasse, 1930)

$$
\left|a_{p}\right| \leq 2 \sqrt{p}
$$

Example Consider the curve $y^{2}=x^{3}-1$ and $q \equiv 2(\bmod 3)$. Then, $E\left(\mathbb{F}_{q}\right)=q+1$.
Consider the endomorphism $\sigma: E_{p} \rightarrow E_{p}$ given by $\sigma(x, y)=\left(x^{p}, y^{p}\right)$. Then $\left|E\left(\mathbb{F}_{p}\right)\right|=|\operatorname{ker}(1-\sigma)|=\operatorname{deg}(1-\sigma)$.
One can prove that $K \subset \operatorname{End}\left(E_{p}\right) \otimes \mathbb{Q}$, where $K=\mathbb{Q}\left(\pi_{p}\right)$ is a quadratic imaginary field, and π_{p} corresponds to the Frobenius element.

Theorem (Hasse, 1930)

$$
\left|a_{p}\right| \leq 2 \sqrt{p}
$$

Example Consider the curve $y^{2}=x^{3}-1$ and $q \equiv 2(\bmod 3)$. Then, $E\left(\mathbb{F}_{q}\right)=q+1$.
Consider the endomorphism $\sigma: E_{p} \rightarrow E_{p}$ given by $\sigma(x, y)=\left(x^{p}, y^{p}\right)$. Then $\left|E\left(\mathbb{F}_{p}\right)\right|=|\operatorname{ker}(1-\sigma)|=\operatorname{deg}(1-\sigma)$.
One can prove that $K \subset \operatorname{End}\left(E_{p}\right) \otimes \mathbb{Q}$, where $K=\mathbb{Q}\left(\pi_{p}\right)$ is a quadratic imaginary field, and π_{p} corresponds to the Frobenius element. On the other hand, we know that for any ($p \nmid m$)

$$
E[m] \simeq \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}
$$

Since any endomorphism is linear, it will preserve the torsion. And we have a map

$$
\rho_{m}: \operatorname{End}(E) \rightarrow G L_{2}(\mathbb{Z} / m \mathbb{Z})
$$

In this way, there is a matrix g_{m} corresponding to the Frobenius element so that $\operatorname{Tr}\left(g_{m}\right)=a_{p}(\bmod m)$ and $\operatorname{det}\left(g_{m}\right)=p(\bmod m)$. In particular the characteristic polynomial of g_{m} is $P(t)=t^{2}-a_{p} t+p$. Since $\mathbb{Q}\left(\pi_{p}\right)$ is imaginary, we get the result. Note that, $N_{K / \mathbb{Q}}\left(\pi_{p}-1\right)=p+1-a_{p}=\left|E\left(\mathbb{F}_{p}\right)\right|$

In this way, there is a matrix g_{m} corresponding to the Frobenius element so that $\operatorname{Tr}\left(g_{m}\right)=a_{p}(\bmod m)$ and $\operatorname{det}\left(g_{m}\right)=p(\bmod m)$. In particular the characteristic polynomial of g_{m} is
$P(t)=t^{2}-a_{p} t+p$. Since $\mathbb{Q}\left(\pi_{p}\right)$ is imaginary, we get the result. Note that, $N_{K / \mathbb{Q}}\left(\pi_{p}-1\right)=p+1-a_{p}=\left|E\left(\mathbb{F}_{p}\right)\right|$

Appart from the size of the \mathbb{F}_{p} rational points, we are interested about the group structure. In this sense, we have

$$
E\left(\mathbb{F}_{p}\right) \simeq \mathbb{Z} / e_{p} \mathbb{Z} \times \mathbb{Z} / d_{p} \mathbb{Z},
$$

for some integers $e_{p} \mid d_{p}$ and the question would be which kind of pairs appear when fixing the elliptic curve and varying the prime.

Maybe the first question could be:
Question: How often is $E\left(\mathbb{F}_{p}\right)$ cyclic?

Maybe the first question could be:
Question: How often is $E\left(\mathbb{F}_{p}\right)$ cyclic?

Theorem (Serre, 1986)

Under $G R H, E\left(\mathbb{F}_{p}\right)$ is cyclic for a positive proportion of primes.

Maybe the first question could be:
Question: How often is $E\left(\mathbb{F}_{p}\right)$ cyclic?

Theorem (Serre, 1986)
Under $G R H, E\left(\mathbb{F}_{p}\right)$ is cyclic for a positive proportion of primes.

This question is still open.

Maybe the first question could be:
Question: How often is $E\left(\mathbb{F}_{p}\right)$ cyclic?

Theorem (Serre, 1986)

Under $G R H, E\left(\mathbb{F}_{p}\right)$ is cyclic for a positive proportion of primes.

This question is still open.
For ordinary primes we have $K=\mathbb{Q}\left(\pi_{p}\right)=\operatorname{End}\left(E_{p}\right) \otimes \mathbb{Q}$.
In 1940 Deuring proved that any order $\mathbb{Z}\left[\pi_{p}\right] \subseteq O \subseteq O_{K}$ is the ring of endomorphisms of some curve over \mathbb{F}_{p}.

Maybe the first question could be:
Question: How often is $E\left(\mathbb{F}_{p}\right)$ cyclic?

Theorem (Serre, 1986)

Under $G R H, E\left(\mathbb{F}_{p}\right)$ is cyclic for a positive proportion of primes.

This question is still open.
For ordinary primes we have $K=\mathbb{Q}\left(\pi_{p}\right)=\operatorname{End}\left(E_{p}\right) \otimes \mathbb{Q}$.
In 1940 Deuring proved that any order $\mathbb{Z}\left[\pi_{p}\right] \subseteq O \subseteq O_{K}$ is the ring of endomorphisms of some curve over \mathbb{F}_{p}.

Question: How often $\operatorname{End}\left(E_{p}\right) \simeq \mathbb{Z}\left[\pi_{p}\right]$ or O_{K}

Maybe the first question could be:
Question: How often is $E\left(\mathbb{F}_{p}\right)$ cyclic?

Theorem (Serre, 1986)

Under $G R H, E\left(\mathbb{F}_{p}\right)$ is cyclic for a positive proportion of primes.

This question is still open.
For ordinary primes we have $K=\mathbb{Q}\left(\pi_{p}\right)=\operatorname{End}\left(E_{p}\right) \otimes \mathbb{Q}$.
In 1940 Deuring proved that any order $\mathbb{Z}\left[\pi_{p}\right] \subseteq O \subseteq O_{K}$ is the ring of endomorphisms of some curve over \mathbb{F}_{p}.
Question: How often $\operatorname{End}\left(E_{p}\right) \simeq \mathbb{Z}\left[\pi_{p}\right]$ or O_{K}
Question: How often $\mathbb{Z}\left[\pi_{p}\right] \simeq O_{K}$

It is very difficult!

It is very difficult! How often $a_{p}^{2}-4 p$ is squarefree

It is very difficult! How often $a_{p}^{2}-4 p$ is squarefree
One can prove that $a_{p}^{2}-4 p$ squarefree implies cyclicity of $E\left(\mathbb{F}_{p}\right)$.

It is very difficult! How often $a_{p}^{2}-4 p$ is squarefree
One can prove that $a_{p}^{2}-4 p$ squarefree implies cyclicity of $E\left(\mathbb{F}_{p}\right)$. Moreover, let us consider $y^{2}=x^{3}-x$. One can see that $\operatorname{End}\left(E_{p}\right) \otimes \mathbb{Q} \simeq \mathbb{Q}[i]$ for every prime of ordinary reduction. This means that $a_{p}^{2}-4 p=-4 f^{2}$, for some integer f. So we are asking how many primes p are such that

$$
p=\left(a_{p} / 2\right)^{2}+1
$$

It is very difficult! How often $a_{p}^{2}-4 p$ is squarefree
One can prove that $a_{p}^{2}-4 p$ squarefree implies cyclicity of $E\left(\mathbb{F}_{p}\right)$. Moreover, let us consider $y^{2}=x^{3}-x$. One can see that $\operatorname{End}\left(E_{p}\right) \otimes \mathbb{Q} \simeq \mathbb{Q}[i]$ for every prime of ordinary reduction. This means that $a_{p}^{2}-4 p=-4 f^{2}$, for some integer f. So we are asking how many primes p are such that

$$
p=\left(a_{p} / 2\right)^{2}+1
$$

We don't even know if there are infinitely many primes so that $p=n^{2}+1!!!$

Let $\Pi_{E, r, h}^{\mathrm{sf}}(x)=\#\left\{2<p \leq x\right.$, prime : $\left.a_{p}^{2}-4 p \in \Delta(r, h)\right\}$, where r, h are integers and $\Delta(r, h)$ is the set of square-free integers n such that $n \equiv r \bmod h$. Let $E(a, b):=y^{2}=x^{3}+a x+b$.

Theorem (David-Jimenez, 2010)

For any $\varepsilon>0$. Let A, B be such that $A B>x \log ^{8} x, A, B>x^{\epsilon}$. Let $E(a, b) \in \mathcal{C}(A, B)$ if $|a| \leq A$ and $b \leq B$. Then, as $x \rightarrow \infty$,

$$
\begin{align*}
& \frac{1}{|\mathcal{C}(A, B)|} \sum_{E(a, b) \in \mathcal{C}(A, B)} \Pi_{E(a, b), r, h}^{\mathrm{sf}}(x)=\mathfrak{C}^{\frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right),} \\
& \mathfrak{C}=\frac{1}{3 h} \prod_{\substack{\ell \| h \\
\ell \mid r}} \frac{\ell-1}{\ell} \prod_{\substack{\ell \mid h \\
\ell \nmid r}} \frac{\ell\left(\ell-1-\left(\frac{r}{\ell}\right)\right)}{(\ell-1)\left(\ell-\left(\frac{r}{\ell}\right)\right)} \prod_{\ell \nmid h} \frac{\ell^{4}-2 \ell^{2}-\ell+1}{\ell^{2}\left(\ell^{2}-1\right)}, \tag{1}
\end{align*}
$$

where all products are taken over odd primes ℓ with the specified conditions.

Question: How often $\left|E\left(\mathbb{F}_{p}\right)\right|$ is a prime number?

Question: How often $\left|E\left(\mathbb{F}_{p}\right)\right|$ is a prime number? Non torsion on the isogeny class.

Question: How often $\left|E\left(\mathbb{F}_{p}\right)\right|$ is a prime number? Non torsion on the isogeny class.

Conjecture (Koblitz,1988)

$$
\Pi_{E}(x)=\left\{p \leq x:\left|E\left(\mathbb{F}_{p}\right)\right| \text { is prime }\right\} \sim c x /(\log x)^{2}
$$

for some constant $c>0$.

Question: How often $\left|E\left(\mathbb{F}_{p}\right)\right|$ is a prime number? Non torsion on the isogeny class.

Conjecture (Koblitz,1988)

$$
\Pi_{E}(x)=\left\{p \leq x:\left|E\left(\mathbb{F}_{p}\right)\right| \text { is prime }\right\} \sim c x /(\log x)^{2}
$$

for some constant $c>0$.
$\mathcal{A}(x)=\left\{\left|E\left(\mathbb{F}_{p}\right)\right|, p \leq x\right\}$.

- Miri and Murty (2001), Under GRH for non-CM $\left|\left\{P_{16} \in \mathcal{A}(x)\right\}\right| \gg x /(\log x)^{2}$.
- Steuding and Weng (2005) Under GRH $\left|\left\{P_{6} \in \mathcal{A}(x)\right\}\right| \gg x /(\log x)^{2}$ for non-CM curves, $\left|\left\{P_{4} \in \mathcal{A}(x)\right\}\right|>x /(\log x)^{2}$ in the CM case.
- . Cojocaru (2005) Unconditionally for CM elliptic curves $\left|\left\{P_{5} \in \mathcal{A}(x)\right\}\right| \gg x /(\log x)^{2}$.

Proposition

Let $d_{E}=\operatorname{gcd}\left(\left|E\left(\mathbb{F}_{p}\right)\right|, p\right.$ of ordinary reduction $)$. Then for any E with complex multiplicaiton, $d_{E}=1,2,3,4,8$ or 12 .

Theorem (Iwaniec-Jiménez, Jiménez, 2008)

Let E / Q be an elliptic curve with complex multiplication by O_{K} the ring of integers of the imaginary quadratic field K. For $x \geq 5$ $\left.\left\lvert\,\left\{p \leq x, p\right.$ splits in $\left.O_{K}: \frac{1}{d_{E}}\left|E\left(\mathbb{F}_{p}\right)\right|=P_{2}\right\}\right. \right\rvert\, \gg x /(\log x)^{2}$.

Proposition

Let $d_{E}=\operatorname{gcd}\left(\left|E\left(\mathbb{F}_{p}\right)\right|, p\right.$ of ordinary reduction $)$. Then for any E with complex multiplicaiton, $d_{E}=1,2,3,4,8$ or 12 .

Theorem (Iwaniec-Jiménez, Jiménez, 2008)

Let E / Q be an elliptic curve with complex multiplication by O_{K} the ring of integers of the imaginary quadratic field K. For $x \geq 5$ $\left.\left\lvert\,\left\{p \leq x, p\right.$ splits in $\left.O_{K}: \frac{1}{d_{E}}\left|E\left(\mathbb{F}_{p}\right)\right|=P_{2}\right\}\right. \right\rvert\, \gg x /(\log x)^{2}$.

Sieve methods.

$$
W(x)=\sum_{\substack{a \in \mathcal{A}(x) \\(a, 2 P(z) Q(z))=1}}\left\{1-\sum_{\substack{p_{0} \mid a \\ z<p_{0} \leq y}} \frac{1}{2}-\sum_{\substack{a=p_{1} p_{2} p_{3} \\ z<p_{3} \leq y<p_{2}<p_{1}}} \frac{1}{2}\right\}
$$

where

$$
z=x^{1 / 8} \quad \text { and } \quad y=x^{1 / 3}
$$

