Introduction
©00000000000

Some Problems on the Arithmetic of Elliptic

Curves

J. Jiménez Urroz, UPC

Kolkata, February, 2017



Introduction
0@0000000000

1800 BCE

The first historical find of an arithmetical nature is a fragment of a
table: the broken clay tablet Plimpton 322 (Larsa, Mesopotamia,
ca. 1800 BCE) contains a list of "Pythagorean triples”, i.e.,
integers a, b, ¢ such that

a’+ b =c?
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Diophanti Alexandrini, (Third century)

'Here lies Diophantus,’ the wonder behold. Through art algebraic,
the stone tells how old: 'God gave him his boyhood one-sixth of
his life. One twelfth more as youth while whiskers grew rife; And
then yet one-seventh ere marriage begun; In five years there came
a bouncing new son. Alas, the dear child of master and sage. After
attaining half the measure of his father’s life chill fate took him.
After consoling his fate by the science of numbers for four years,
he ended his life.’
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x = 84... can you do it faster?
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Arithmeticorum, 1621, 1670, Diophanti Alexandrini
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Find the integral solutions of x? 4 y? = 22

Find the rationals solutions of x?>+ y? =1

t2—1 2t

y=t(x—1) thenx =7 y=p5
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3 .

Find the integral solutions to x3 + y3 = 23, is like finding rational

solutions of x3+y3 =1
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We parametrize by y = t(x — 1), to get

B+ + Q-2+ (1+t)=0
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Multiplying by (6/u)3, and letting 6/u = X,36t/u =Y, we get
Y? = X3 —432.
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Given a field K. An elliptic curve over K is the set

E/K:={(x,y) e Kx K : y*=x>+ax+b,a,be K} U{O}
433 + 27 £ 0.
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2
2 — Y1
Group law: X3 = 2=y — X1 — Xo
X2 — X1

Y2—n yixe — ya2X1
X2 — X1 X2 — X1

(Mazur, 1978) If C, denotes the cyclic group of order n, then the
groups that appear as E;ors(Q) are C, with 1 < n <10, G2 and
C2 X C2, C2 X C4, C2 X C@, and C2 X Cg.

The rank, r, is highly unknown.
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Very nice. But what do we do now? Can we find points?

On the elliptic curve y? = x3 + 877x, the smallest non trivial point
is

~375494528127162193105504069942092792346201
~ 6215987776871505425463220780697238044100

Try to generalize Hasse's principle: Every quadratic form has
integer solutions, if and only if has solutions in every completion of

Q

x? 4+ 2y? = 522 has no non-trivial integer solutions.

Unfortunately Hasse's principle does not hold on cubics, as shown
by Selmer's example (1957), 3x3 + 4y3 + 523 = 0.
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The idea is to wrap all the local information together in one object
which contains all the arithmetic information of the elliptic curve.

a
L(E,s):zn—'s’,

n>1

where, for p, prime, a, = p+1—|E(F,)| and for general n we have

1 1
L(E,s) = H H s | pl—2s
plA 1- 3pp* ptA, prime 1- P>t P

Conjecture:(Birch-Swinnerton Dyer) The order of vanishing at
s =11is r =rank(E(Q)).

This is like a generalization of the prime number theorem.

(s) = 2 =TI,(1—p )"
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Theorem (Hasse, 1930)
lap| < 2,/p.

Example Consider the curve y?> = x3 — 1 and g =2 (mod 3).
Then, E(Fg) =q+ 1.

Consider the endomorphism o : E, — E, given by

o(x,y) = (xP,yP). Then |E(F,)| = |ker(1 — o)| = deg(1 — o).
One can prove that K C End(Ep) ® Q, where K = Q(7,) is a
quadratic imaginary field, and 7, corresponds to the Frobenius
element. On the other hand, we know that for any (p t m)

E[m| ~Z/mZ x Z]mZ
Since any endomorphism is linear, it will preserve the torsion. And

we have a map
pm : End(E) — GLy(Z/mZ)
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In this way, there is a matrix g, corresponding to the Frobenius
element so that Tr(gm) = ap (mod m) and det(gn) = p (mod m).
In particular the characteristic polynomial of g, is

P(t) = t> — apt + p. Since Q(7,) is imaginary, we get the result.
Note that, Nk g(mp —1) = p+1—a, = |E(F)p)|
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In this way, there is a matrix g, corresponding to the Frobenius
element so that Tr(gm) = ap (mod m) and det(gn) = p (mod m).
In particular the characteristic polynomial of g, is

P(t) = t> — apt + p. Since Q(7,) is imaginary, we get the result.
Note that, Nk g(mp —1) = p+1—a, = |E(F)p)|

Appart from the size of the I, rational points, we are interested
about the group structure. In this sense, we have

E(F,) ~ Z/e,Z x 7] dyZ,

for some integers e,|d, and the question would be which kind of
pairs appear when fixing the elliptic curve and varying the prime.
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Question: How often is E(FF,) cyclic?

Theorem (Serre, 1986)

Under GRH, E(F}) is cyclic for a positive proportion of primes.

This question is still open.
For ordinary primes we have K = Q(7,) = End(E,) ® Q.

In 1940 Deuring proved that any order Z[m,] € O C Ok is the ring
of endomorphisms of some curve over Fp,.

Question: How often End(E,) ~ Z[np] or Ok

Question: How often Z[rp| ~ Ok
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It is very difficult! How often af, — 4p is squarefree

One can prove that a,2J — 4p squarefree implies cyclicity of E(IF,).
Moreover, let us consider y2 = x3 — x. One can see that

End(E,) ® Q ~ Q[i] for every prime of ordinary reduction. This
means that ag —4p = —4f2, for some integer f. So we are asking
how many primes p are such that

p=(a/2)° +1.

We don’t even know if there are infinitely many primes so that
p=n?+ 1l
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Let I'ISEfmh(x) =#{2 < p < x, prime : a3 —4p € A(r, h)}, where
r,h are integers and A(r, h) is the set of square-free integers n
such that n = r mod h. Let E(a, b) := y? = x> + ax + b.
Theorem (David-Jimenez, 2010)

For any € > 0. Let A, B be such that AB > xlog® x, A, B > x¢.
Let E(a,b) € C(A,B) if|a] < A and b < B. Then, as x — oo,

1 X X
[C(A B)| Y MEapn) = €|OgX+0<|og2X>a

E(a,b)eC(A,B)

t-1 -1-(3)) —22 041
SIS S T e
£r or

where all products are taken over odd primes ¢ with the specified
conditions.
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Question: How often |E(F,)| is a prime number? Non torsion on
the isogeny class.

Conjecture (Koblitz,1988)

Ne(x) = {p < x : |E(F,)| is prime} ~ cx/(log x)?
for some constant ¢ > 0.

A(x) = {IE(Fp)l, p < x}-
@ Miri and Murty (2001), Under GRH for non-CM
[{P16 € A(x)}| > x/(log x)*.
e Steuding and Weng (2005) Under GRH
[{Ps € A(x)}| > x/(log x)? for non-CM curves,
[{Ps € A(x)}| > x/(log x)? in the CM case.

)
e . Cojocaru (2005) Unconditionally for CM elliptic curves
[{Ps € A(x)}| > x/(log x)?.
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Proposition

Let dp =gcd(|E(Fp)|, p of ordinary reduction). Then for any E
with complex multiplicaiton, dg = 1,2,3,4,8 or 12.

Theorem (lwaniec-Jiménez, Jiménez, 2008)

Let E/Q be an elliptic curve with complex multiplication by Ok
the ring of integers of the imaginary quadratic field K. For x > 5
I{p < x, p splits in Ok : J-|E(Fp)| = P2}| > x/(log x)>.
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Proposition

Let dp =gcd(|E(Fp)|, p of ordinary reduction). Then for any E
with complex multiplicaiton, dg = 1,2,3,4,8 or 12.

Theorem (lwaniec-Jiménez, Jiménez, 2008)

Let E/Q be an elliptic curve with complex multiplication by Ok
the ring of integers of the imaginary quadratic field K. For x > 5
I{p < x, p splits in Ok : J-|E(Fp)| = P2}| > x/(log x)>.

Sieve methods.

1 1
bq/()() = E 1-— E ii - E ii
acA(x) pola a=pi1p2p3
(a,2P(2)Q(2))=1 z<po<y z<p3<y<p2<p1

z=x7% and y:x1/3.
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