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1800 BCE

The first historical find of an arithmetical nature is a fragment of a
table: the broken clay tablet Plimpton 322 (Larsa, Mesopotamia,
ca. 1800 BCE) contains a list of ”Pythagorean triples”, i.e.,
integers a, b, c such that

a2 + b2 = c2
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Diophanti Alexandrini, (Third century)

’Here lies Diophantus,’ the wonder behold. Through art algebraic,
the stone tells how old: ’God gave him his boyhood one-sixth of
his life. One twelfth more as youth while whiskers grew rife; And
then yet one-seventh ere marriage begun; In five years there came
a bouncing new son. Alas, the dear child of master and sage. After
attaining half the measure of his father’s life chill fate took him.
After consoling his fate by the science of numbers for four years,
he ended his life.’

x

6

+
x

12

+
x

7

+ 5

+
x

2

+ 4

= x

x = 84...

can you do it faster?
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Arithmeticorum, 1621, 1670, Diophanti Alexandrini



Introduction Reduction modulo primes questions



Introduction Reduction modulo primes questions

Find the integral solutions of x2 + y 2 = z2

Find the rationals solutions of x2 + y 2 = 1

y = t(x − 1) , then x = t2−1
t2+1

y = 2t
t2+1
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Find the integral solutions to x3 + y 3 = z3,

is like finding rational
solutions of x3 + y 3 = 1	
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We parametrize by y = t(x − 1), to get

(t3 + 1)x2 + (1− 2t3)x + (1 + t3) = 0
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Changing variables x = u + t, y = u − t, we get

2u3 + 6ut2 = 1

Multiplying by (6/u)3, and letting 6/u = X , 36t/u = Y , we get

Y 2 = X 3 − 432.
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Every cubic can be written as y 2 = x3 + ax + b,

Definition

Given a field K . An elliptic curve over K is the set

E/K :=
{

(x , y) ∈ K × K : y 2 = x3 + ax + b, a, b ∈ K
}
∪ {O}

4a3 + 27b2 6= 0.
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Key point on the theory of elliptic curves:

3 = 2 + 1

(E (Q),+) is a finitely generated abelian group

E (Q) ' Zr × Etors(Q)

Group law: x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2

y3 = −
(

y2 − y1

x2 − x1

)
x3 −

(
y1x2 − y2x1

x2 − x1

)

Theorem

(Mazur, 1978) If Cn denotes the cyclic group of order n, then the
groups that appear as Etors(Q) are Cn with 1 ≤ n ≤ 10, C12 and
C2 × C2, C2 × C4, C2 × C6, and C2 × C8.

The rank, r , is highly unknown.
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Very nice. But what do we do now? Can we find points?

On the elliptic curve y 2 = x3 + 877x , the smallest non trivial point
is

x =
375494528127162193105504069942092792346201

6215987776871505425463220780697238044100

Try to generalize Hasse’s principle: Every quadratic form has
integer solutions, if and only if has solutions in every completion of
Q

Corollary

x2 + 2y 2 = 5z2 has no non-trivial integer solutions.

Unfortunately Hasse’s principle does not hold on cubics, as shown
by Selmer’s example (1957), 3x3 + 4y 3 + 5z3 = 0.



Introduction Reduction modulo primes questions

Very nice. But what do we do now? Can we find points?

On the elliptic curve y 2 = x3 + 877x , the smallest non trivial point
is

x =
375494528127162193105504069942092792346201

6215987776871505425463220780697238044100

Try to generalize Hasse’s principle: Every quadratic form has
integer solutions, if and only if has solutions in every completion of
Q

Corollary

x2 + 2y 2 = 5z2 has no non-trivial integer solutions.

Unfortunately Hasse’s principle does not hold on cubics, as shown
by Selmer’s example (1957), 3x3 + 4y 3 + 5z3 = 0.



Introduction Reduction modulo primes questions

Very nice. But what do we do now? Can we find points?

On the elliptic curve y 2 = x3 + 877x , the smallest non trivial point
is

x =
375494528127162193105504069942092792346201

6215987776871505425463220780697238044100

Try to generalize Hasse’s principle: Every quadratic form has
integer solutions, if and only if has solutions in every completion of
Q

Corollary

x2 + 2y 2 = 5z2 has no non-trivial integer solutions.

Unfortunately Hasse’s principle does not hold on cubics, as shown
by Selmer’s example (1957), 3x3 + 4y 3 + 5z3 = 0.



Introduction Reduction modulo primes questions

Very nice. But what do we do now? Can we find points?

On the elliptic curve y 2 = x3 + 877x , the smallest non trivial point
is

x =
375494528127162193105504069942092792346201

6215987776871505425463220780697238044100

Try to generalize Hasse’s principle: Every quadratic form has
integer solutions, if and only if has solutions in every completion of
Q

Corollary

x2 + 2y 2 = 5z2 has no non-trivial integer solutions.

Unfortunately Hasse’s principle does not hold on cubics, as shown
by Selmer’s example (1957), 3x3 + 4y 3 + 5z3 = 0.



Introduction Reduction modulo primes questions

Very nice. But what do we do now? Can we find points?

On the elliptic curve y 2 = x3 + 877x , the smallest non trivial point
is

x =
375494528127162193105504069942092792346201

6215987776871505425463220780697238044100

Try to generalize Hasse’s principle: Every quadratic form has
integer solutions, if and only if has solutions in every completion of
Q

Corollary

x2 + 2y 2 = 5z2 has no non-trivial integer solutions.

Unfortunately Hasse’s principle does not hold on cubics, as shown
by Selmer’s example (1957), 3x3 + 4y 3 + 5z3 = 0.



Introduction Reduction modulo primes questions

The idea is to wrap all the local information together in one object
which contains all the arithmetic information of the elliptic curve.

L(E , s) =
∑
n≥1

an
ns
,

where, for p, prime, ap = p + 1− |E (Fp)| and for general n we have

L(E , s) =
∏
p|∆

1

1− apps

∏
p-∆,prime

1

1− apps + p1−2s

Conjecture:(Birch-Swinnerton Dyer) The order of vanishing at
s = 1 is r =rank(E (Q)).

This is like a generalization of the prime number theorem.
ζ(s) =

∑ 1
ns =

∏
p(1− p−s)−1
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Theorem (Hasse, 1930)

|ap| ≤ 2
√

p.

Example Consider the curve y 2 = x3 − 1 and q ≡ 2 (mod 3).
Then, E (Fq) = q + 1.
Consider the endomorphism σ : Ep → Ep given by
σ(x , y) = (xp, yp). Then |E (Fp)| = |ker(1− σ)| = deg(1− σ).

One can prove that K ⊂ End(Ep)⊗Q, where K = Q(πp) is a
quadratic imaginary field, and πp corresponds to the Frobenius
element.

On the other hand, we know that for any (p - m)

E [m] ' Z/mZ× Z/mZ

Since any endomorphism is linear, it will preserve the torsion. And
we have a map

ρm : End(E )→ GL2(Z/mZ)
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In this way, there is a matrix gm corresponding to the Frobenius
element so that Tr(gm) = ap (mod m) and det(gm) = p (mod m).
In particular the characteristic polynomial of gm is
P(t) = t2 − apt + p. Since Q(πp) is imaginary, we get the result.
Note that, NK/Q(πp − 1) = p + 1− ap = |E (Fp)|

Appart from the size of the Fp rational points, we are interested
about the group structure. In this sense, we have

E (Fp) ' Z/epZ× Z/dpZ,

for some integers ep|dp and the question would be which kind of
pairs appear when fixing the elliptic curve and varying the prime.
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Maybe the first question could be:

Question: How often is E (Fp) cyclic?

Theorem (Serre, 1986)

Under GRH, E (Fp) is cyclic for a positive proportion of primes.

This question is still open.

For ordinary primes we have K = Q(πp) = End(Ep)⊗Q.

In 1940 Deuring proved that any order Z[πp] ⊆ O ⊆ OK is the ring
of endomorphisms of some curve over Fp.

Question: How often End(Ep) ' Z[πp] or OK

Question: How often Z[πp] ' OK
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Introduction Reduction modulo primes questions

It is very difficult!

How often a2
p − 4p is squarefree

One can prove that a2
p − 4p squarefree implies cyclicity of E (Fp).

Moreover, let us consider y 2 = x3 − x . One can see that
End(Ep)⊗Q ' Q[i ] for every prime of ordinary reduction. This
means that a2

p − 4p = −4f 2, for some integer f . So we are asking
how many primes p are such that

p = (ap/2)2 + 1.

We don’t even know if there are infinitely many primes so that
p = n2 + 1!!!
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Introduction Reduction modulo primes questions

Let Πsf
E ,r ,h(x) = #{2 < p ≤ x , prime : a2

p − 4p ∈ ∆(r , h)}, where
r ,h are integers and ∆(r , h) is the set of square-free integers n
such that n ≡ r mod h. Let E (a, b) := y 2 = x3 + ax + b.

Theorem (David-Jimenez, 2010)

For any ε > 0. Let A,B be such that AB > x log8 x, A,B > xε.
Let E (a, b) ∈ C(A,B) if |a| ≤ A and b ≤ B. Then, as x →∞,

1

|C(A,B)|
∑

E(a,b)∈C(A,B)

Πsf
E(a,b),r ,h(x) = C

x

log x
+ O

(
x

log2 x

)
,

C =
1

3h

∏
`‖h
`|r

`− 1

`

∏
`|h
`-r

`
(
`− 1−

(
r
`

))
(`− 1)

(
`−

(
r
`

)) ∏
`-h

`4 − 2`2 − `+ 1

`2(`2 − 1)
, (1)

where all products are taken over odd primes ` with the specified
conditions.
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Question: How often |E (Fp)| is a prime number?

Non torsion on
the isogeny class.

Conjecture (Koblitz,1988)

ΠE (x) = {p ≤ x : |E (Fp)| is prime} ∼ cx/(log x)2

for some constant c > 0.

A(x) = {|E (Fp)|, p ≤ x}.
Miri and Murty (2001), Under GRH for non-CM
|{P16 ∈ A(x)}| � x/(log x)2.

Steuding and Weng (2005) Under GRH
|{P6 ∈ A(x)}| � x/(log x)2 for non-CM curves,
|{P4 ∈ A(x)}| � x/(log x)2 in the CM case.

. Cojocaru (2005) Unconditionally for CM elliptic curves
|{P5 ∈ A(x)}| � x/(log x)2.
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Proposition

Let dE =gcd(|E (Fp)|, p of ordinary reduction). Then for any E
with complex multiplicaiton, dE = 1, 2, 3, 4, 8 or 12.

Theorem (Iwaniec-Jiménez, Jiménez, 2008)

Let E/Q be an elliptic curve with complex multiplication by OK

the ring of integers of the imaginary quadratic field K . For x ≥ 5
|{p ≤ x , p splits in OK : 1

dE
|E (Fp)| = P2}| � x/(log x)2.

Sieve methods.

W (x) =
∑

a∈A(x)
(a,2P(z)Q(z))=1

1−
∑
p0|a

z<p0≤y

1

2
−

∑
a=p1p2p3

z<p3≤y<p2<p1

1

2


where

z = x1/8 and y = x1/3.
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