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Abstract

This paper describes a new cryptosystem generalising the Naccache-Stern
knapsack (NSK) presented in [10]. Our main objective in this new construc-
tion was to equipe NSK with semantic security to provide the first knapsack-
type cryptosystem with this level of security. The cryptosystem however could
be considered also as in the line of El-Gamal-type schemes and, in this way, we
can base semantic security on the difficulty of the Decisional Diffie-Hellman
(DDH) assumption, one of the most popular and trustful assumptions in this
context. This connection between this two type of cryptosystems can be rein-
terpreted as a connection between additive and multiplicative knapsacks, and
it could be worthwhile to study it in the future.

Keywords: Public Key Cryptography, Knapsack Cryptosystems, Semantic
Security, Discrete Logarithm.

1 Introduction

Since the renowned paper by R.C. Merkle and M. E. Hellmann [9] published in 1978,
there have been many papers dedicated to design efficient and secure cryptosystems
based on the difficulty of the subset sum problem or, as it is also known, knapsack
problem. However, most of the subsequent systems based on this problem were sys-
tematically broken some time after their appearance, (see [2, 11] for an overview of
knapsack cryptosystems and the attacks they have suffered). In 1982, Shamir [12]
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project TIC 2003-00866.

1



broke the former knapsack system, as well as the hopes the cryptographic commu-
nity had found in this efficient construction. So dramatic is the situation in knapsack
cryptosystems that this problem has finally been removed from the standard specifi-
cations for public key cryptography [6]. Nevertheless, this kind of cryptosystems are
interesting due to its efficiency and elegancy. Moreover it is known that, in general,
the problem is NP-complete, providing a high level of confidence on its security,
(although there have been some detractors too, see [11]).

For convenience we will include the definition of the subset sum problem in the
next section. By now let us say that the main reason for the speed of this type of
systems relies on the linearity of its mathematical structure. This is, on the other
hand, one of its weaknesses. Indeed, one of the most important attacks to knapsack
cryptosystems comes from the use of basis reduction algorithms ([12, 1, 8]).

To avoid this problem, Naccache and Stern [10] published in 1997 a multiplicative
knapsack cryptosystem which, as far as we know, has not been attacked ever since.
Despite of this fact, unfortunately, we can not trust the security of the Naccache-
Stern cryptosystem, NSK from now on, since there is no proof supporting its security.
The main purpose of this paper is to generalize NSK in such a way to obtain the
same efficiency in encryption and decryption, but in a secure manner.

In 1984, Goldwasser and Micali [5] defined a new security notion that any encryp-
tion scheme should satisfy, namely, indistinguishability of encryptions or semantic
security. This notion informally requires that a ciphertext should not leak any useful
information about the plaintext, except its length, to a polynomial-time attacker.
This security notion became a standard requirement for the design of new cryptosys-
tems. To achieve this goal one exploits the fact that certain problems are considered
hard to solve. Then the proof of security constructs a reduction map which, in case
of breaking the cryptosystem provides an algorithm to solve this problem. One of
the main problems used in cryptography to ensure security is the Discrete logarithm
problem (DLP). The analysis about the intractability of the problem is so wide in
literature that makes one feel quite safe when considering it as the “hidden” difficult
problem of the cryptosystem. We will design our generalization based on DLP.

Knapsack cryptosystems in general, and in particular NSK, are not semantically
secure. In this paper we present a new cryptosystem. It should be considered in the
middle between Knapsack-type cryptosystems and El-Gamal type cryptosystems. In
fact, as we have mentioned, it is constructed generalizing the multiplicative knapsack
cryptosystem NSK, but in such a way that we can add security. In particular, its
design, close to El-Gamal, allows us to build a security proof based on the so called
Decisional Diffie-Hellman assumption (DDH) in the context of discrete logarithm
problems, as it is the case in El-Gamal type cryptosystems. This cryptosystem does
not intend to compete in practice with other El-Gamal type cryptosystems. In fact,
in the best of the choices, the size of the keys needed is the same as the one achieved
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in NSK; rather, the interest of our cryptosystem is of a more theoretical nature and
comes in two different ways. On one hand, it provides a secure generalization of
NSK cryptosystem; on the other hand, in our way to do so, we found an interesting
connection between NSK, a multiplicative knapsack, and the more traditional ad-
ditive knapsacks. In our opinion it would be interesting to consider how deep and
strong this connection can be. In particular, can one hope to translate results about
additive knapsacks into NSK? And, in view of the history of additive knapsacks,
can one hope to break NSK with additive techniques via this new approach?

The paper is organized as follows. In Section 2 we include the preliminaries
we need to develop the theory. Section 3 is dedicated to analyzing multiplicative
knapsack cryptosystems, and to present our proposal. In Section 4, semantic security
of the scheme is proven. To finish the paper we include some computations and
examples in Section 5 and also an open problem which appeared to us during the
implementation.

2 Preliminaries

2.1 Intractable problems

There are several ways to define knapsack problems. Merkle and Hellman started
from the most common one for cryptographic purposes, namely:

Definition 1 Subset Sum Problem, SSP
Given a finite set of positive integers A = {a1, . . . , an}, called weights, and M ∈

N, determine (provided it exists) a subset I ⊆ {1, . . . , n} such that M =
∑

i∈I ai.

As we have already mentioned, this is an NP -complete problem in terms of com-
plexity. However there are many particular instantiations that are trivial to solve, as
it is the case when the set A is formed by a superincreasing sequence. To transform
this problem into a cryptosystem, we use a difficult instantiation of the problem to
encrypt, and then a trapdoor to obtain a trivial instantiation from the encryption.
In the particular case of [9], to implement the system the authors needed to use a
modular version of the problem which we state for convenience as follows:

Definition 2 Modular Subset Sum Problem (MSSP).
Given p ∈ N, a finite set of integers A = {a1, . . . , an}, and M ∈ N, determine

(provided it exists) a subset I ⊆ {1, . . . , n} such that M =
∑

i∈I ai mod p.

For the rest of the paper we are interested in MSSP’s, rather than SSP’s.

As usual, to obtain a cryptosystem from a difficult problem, two additional
conditions need to be fulfilled: firstly, we need to guarantee the existence of a
unique plaintext for each valid ciphertext (uniqueness condition that we will denote
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U), and secondly we need an easy decryption (D). Hence, in order to use an MSSP
to design a cryptosystem, the set of weights has to verify, first of all, a condition
which guarantees (U). Namely,

∑
i∈I

ai 6=
∑
j∈J

aj mod p, ∀I, J ⊆ {1, . . . , n} , I 6= J. (1)

To achieve (D), the cryptosystem will use a trapdoor to convert a believed difficult
instance of an MSSP into an easy one which allows decryption.

In Section 3 we will present a multiplicative analogous of the previous modular
problem. The study of the hardness of our new proposal will lead us, in a natural
way, to problems related to discrete logarithms, and in particular, as we mentioned
in the introduction, the security of our cryptosystem relies in the DDH assumption,
one of the most popular and trustful assumptions in this context.

There are many ways to formulate the Decisional Diffie-Hellman assumption,
depending, among other things, on the precise probability space we are considering.
Following the notation in [13],we will focus on a decisional problem of medium
granularity. In other words, we will fix a group, and compute discrete logarithms
with respect to a generator, chosen uniformly at random.

In particular, given a security parameter `, a prime p chosen at random, and
G ≤ Z∗p a subgroup of prime order q such that |q| = `, then DDH assumes that there
is no probabilistic polynomial time algorithm, in the security parameter `, which is
able to distinguish the 4-tuple (g, gx, gy, gxy) from (g, gx, gy, gz) with probability
non-negligibly bigger than 1/2, for g chosen randomly among the generators in G,
and x, y, z random integers between 1 and p − 1, (see [4]). In this sense, we can
formulate DDH assumption in the following way:

Assumption 3 Decisional Diffie-Hellman Assumption (DDH).
Let p be a given prime, G ≤ Z∗p a subgroup of prime order q, g chosen uni-

formly at random among the generators of G and x, y, z random integers in the set
[1, . . . , p− 1]. Then, the probability distributions DDH = (g, gx, gy, gxy) and DR =
(g, gx, gy, gz) are polynomially indistinguishable.

2.2 Previous knapsack cryptosystems

Our scheme is inspired in two previous knapsack cryptosystems that we include
here for completeness. To simplify notation, for any given n ∈ N, we will denote
In = {1, . . . , n} and I∗n the set of integers in In which are coprime to n.

The first knapsack cryptosystem is the one designed by Merkle and Hellmann [9],
directly using the difficulty of the modular subset sum problem. In particular, to
send an n bit message through an insecure channel, the receiver considers a super-
increasing sequence of positive integers, i.e. a1, . . . , an ∈ N such that ai >

∑i−1
j=1 aj
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∀i = 2, . . . , n and a secret modulus N >
∑n

i=1 ai. She then chooses at random a
secret element s ∈ Z∗N , and publishes ci ≡ ais (mod N) for i = 1, . . . , n. The en-
cryption of an n-bit message m =

∑n
i=1 mi2

i−1 will be C =
∑n

i=1 mici. Decryption
of the message is simple since Cs−1 ≡ ∑n

i=1 miai (mod N) =
∑n

i=1 miai, and mi

are easily computable now, because the subset sum problem is constructed from
a superincreasing sequence. Unfortunately it was proved that also the MSSP de-
scribed by the sequence {ci} is easy to solve. One particular weakness arises from
the fact that there could be several different pairs (s′, N ′) converting {ci}i into a
superincreasing sequence {bi}, bi ≡ cis

′ (mod N ′) ∀i ∈ {1, . . . , n}, which makes
possible to an attacker to recover the message. In this way, Shamir exploited in [12]
the linearity of this knapsack cryptosystem, and efficiently computed a new pair
(s′, N ′) in the conditions above, breaking the cryptosystem.

In order to avoid this attack, and inspired in some previous work, Naccache and
Stern [10] built up a multiplicative version of the Merkle-Hellmann cryptosystem
(we will call it NSK) that has not been broken so far.

To send an n-bit long message with NSK-cryptosystem the receiver, analogously
to the former knapsack, considers the n first primes, pi, i = 1 . . . n, and a prime
p >

∏n
i=1 pi. Then she chooses a secret integer s ∈ I∗p−1, at random and publishes

li = s
√

pi mod p, i = 1, . . . , n to be the weights for the hard knapsack used for encryp-
tion. The n-bit message m =

∑n
i=1 mi2

i−1 is now encrypted as c =
∏n

i=1 `mi
i mod p.

The decryption is possible by computing m =
∑n

i=1
2i−1

pi−1
(hi,s − 1), where hi,s =

gcd(pi, c
s mod p), by the choice of p and the property of unique factorization in Z.

We point out that, although this scheme has not being broken, there is no result
certifying its security.

3 Multiplicative knapsack cryptosystems

3.1 Subset product problems

The two preceding knapsacks are in fact very related. Indeed, if p is a prime and g a
generator of Z∗p, for any pi we can write pi ≡ gαi mod p, for some integers αi ∈ Ip−1

and then we see that,

n∏
i=1

(pmi
i mod p) ≡

n∏
i=1

(gαimi mod p) ≡ g
∑n

i=1 αimi mod p ,

translating the multiplicative problem in the Naccache-Stern cryptosystem into a
subset sum problem at the exponent. In this sense, we can deduce the necessary
conditions to design a multiplicative knapsack cryptosystem from those of the ad-
ditive problem. In particular, the public key in an additive knapsack consists of
the weights of a hard subset sum problem. It is then natural to think about the
multiplicative version of this difficult problem.
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Definition 4 Modular Subset Product Problem, MSPP
Given p ∈ N, a finite set of integers, T = {t1, . . . , tn}, coprime to p, and S ∈ N,

determine (provided it exists) a subset I ⊆ {1, . . . , n} such that S ≡ ∏
i∈I ti mod p.

Observe that if p > max(S,
∏n

i=1 ti) and the integers in T are pairwise coprime,
then the problem has polynomial complexity (in fact quadratic, by using Euclid’s
algorithm). In general, by the observation above, it is clear that the hardness of
this problem is closely related to problems in the discrete logarithm context, as we
will see below. In this way, this formulation in multiplicative terms will be useful
to design semantically secure knapsack cryptosystems. For this purpose we need
Conditions (U) and (D) to be fulfilled. The multiplicative analogous of (1) is

∏
i∈I

ti 6=
∏
j∈J

tj mod p, ∀I, J ⊆ {1, . . . , n} , I 6= J. (2)

In the case of NSK, Condition 2 is achieved by choosing ti = pi for i = 1, . . . , n, the
n first primes, due to uniqueness of factorization, for p large enough. In this sense
they needed

p >

n∏
i=1

ti =
n∏

i=1

(gαi mod p) . (3)

On the other hand, Condition (D) in the case of NSK is a consequence of Euclid’s
algorithm.

Example 5 A new Knapsack cryptosystem based on a MSPP.

To build up a new multiplicative knapsack cryptosystems we just have to find
a family T = {ti}i fulfilling Conditions 2 and 3. A trivial choice for this purpose
would be ti = 22i−1

, for i = 1, . . . , n, p > 22n
, which trivially verify (U) exactly

as the superincreasing sequence does in the additive case. Observe that the size
of the keys is however exponentially bigger in the multiplicative problem than in
the additive one. From here, we can design the cryptosystem in the following way.
We choose a secret key s coprime to p − 1. Then we publish p and vi = tdi mod p,
i = 1, . . . , n, where ds = 1 mod p− 1. The message m =

∑n
i=1 mi2

i−1 is encrypted
as c =

∏n
i=1 vmi

i mod p, and then decrypted by the receiver computing cs mod p =∏n
i=1 22i−1mi , and solving a trivial additive subset sum problem.
This example is just the translation of choosing a superincreasing sequence in

the additive case. However, in this multiplicative context it is natural to think that
there could be better alternatives of choosing the weights in T ensuring Condition
2, by exploiting multiplicative properties of the bases instead of the size of the
exponents. In this way we can choose any selection of pairwise coprime integers ti
in the MSPP, which in fact include the selection in NSK. In any event, the security
of a cryptosystem in this general family still would need to be proved.
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3.2 Semantically secure knapsack

We now present our proposal of semantically secure knapsack cryptosystem. As we
mentioned above, semantic security will be based on the DDH assumption.

Let n be an integer, ` a security parameter, p a prime, G ≤ Z∗p such that |G| = q is
a prime of length `, g ∈ G a generator, and T = {t1, . . . , tn} ⊂ G an easy instance
of an MSPP satisfying Conditions (2) and (3) , where αi ∈ Iq, i = 2, . . . , n, and
α1 ∈ I∗q .
The parameters of the cryptosystem with set of plaintexts Mn, the set of integers
of n bits, and message m =

∑n
i=1 mi2

i−1 expressed on base 2, are as follows:

• Secret key: a random integer s ∈ I∗q .

• Public key: p, v1 = t1
d mod p, and `i = td

2

i mod p, for i = 1, . . . , n, where
d = s−1 mod q.

• Encryption: Choose at random b ← Ip−1. The ciphertext is c(m, b) = (c1, c2),
with c1 = vb

1 mod p, c2 = `b
1

∏n
i=1 `mi

i mod p.

• Decryption: Compute c−s
1 cs2

2 =
∏n

i=1 gαimi ≡ ∏n
i=1 tmi

i mod p.

We point out that the ciphertext can be represented in terms of the generator as
c(m, b) = (gdbα1 , gd2(bα1+

∑n
i=1 αimi)). On the other hand, the ciphertext in NSK was

only
∏n

i=1 `mi
i and, since no randomness was considered, there was not any chance

for the scheme to be semantically secure.

4 Semantic security

In this section we prove that our knapsack is semantically secure (IND–CPA) in
the standard model, under DDH assumption on a subgroup G of Z∗p, for a given p
prime, and a generator g ∈ G varying at random (i.e. medium granularity, according
to [13]). To get this level of security we need to ensure that the probability that an
adversary obtains some information from the ciphertext, which he could not achieve
from the public data, is negligible. If we denote D0 the probability distribution
associated to the set of encryptions c(m0, b) for a fixed message m0 ∈ Mn, and D
the probability distribution associated to the set of encryptions c(m, b) for a random
message m ←Mn, a standard way to prove semantic security is to show that, D0 and
D are polynomially indistinguishable distributions for any fixed m0 =

∑n
i=1 mi,02

i−1.
From now on we will denote by D1 ≈ D2 the fact that two probability distributions
D1 and D2 are polynomially indistinguishable [4].
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In our case, the public information is gathered into v1 and li, i = 1 . . . , n, and
therefore

D0 = (gdα1 , gd2α1 , . . . , gd2αn , gdbα1 , gd2(bα1+
∑n

i=1 αimi,0)),

D = (gdα1 , gd2α1 , . . . , gd2αn , gdbα1 , gd2(bα1+
∑n

i=1 αimi)),

where b ← Ip−1, m ←Mn, d ← I∗q and g ∈ G is a given generator.
The following lemma will allow us to simplify dramatically the proof of semantic

security.

Lemma 6 Let p = 1 + qr be a fixed prime, α1, . . . , αn ∈ N such that α1 ∈ I∗q ,
and X = {(aα1 , bα1 , bα2 , . . . , bαn , c, d) | a, b, c, d ∈ G}. Consider the following map:

ϕ : X −→ G×G×G×G

x → (a, b, c, d)

Then, ϕ and ϕ−1 are bijections that can be computed in polynomial time.

Proof : bijectivity is trivial, and the only computations involved are modular expo-
nentiations modulo p; namely 2 to compute ϕ(x) and n+1 to compute ϕ−1(a, b, c, d).

Hence, proving D0 ≈ D is equivalent to proving that the distributions

(gd, gd2

, gdbα1 , gd2(bα1+
∑n

i=1 αimi,0)) and (gd, gd2

, gdbα1 , gd2(bα1+
∑n

i=1 αimi))

are indistinguishable for d ← I∗q , b ← Ip−1 and m =
∑n

i=1 mi2
i−1 ←Mn. Indeed, we

just have to observe that for any bijection ϕ, such that ϕ and ϕ−1 can be computed
in polynomial time, then D1 ≈ D2 is equivalent to ϕ(D1) ≈ ϕ(D2).

Theorem 7 The proposed scheme is semantically secure if and only if DDH holds.

Proof :
It is clear that, for any β ∈ I∗p−1 and any given plaintext m0 =

∑n
i=1 mi,02

i−1,
the map

θ : G×G×G×G −→ G×G×G×G

(c1, c2, c3, c4) → (c1, c2, c
β1

3 , cβ1

4 c
−β1

∑n
i=1 αimi,0

2 )

is a bijection that can be computed in polynomial time, and so, choosing β1 =
α−1

1 mod p − 1, the problem is reduced to prove the indistinguishability of D0 =
(gd, gd2

, gdb, gd2b), and
D = (gd, gd2

, gdb, gd2(b+β1
∑n

i=1 αi(mi−mi,0))), where b ← Ip−1, m ←Mn and d ← I∗q .
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Next reduction will essentially solve the problem. In this case we note that as d
varies over I∗q , gd runs through all the generators of G. Hence

D0 = (g, gd, gb, gdb) and D = (g, gd, gb, gd(b+β1
∑n

i=1 αi(mi−mi,0))),

where b ← Ip−1, m ←Mn, d ← I∗q and g ← G generator.
Now let us see that, if DDH holds, then for any set X ⊂ Ip−1 we have

(g, gd, gb, gd(b+x)) ≈ (g, gd, gb, gz)

with the parameters b, d, g in the respective sets, and z ← Ip−1, x ← X. In-
deed, suppose that both distributions are distinguishable. Then, given a DDH tuple
(c1, c2, c3, c4), we choose x ← X, and compute (c1, c2, c3, c4c

x
2). Note that this will be

one of our 4-tuple, since x ∈ Ip is a multiple of q with negligible probability in the
parameter `. In this way, to break DDH it is enough to distinguish (g, gd, gb, gd(b+x))
from (g, gd, gb, gz+dx). The proof finishes by observing that z + dx ← Ip−1 indepen-
dently of X since, for given k ∈ Ip−1 and a pair (x, d), there exists a unique z such
that z + dx = k.

5 The system in practice

Let us see how to effectively build a particular semantically secure knapsack cryp-
tosystem following the general description in Section 3.2. For this purpose we need
to find an easy instantiation of MSPP given by a set T = {t1, . . . , tn} ⊂ N satisfying
Conditions (2) and (3), and such that α1 is coprime to p− 1, (in fact coprime to q
for some q|p− 1).

Let k, m ∈ N, T = {2, 22, 24 . . . 22k
, 3, 32, 34 . . . , 32m}. If we choose g = 2, then

α1 = 1 and so α1 ∈ I∗q for any q. It is important to note that 2 will in fact be a
generator of Z∗p, with conjectural probability bigger than 1/3 (see [3]). Also observe
that, in those cases, if p = 1 + qr, then 2r will be a generator of a group G of
order q. If p > 22k+1−132m+1−1 then Condition (3) is satisfied. On the other hand,
Condition (2) is trivially satisfied. Nevertheless, in the proof of semantic security
we have used that the bijections in Lemma 6 are computable in polynomial time,
which means we need to know the set A = {α1, . . . , αn}. This can be guaranteed,
for instance, by choosing p among the divisors of 2l − 3, when ` runs through N,
because in this case computing log2 3 in Zp is trivial. This observation would in fact
be useful only if there are infinitely many primes dividing 2` − 3 for ` varying over
the integers. This is guaranteed by the following lemma.

Lemma 8 The sets P± = {p, prime : p|(b±1)k−b for some k ∈ N} have infinitely
many primes for any given integer b.
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Proof : Let Q = {p1, . . . , pr} ⊂ P±, and al = (b± 1)1+l(p1−1)···(pr−1) − b, l ∈ N.
Then, al ≡ ±1 mod pi for i = 1, . . . , r, and therefore if p|al then p ∈ P± \Q.

As an aside, it is likely that there are infinitely many primes of the form p = 2a−
3b. To argue this, let k be a large integer and consider the set {2a−3b | a ∈ [k, 2k], b ∈
[1, k]}. All these numbers are smaller than 22k, and therefore the probability that
any of them is prime is larger than 1/2k. Since we are considering k2 numbers, we
can hope that set to contain some k/2 primes. It is also likely that 2 or 3 will be
generators for many of these primes. We note also that every prime p will eventually
divide a number of the form 2a−3b. There exist at least two primes, 683 and 599479,
with the unusual property that all the non-one modular powers of 2 are different
to all the non-one modular powers of 3; thus, the smallest nontrivial multiple of p
turns out to be 2p−1 − 3p−1. This is quite rare, though; a typical prime p can be
expected to have a multiple smaller than 3

√
p, since the set {2a− 3b | 1 ≤ a, b ≤ √

p}
contains p numbers with absolute value smaller than 3

√
p.

The generality of the previous lemma allows us to find quickly a prime p and a
generator b of Z∗p (by trying a few values b). We observe that, if ti = b2i

, i = 1, . . . , n,
then li+1 = l2i , and we lose some randomness. However, we could take the set
{be1 , be2 , . . . , bek , (b+1)f1 , (b+1)f2 . . . (b+1)fm} for any {ei}i, {fi}i superincreasing se-
quences and p a prime satisfying the corresponding Condition 3. We now show in full
detail a simple instance with messages in M11. For this purpose we run a MAPLE
program which lists primes dividing 2h − 3r for 1 ≤ h ≤ r ≤ 100. This enable us to
find log2(3) mod p. Among those primes we need to choose the ones satisfying Con-
dition 3 and, for that reason, we need first to determine the number of powers of 2
and 3 that we will include in our list. When T = {2, 22, 24 . . . 22k

, 3, 32, 34 . . . , 32m},
it is easy to see that we will be able to use a smaller p by choosing m = k or
m = k − 1. Considering h = 27, r = 71, then p = 371 − 227 is a prime greater than
263331, and so we can select T = {2, · · · , 232, 3, · · · , 316} to be the set in our easy
MSPP. We randomly select s = 2544863540878531477563676339156087, coprime to
p− 1 and compute d = 4850494748780142878020002241926799. The set of weights
will be v1 = 2d mod p and li = td

2

i mod p, i = 1 . . . , n. To encrypt the message m = 1,
we randomly select b = 6889544242456521672254257486843889, and send

c1 = 6802533914151349113608066669647340,
c2 = 5145447969232349978726410845145641.

We see that c−s
1 cs2

2 mod p = 2, from where we easily recover the message m = 1.

To encrypt the message m = 11111111111 we make a new random selection
b = 2142852426267056361930443495545181, and send

c1 = 3106367607186837176583746018441946,
c2 = 3767447846459161650796888810166266.
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We see that c−s
1 cs2

2 mod p = 263 · 331, from where we easily recover the message m.

Clearly, the cryptosystem built in the previous way is highly inefficient. In par-
ticular, to encrypt 11 bits of plaintext, a 10 times more length ciphertext is needed
(in NSK would approximately be 5.5 times). The main reason for this problem is
Condition 3 to ensure decryption by factorization. The double exponential increas-
ing at the original sequence in T makes this selection unfeasible.

5.1 General instances

In general, we want Conditions 2 and 3 to be fulfilled, in order to make the sys-
tem compatible with an easy decryption. There are many ways of achieving these
properties. In particular, selecting any set T of pairwise coprime integers, and a
prime p bigger than the product of the ti. One possible choice is letting T be the
set of the n first primes, as in [10]. In that case, the authors already showed the
asymptotic growth of p as p ∼ n! log nne−n/ log n. In particular, for n = 160, a prime
of about 900 bits is needed. The obstacle in these choices would be that, in our
proof of semantic security, the knowledge of the exponents αi is used in a decisive
way. In this direction we address the following open problem, generalizing somehow
the discrete logarithm problem.

Problem 9 Given integers t1, . . . , tn, find α1, . . . , αn, a prime p, and a generator
g ∈ Z∗p such that gαi ≡ ti mod p for i = 1 . . . , n, but such that DL is a hard problem
in Z∗p.

This obstacle can be avoided by a more flexible definition of semantic security.
We observe that, if there exists an oracle such that given an instance of the scheme,
it produces the exponents αi, then the scheme becomes semantically secure. In this
direction we make the following definition:

Definition 10 A scheme (Pk, Sk, Ek(m, r) = c,Dk(c) = m) is potentially semanti-
cally secure, PSS, if there exists an oracle O such that the scheme given by
(Pk ∪ O, Sk, Ek(m, r) = c,Dk(c) = m) is semantically secure.

The idea is that even when we add more public information to a PSS scheme, it
remains IND-CPA secure. In our case, the information we need to add with the help
of the oracle O would be the exponents αi. The main observation is that, in some
cases, PSS also implies semantic security.

We make the following assumption:

Assumption 11 Let p be prime, and q|p − 1 a prime of, at least, n bits. Then
(g, ge, . . . , gen

) ≈ (g, gα1 , . . . , gαn) where g, e are random generators of Z∗p and Z∗q
respectively, and αi ← Z∗q, for i = 1, . . . , n.
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The particular case of n = 2 of the previous assumption is the well known Decisional
Square Exponent assumption, DSE, (see [13]).

Now, suppose there exists an adversary A who is able to break the semantic
security of the cryptosystem. We build instances of the scheme as in the example
in Section 5, choosing T = {be, . . . , ben} for some integers b and e and a prime p
satisfying Condition 3. Hence, under assumption 11, the instantiations we can make
with the previous selections of T match perfectly the real setting. So the adversary
cannot tell the difference, and the semantic secure challenge is the same as in the
general case. Therefore, if we gave the public information, the challenge messages m0

and m1, and the ciphertext to the adversary A; with its answer and the exponents,
we would be able to distinguish Diffie-Hellman by following our proof of security.

5.2 Example

Following the tradition we include a challenge and offer an impressive collection of
the, nowadays, ancient pesetas, to whom cryptanalyses the proposed scheme. We
set n = 95, so we will be sending 96 bits length messages. Choose ti = pi the i-th
prime. The prime modulus is

p = 9642740472484187971450909831571979808550789668822764
9257278853295490411265533843936130621389856951659374
42673917540333064651259191996927033238785578330235733
12685002670662846477592597659826113460619815244721311.

The list of weights is available sending an email to the authors. The cipher would
be

c1 = 67396645502239492997532610730231247402325350163782511
72649698039971357286639661284691045811830747990966206
02000971690868269010951565042392092118361571732963216
971936824799904962146207163271105372406635167698099.

c2 = 14941475104517073768858904912304762566075504882380849
88307505910712507266464082702347990264726748319301892
25067677382072710114609729711315543030282692367863600
051733248473026902132495959530369490728841903982637.

The challenger should be the first to decrypt at least a 50% of this ascii coded
message with a method that should be applicable to any length of the incoming
message.

6 Concluding remarks

As we have seen, the security of this new cryptosystem is based on DLP. In this
problem, as in the integer factorization, the fact that, in spite of the uncount-
able number of bibliographic references dealing with the problem of computing the
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discrete logarithm in polynomial time, does not exist such an algorithm, makes the
cryptosystems basing their security in this problem somehow more secure than those
based on new ad-hoc asssumptions not so studied in the literature. On the other
hand, as it is pointed out in [7], it would be a weakness to base all the cryptosys-
tems on DLP or the integer factorization problem and, in this way, problems like the
Vector Decomposition Problem (VDP) (see [14]), or the Nearest code word problem
(NCP) appear. We thank an anonymous referee for pointing out the reference [7]
which led to the following discussion.

It is our objective to show now that subset sum problems and VDC or NCP are
slightly related. This would somehow add some interest in comparing multiplicative
and additive knapsacks. Indeed, first we will see that SSP is equivalent to the
following n-dimensional version of it.

Definition 12 Vectorial subset sum problem, VSSP
Given a finite set of elements in Nr+1, A = {a1, . . . , an}, called weights, and a

vector M ∈ Nr+1, determine (provided it exists) a subset I ⊆ {1, . . . , n} such that
M =

∑
i∈I ai.

Assuming r is polynomial in n and the size of A, |A| = max{ai,j}, we have the
following:

Lemma 13 There exists a polynomial time algorithm which reduces VSSP to SSP,
and viceversa.

Proof : We want to reduce VSSP to SSP. Let M = (M1, . . . , Mr) and ai = (ai,0, . . . , ai,r).
Given an integer k > n|A| ·max{Mi}, let us consider the weights bj = 10jk

∑r
i=1 ai,j

and the integer M =
∑r

i=0 Mi10ik. Then a solution I ⊆ {1, . . . , n} to M =
∑

i∈I bi

is also a solution to M =
∑

i∈I ai. In fact, the opposite is also true. The converse is
straightforward.

Observe that VDP or NCP imply VSSP trivially. In the first case we are finding
the coordinates of a vector M in the system A (and it happen to be 0 or 1 any of
them), while n the second, VSSP is the particular case in which the word M is in
fact part of the code. In this way, if VSSP is difficult, VDP or NCP will also be
difficult.
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