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ON “GOOD” HALF-INTEGRAL WEIGHT MODULAR FORMS

Jorge Jimenez Urroz and Ken Ono

1. Introduction and Statement of Results

If k is a positive integer, let Sk(N) denote the space of cusp forms of weight
k on Γ1(N), and let Scmk (N) denote the subspace of Sk(N) spanned by those
forms having complex multiplication (see [Ri]). For a non-negative integer k
and any positive integer N ≡ 0 (mod 4), let Mk+ 1

2
(N) (resp. Sk+ 1

2
(N)) denote

the space of modular forms (resp. cusp forms) of half-integral weight k + 1
2 on

Γ1(N). Similarly, if k ∈ 1
2N, then let Mk(N, χ) (resp. Sk(N, χ)) denote the

space of modular (resp. cusp) forms with respect to Γ0(N) and Nebentypus
character χ. Throughout this note we shall refer to classical facts which may be
found in [Ko, Mi, S-S, Sh].

If i = 0 or 1, 0 ≤ r < t, and a ≥ 1, then let θa,i,r,t(z) denote the Shimura
theta function

(1) θa,i,r,t(z) :=
∑

n≡r (mod t)

niqan
2

(Note: q := e2πiz throughout). Each θa,i,r,t(z) is a holomorphic modular form
of weight i+ 1

2 . If Θ(N) is the set of modular forms generated by such functions
of level dividing N, then the Serre-Stark Theorem [S-S] implies

(2) Θ(N) =

M 1
2
(N) ∪

{
subspace of M 3

2
(N) spanned by those θa,1,r,t(z) on Γ1(N)

}
.

If g(z) ∈ Mk+ 1
2
(N1) and h(z) ∈ Θ(N2), then let gh(n) denote the Fourier coef-

ficient of qn of the modular form

g(z) · h(z) =
∞∑
n=0

gh(n)qn.
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Moreover, let Gh(z) denote the modular form

(3) Gh(z) :=
∑

gcd(n,N1N2)=1

gh(n)qn.

It follows from [Lemma 4, S-S] that Gh(z) is a modular form on Γ1(N2
1 N2

2 ) of
integral weight k + 1 or k + 2.

Definition. A modular form g(z) ∈ Mk+ 1
2
(N1) is good if there is an integer

N2 and a function h(z) ∈ Θ(N2) for which
(i) Gh(z) is a nonzero cusp form.
(ii) Gh(z) 6∈ Scmk+1(N

2
1 N2

2 ) ∪ Scmk+2(N
2
1 N2

2 ).

There have been a number of recent papers on the non-vanishing of Fourier
coefficients of half-integral weight modular forms modulo primes ` (see [B2, J,
O-S1]), and in this direction the first author and C. Skinner were able to prove
the following theorem for “good” forms.

Theorem. [p. 454, O-S1] Let g(z) =
∑∞
n=0 c(n)qn ∈ Mk+ 1

2
(N) be an eigen-

form whose coefficients are algebraic integers. If g(z) is good, then for all but
finitely many primes ` there are infinitely many square-free integers m for which
|c(m)|` = 1.

Here | • |` denotes an extension of the usual `-adic valuation to an algebraic
closure of Q.

In [O-S1], the first author and Skinner made the following natural conjecture:

The “Good” Conjecture. [p. 468, O-S1] Every form in Mk+ 1
2
(N)\ Θ(N) is

good.

In this note we prove:

Theorem 1. The “Good” Conjecture is true.

In a recent preprint, W. McGraw [M] obtains another proof of Theorem 1.
To prove the conjecture, we employ a well known result of M.-F. Vignéras,

the Fundamental Lemma from [pp. 653–654, O-S2], and Brun’s sieve.

2. Proof of Theorem 1

Here we begin by recalling a well-known result due to M.-F. Vignéras [V] (see
[B1] for a new elementary proof).

Theorem 2. [Th. 3, V] Suppose that f(z) =
∑∞
n=0 a(n)qn is in Mk+ 1

2
(N). If

there are finitely many square-free integers d1, d2, . . . , dj such that a(n) = 0 for
every n not of the form dim

2 with 1 ≤ i ≤ j and m ∈ Z+, then f(z) ∈ Θ(N).

We begin by combining Theorem 2 and [Fund. Lemma, pp. 653–654, O-S2]
to obtain a lower bound for the number of non-zero coefficients of any modular
form f(z) ∈Mk+ 1

2
(N, χ)\Θ(N).
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Theorem 3. Suppose that f(z) =
∑∞
n=0 a(n)qn is a modular form in

Mk+ 1
2
(N, χ)\Θ(N). If f(z) is an eigenform of the Hecke operators T (p2) for

every prime p - N , then

#{n ≤ X : a(n) 6= 0} Àf
X

log X
.

Proof. By [Lemma 8, S-S], we may assume that all of the Fourier coefficients
a(n) and the eigenvalues of the Hecke operators T (p2), for primes p - N , are
algebraic integers in a fixed number field K. Let v be a place in K over 2.

By Theorem 2 there are infinitely many square-free positive integers
d1 < d2 < . . . for which there are positive integers n with a(din2) 6= 0. Let
s0 be the smallest integer for which there is a square-free integer d > 1, with
d - N , and a positive integer n for which ordv(a(dn2)) = s0. Moreover, let d0

be such a d and let n0 be a positive integer for which ordv(a(d0n
2
0)) = s0. Since

d0 - N , there are square-free integers D0 > 1 and D1 for which d0 = D0D1

and D1 | N and gcd(D0, N) = 1. Similarly, let m0 and m1 denote the unique
positive integers for which n0 = m0m1, gcd(m0, N) = 1, and every prime p | m1

also divides N .
Now recall the action of the Hecke operators. If p is prime, then

(4) f(z) | T (p2) :=
∞∑
n=0

(
a(p2n) + χ(p)

(
(−1)kn

p

)
pk−1a(n) + χ(p2)p2k−1a(n/p2)

)
qn.

Suppose that d is a positive integer and p - N is a prime for which p2 - d. Since
f(z) is an eigenform, it is easy to see that a(d) | a(dp2i). As a consequence, it
turns out that a(D0D1m

2
1) 6= 0 and ordv(a(D0D1m

2
1)) = s0.

If p | N is prime, then by [Lemma 1, S-S] it is known that

(5) f(z) | U(p) =
∞∑
n=0

a(pn)qn,

is a cusp form in Mk+ 1
2
(N, χ ·

(
4p
•
)
). Therefore, if j is any positive integer for

which every prime p | j also divides N , then

f(z) | U(j) =
∞∑
n=0

a(jn)qn ∈Mk+ 1
2
(N, χ ·

(
4j

•

)
).

Now define f0(z) ∈Mk+ 1
2
(N, χ ·

(
4D1
•
)
) by

f0(z) =
∞∑
n=0

b(n)qn := f(z) | U(D1m
2
1) =

∞∑
n=0

a(D1m
2
1n)qn.
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By construction, we have that b(D0) = a(D0D1m
2
1) 6= 0 and ordv(b(D0)) = s0.

Also by construction, if there is an integer s < s0 and an integer n for which
ordv(b(n)) = s, then gcd(n, N) 6= 1. This follows from the minimality of s0. If
this is the case, then define f1(z) ∈ Mk+ 1

2
(N2, χ ·

(
4D1
•
)
) (see [Lemma 4, S-S])

by

(6) f1(z) =
∞∑
n=1

c(n)qn :=
∑

gcd(n,N)=1

b(n)qn.

If there is no such s, then let f1(z) =
∑∞
n=0 c(n)qn := f0(z).

In either case, f1(z) =
∑∞
n=0 c(n)qn is in Mk+ 1

2
(N2, χ ·

(
4D1
•
)
) and has the

property that s0 is indeed the smallest integer for which there is an n with
ordv(c(n)) = s0. Moreover, the square-free integer D0 which is coprime to N2 is
such an n. By the Fundamental Lemma [pp. 653–654, O-S2], if f1(z) is a cusp
form, then

#{n ≤ X : gcd(n, N2) = 1 and a(D1m
2
1n) = c(n) 6= 0} Àf1

X

log X
.

Although the Fundamental Lemma is stated for eigenforms which are cusp
forms, it is easy to modify the argument to apply to forms f1(z) which are not
cuspidal. Following the proof of the Fundamental Lemma, consider the integer
weight form

F (z) := f1(z) ·
(

1 + 2
∞∑
n=1

qn
2

)
,

and decompose it into a cusp form C(z) and a linear combination of Eisenstein
series E(z). By construction, the coefficient of qD0 in F (z) has minimal 2-adic
valuation s0, and is determined by a linear combination of generalized divisor
functions related to the Eisenstein series in E(z) (see [Mi]) and the collection
of 2-adic Galois representations associated to the newforms constituting C(z).
By Dirichlet’s Theorem on primes in arithmetic progressions, the Chebotarev
Density theorem, and the multiplicativity of the coefficients of newforms, it
follows that a ‘positive proportion’ of the square-free integers D with the same
number of prime factors as D0 have the property that the coefficient of qD in
F (z) have minimal 2-adic valuation s0. As in the proof of the Fundamental
Lemma, this implies that

#{1 ≤ n ≤ X : c(n) 6= 0} À X

log X
(log log X)r−1

where D0 has exactly r prime factors. ¤

As a corollary, we obtain the following result (see [O] for a similar result).
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Corollary 4. If f(z) =
∑∞
n=0 a(n)qn is a modular form in Mk+ 1

2
(N, χ)\Θ(N),

then
#{n ≤ X : a(n) 6= 0} Àf

X

log X
.

Proof. If w =
∑∞
n=0 aw(n)qn is a formal power series in q, then define

Mw(X) := #{0 ≤ n ≤ X : aw(n) 6= 0}.

Now suppose that Mf (X) = o(X/ log X). In view of (4), it is easy to see that if
p - N is prime, then

(7) Mf |T (p2)(X) ≤Mf (p2X) + 2Mf (X).

By (7), if p - N is prime, then Mf |T (p2)(X) = o(X/ log X).
If w1 and w2 are formal power series, then it is obvious that

Mw1+w2(X) ≤Mw1(X) + Mw2(X).

Therefore, if T is the Hecke algebra generated by the Hecke operators T (p2) and
X = Tf , then for every u(z) ∈ X we have that Mu(X) = o(X/ log X).

Since T is commutative, every simple submodule of X is generated by an eigen-
form. If u(z) is such an eigenform, then Theorem 3 contradicts the conclusion
that Mu(X) = o(X/ log X). Therefore, it must be that Mf (X)Àf X/ log X.

¤
Now we employ Brun’s sieve to obtain an important technical result regarding

the prime divisors of a shifted set of integers. As usual, pa||n means that a is
the exact power of p dividing n.

Lemma 5. Let ` be a fixed prime, and let 1 ≤ r < t be integers for which
gcd(r, t) = 1. If A is a set of non-negative integers for which

#{n ≤ X : n ∈ A} À X

log X
,

then there is a positive integer E and at least one integer n ∈ A with n < `E

such that p||(n + `E) for some prime p ≡ r (mod t).

Proof. If φ(•) denotes the usual Euler phi-function, then define the polynomial
F (n) by

(8) F (n) = (n + `)(n + `2) · · · (n + `φ(t)+1).

Let AX denote the set of integers

(9) AX := {F (n) : n ≤ X},
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and let PX denote the set

(10) PX := {p ≡ r (mod t) prime : log2 X < p < X}.

It is easy to see that if X is sufficiently large, then every prime p ∈ PX has the
property that the multiplicative order of ` in (Z/pZ)× is larger than φ(t) + 1.
Therefore, if n is an integer and p ∈ PX is any prime for which F (n) ≡ 0
(mod p), then there is exactly one integer 1 ≤ i ≤ φ(t) + 1 for which

(11) n + `i ≡ 0 (mod p).

Moreover, it is obvious that if p ∈ PX , then there are φ(t) + 1 distinct residue
classes n (mod p) for which F (n) ≡ 0 (mod p).

Now we consider the function S(AX , PX , X) which is defined by

(12) S(AX , PX , X) := #{1 ≤ n ≤ X : gcd(F (n), p) = 1 for every p ∈ PX}.

By a straightforward application of Brun’s sieve method [Theorem 2.2, H-R] we
find that

(13) S(AX , PX ;X)¿ X
∏
p∈PX

(
1− φ(t) + 1

p

)
.

Using the well known fact [p. 605, R] that∏
p≤X

p≡r (mod t)

(
1− 1

p

)
¿ 1

(log X)1/φ(t)
,

it is easy to deduce

(14) S(AX , PX ;X)¿ X

(log X)1+1/2φ(t)
.

Therefore, if X is sufficiently large, then there are integers n ∈ A with n ≤ X
for which there is at least one prime p ∈ PX with F (n) ≡ 0 (mod p). In
particular, in view of (14) we find that

(15) #{n ≤ X : n ∈ A and F (n) ≡ 0 (mod p) for some prime p ∈ PX}

À X

log X
.

However, the number of positive integers n ≤ X which are divisible by p2 for
some prime p ∈ PX is

¿ X
∑

log2 X<p<X

1
p2

<
X

log2 X

∑
p<X

1
p
¿ X

(log X)1+1/2
,
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since
∑
p≤X 1/p ¿ log log X. Therefore, by (11) and (15) we find that the

number of integers n ≤ X and n ∈ A for which there is at least one prime
p ∈ PX and an integer 1 ≤ e ≤ φ(t) + 1 such that p||n + `e is À X/ log X.

To conclude the proof, we note that if p||(n + `e), then p||(n + `E(j)) where
E(j) := e + p(p − 1)(p(p − 1) + 1)j and j ≥ 0. To see this, note that
n + `E(j) = n + `e + (`E(j) − `e), `p−1 ≡ 1 (mod p) and `p(p−1) ≡ 1 (mod p2).
Therefore if j is sufficiently large, then n < `E . ¤

Proof of Theorem 1. Here we recall the essential facts regarding modular forms
with complex multiplication (see [Ri]). If φ(z) =

∑∞
n=1 aφ(n)qn ∈ Sk(N, χ)

is a newform with complex multiplication by the imaginary quadratic field
K = Q(

√
d), where d is the discriminant of K, then d | N , and if p is a prime

for which
(
d
p

)
= −1, then aφ(p) = 0.

Now suppose that F (z) =
∑∞
n=1 aF (n)qn is an integer weight cusp form

in Sw(N, ψ). There are finitely many fundamental discriminants of imaginary
quadratic fields, say d1, d2, . . . , dj for which di | N . Therefore, it is easy to
construct an arithmetic progression r (mod t) with gcd(r, t) = 1 such that every
prime p ≡ r (mod t) has the property that

(
di
p

)
= −1 for each 1 ≤ i ≤ j.

Therefore, by the multiplicativity of the Fourier coefficients of newforms, F (z)
cannot be a linear combination of forms with complex multiplication if there is
a positive integer n and a prime p ≡ r (mod t) for which p||n and aF (n) 6= 0.

Now we prove Theorem 1 by considering two different cases.

Case I. Suppose that g(z) =
∑∞
n=0 a(n)qn ∈Mk+ 1

2
(N, χ)\Θ(N). By Corollary

4, we know that

#{n ≤ X : a(n) 6= 0} Àg
X

log X
.

Now let ` | 576N be prime, and let r mod t with gcd(r, t) = 1 be an arithmetic
progression such that

(
di
p

)
= −1 for every prime p ≡ r (mod t) and every fun-

damental discriminant of an imaginary quadratic field di | 576N . By Lemma 5,
there exists an integer n < `E for which a(n) 6= 0, a prime p ≡ r (mod t), and
a positive integer E such that p||n + `E .

Now consider the cusp form g(z) ·η(24`Ez), where η(z) := q1/24
∏∞
n=1(1−qn)

denotes Dedekind’s eta-function. It is well known that

η(24z) = q + · · · ∈ S1/2(576, χ12),

where χ12 is the non-trivial quadratic character with conductor 12. Obviously,
η(24`Ez) ∈ Θ(576`E), and so g(z)η(24`Ez) ∈ Sk+1(576N`E). The coefficient of
qn+`E of this form is a(n) 6= 0. Since every fundamental discriminant of an imagi-
nary quadratic field d | 576N`E already divides 576N , we find that g(z)η(24`Ez)
cannot be a linear combination of forms with complex multiplication (i.e., g(z)
is good).
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Case II. Suppose that g(z) =
∑∞
n=0 a(n)qn ∈Mk+ 1

2
(N)\Θ(N). It is well known

that if w ∈ 1
2Z, then

(16) Mw(N) = ⊕χMw(N, χ),

where the direct sum is over Dirichlet characters χ mod N . Therefore, we may
decompose g(z) as

g(z) =
∑
χ

αχgχ(z).

If χ is a character for which αχgχ(z) 6= 0, then by Case I there is a weight 1/2
cusp form θ(z) ∈ S1/2(N2,Ψ) for which gχ(z)θ(z) is a weight k + 1 cusp form
which is not a linear combination of forms with complex multplication.

If χ1 and χ2 are distinct characters mod N , then gχ1(z)θ(z) and gχ2(z)θ(z)
will lie in different spaces of weight k+1 cusp forms with Nebentypus. Therefore,
it follows immediately that g(z)θ(z) is good. ¤
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[V] M.-F. Vignéras, Facteurs gamma et équations fonctionnelles, Lect. Notes in Math.,

vol. 627, Springer, Berlin, 1977, pp. 79–103.
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