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R(x) = Z sin(2mn°x)

It is a continuous function differentiable only at infinitely many
rational points. Hardy 1916 and Gerver, 1970

In fact it is multifractal (Jaffard, 1997)
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The spectrum of singularities of the function f is the function
dr(B) = dimu{x : Br(x) = B}

where  B¢(x) = sup{y : f(x + h) — P(h) = O(|h|")}

for P € C[X],degP < 7.

Recall that

dimy(C) =inf{d >0: CCIB],-CBr, z,: rf =0}

d¢(B) is not defined when the set is empty.

A multifractal function is a funcition such that d¢(3) is defined in
infinitely many points.
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Jaffard found the spectrum of singularities for the function
sin(27n?x)
Ra(x) = 3 Sr)
n>1

for any a > 1.
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Our interest focuses on the function
e2miP(n)x
F)=» ———
n>1
for P € Z[x], degP = k. For the case k = 2, there is theta

function behind.

ne

In this case, v < 1 so we need to control

F(a/p+h) = F(a/p),
for 1 < a < p, (periodic) and p prime (most interesting).

By Poisson formula
F(a/p+ h) — F(a/p) = Ap~tS,he=V/k 1 O(h/kpt/?),

for

p
S, = Z eZﬂ'iP(n)a/p
n=1
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The formula is valid only for very small h ~ p~*, but the
convergents goes to p~ 1. We need to make an average on x and p.

The goal is to prove that for 5, =Y F_; e2miP(n)a/p
Civ/p < S: < Go/p,
forup<a<vp, 0<pu<v<Ll

Chamizo- Ubis proved for P(x) = xX and k|p — 1,

> 1S~ (k= 1)(8 - a)p?

pa<a<pp

An easy application of Jacobi sums gives in this case
52| < (k=1)v/p

which implies the previous inequality for C; = % for at least
P
k

P(B — «) values of aand p =1 (mod k)
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This is not true in general. For example, (k,p —1) =1 and
P(x) = x*, then x — x¥ is an isomorphism of F and so S, = 0.

This is one example of a permutation polynomial on F,.

The only polynomials which are permutation polynomials for
infinitely many primes are the composition of linear and Dickson
polynomials (Schur's conjecture).

L n n—|I I n—2/
Dn(Xaa): Z n_| / (—Oé)X

I=0

Di(x + a/x, &) = x*¥ + (a/x).
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If P is not composition of linear and Dickson polynomials then

p—1
> IS.> = p* + 0(p*?).

a=1
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If P is not composition of linear and Dickson polynomials then

p—1
> IS.> = p* + 0(p*?).

a=1

The same is true in general for a positive proportion of primes.

(This is the best one can hope. Dickson polynomial’s are
permutation polynomials for a set of primes of density

[1pa(1=2/(p - 1))
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To go from the complete to the incomplete sums we have

Given 0 < p < v < 1, we have

> ISP = _y215|2+o 3/2 |og p).
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To go from the complete to the incomplete sums we have

Given 0 < p < v < 1, we have

Y SP=-v }:!5l2+(X 3/2log p).

pp<a<vp a=1

Given 0 < < v < 1 and log p = o((v — p)p*/?), for any C there
exist A such that for a positive proportion of primes we have

Cy/p < |S;| < (deg P —1),/p for at least A(v — p)p values of a in
the interval up < a < vp.
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1P
*Z “(a—m)
P upsmewp P
2 _ —mn 3/2
> 1Sl > Z = p(v—p) To+0(p*? log p)
up<a<vp pp<m<vp n=0

where
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1< n
==Y e(=(a—m))
pn:lupﬁmﬁula p
G, —mn
SIS = Y Y () Ta = p(v—p) To+O(p*? log p)
up<a<vp up<m<vp n=0 P

where

The proof relies in the following lemma.

Let K be a field. If charK = 0, for any non constant polynomial
P € K[x] and any r # 0 in K, the polynomial P(x) — P(y) + r is
irreducible over K. If char K = p the same is true whenever

p 1degP.
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It is not true for P(x) + P(y) +r.

Take for example P(x) = x> — 1, r = 2. Then
P(x)+ P(y) +2=x>+y* = (x +y)(x* = xy + y?).

Let P € Z[x] with degree and leading coefficient odd numbers.
Then, P(x) + P(y) + r is absolutely irreducible for any r odd
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Proof of the lemma.

P(x) — P(y) +r = f(x,y)g(x,y), with
fly,y) =u,g(y,y) =ru".

Hence, f(x,y) — u and g(x,y) — ru~! are divisible by (x — y).
Then,
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Evaluating the formal derivative of P(x) at y we get

P'(y) = ru"'B(y,y) + uC(y,y)
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Proposition

Let p be and odd prime. If P(x) = x?F — 2xP*1 4 x2  x, then
P(x) — P(y) + r is reducible over F, for every r € Fp.
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Proposition

Let p be and odd prime. If P(x) = x?F — 2xP*1 4 x2  x, then
P(x) — P(y) + r is reducible over F, for every r € Fp.

Proof.
P(x) = P(y) +r=(x—y+r)+ H(x,y),

where

p—1

H(x,y) = [J (xty—a)(x—y—a) = ((x+y)P=(x+y ) ((x—y)P—(x—y))-
a=0



Introduction
0000000000000e

Additional tools

Davenport Lewis conjecture.

If the polynomial (P(x) — P(y))/(x — y) has an absolutely
irreducible factor over Fp, then Ty > 2p + O(p'/?)

Let k, d positive integers. There are forms g1, g> ... in ((k+g71))

variables with integral coefficients such that for any field K, a
polynomial P € K|[x,...,xk] of degree d is not absolutely
irreducible over K if and only if all the forms evaluated at the
coefficients of P vanish.

Some elementary Galois theory.
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