Irreducibility and the distribution of some exponential sums

Joint work with Fernando Chamizo.

Linz, Austria, November 25, 2013

$$
R(x)=\sum_{n \geq 1} \frac{\sin \left(2 \pi n^{2} x\right)}{n^{2}}
$$

$$
R(x)=\sum_{n \geq 1} \frac{\sin \left(2 \pi n^{2} x\right)}{n^{2}}
$$

It is a continuous function differentiable only at infinitely many rational points. Hardy 1916 and Gerver, 1970

$$
R(x)=\sum_{n \geq 1} \frac{\sin \left(2 \pi n^{2} x\right)}{n^{2}}
$$

It is a continuous function differentiable only at infinitely many rational points. Hardy 1916 and Gerver, 1970

In fact it is multifractal (Jaffard, 1997)

The spectrum of singularities of the function f is the function

$$
d_{f}(\beta)=\operatorname{dim}_{H}\left\{x: \beta_{f}(x)=\beta\right\}
$$

where

$$
\beta_{f}(x)=\sup \left\{\gamma: f(x+h)-P(h)=O\left(|h|^{\gamma}\right)\right\}
$$ for $P \in \mathbb{C}[X], \operatorname{deg} P \leq \gamma$.

Recall that

$$
\operatorname{dim}_{H}(C)=\inf \left\{d \geq 0: \inf _{C \subset \cup_{i} B_{r_{i}}} \sum_{i} r_{i}^{d}=0\right\} .
$$

The spectrum of singularities of the function f is the function

$$
d_{f}(\beta)=\operatorname{dim}_{H}\left\{x: \beta_{f}(x)=\beta\right\}
$$

where

$$
\beta_{f}(x)=\sup \left\{\gamma: f(x+h)-P(h)=O\left(|h|^{\gamma}\right)\right\}
$$ for $P \in \mathbb{C}[X], \operatorname{deg} P \leq \gamma$.

Recall that

$$
\operatorname{dim}_{H}(C)=\inf \left\{d \geq 0: \inf _{C \subset \cup_{i} B_{r_{i}}} \sum_{i} r_{i}^{d}=0\right\}
$$

$d_{f}(\beta)$ is not defined when the set is empty.

The spectrum of singularities of the function f is the function

$$
d_{f}(\beta)=\operatorname{dim}_{H}\left\{x: \beta_{f}(x)=\beta\right\}
$$

where

$$
\beta_{f}(x)=\sup \left\{\gamma: f(x+h)-P(h)=O\left(|h|^{\gamma}\right)\right\}
$$

for $P \in \mathbb{C}[X], \operatorname{deg} P \leq \gamma$.
Recall that

$$
\operatorname{dim}_{H}(C)=\inf \left\{d \geq 0: \inf _{C \subset \cup_{i} B_{r_{i}}} \sum_{i} r_{i}^{d}=0\right\}
$$

$d_{f}(\beta)$ is not defined when the set is empty.
A multifractal function is a funcition such that $d_{f}(\beta)$ is defined in infinitely many points.

Jaffard found the spectrum of singularities for the function

$$
R_{a}(x)=\sum_{n \geq 1} \frac{\sin \left(2 \pi n^{2} x\right)}{n^{a}}
$$

for any $a>1$.

Our interest focuses on the function

$$
F(x)=\sum_{n \geq 1} \frac{e^{2 \pi i P(n) x}}{n^{\alpha}}
$$

for $P \in \mathbb{Z}[x], \operatorname{deg} P=k$.

Our interest focuses on the function

$$
F(x)=\sum_{n \geq 1} \frac{e^{2 \pi i P(n) x}}{n^{\alpha}}
$$

for $P \in \mathbb{Z}[x], \operatorname{deg} P=k$. For the case $k=2$, there is theta function behind.

Our interest focuses on the function

$$
F(x)=\sum_{n \geq 1} \frac{e^{2 \pi i P(n) x}}{n^{\alpha}}
$$

for $P \in \mathbb{Z}[x], \operatorname{deg} P=k$. For the case $k=2$, there is theta function behind.

In this case, $\gamma \leq 1$ so we need to control

$$
F(a / p+h)-F(a / p),
$$

for $1 \leq a \leq p$, (periodic) and p prime (most interesting).

Our interest focuses on the function

$$
F(x)=\sum_{n \geq 1} \frac{e^{2 \pi i P(n) x}}{n^{\alpha}}
$$

for $P \in \mathbb{Z}[x], \operatorname{deg} P=k$. For the case $k=2$, there is theta function behind.

In this case, $\gamma \leq 1$ so we need to control

$$
F(a / p+h)-F(a / p)
$$

for $1 \leq a \leq p$, (periodic) and p prime (most interesting).
By Poisson formula

$$
F(a / p+h)-F(a / p)=A p^{-1} S_{a} h^{(\alpha-1) / k}+O\left(h^{\alpha / k} p^{1 / 2}\right)
$$

for

$$
S_{a}=\sum_{n=1}^{p} e^{2 \pi i P(n) a / p}
$$

The formula is valid only for very small $h \approx p^{-k}$, but the convergents goes to p^{-1}.

The formula is valid only for very small $h \approx p^{-k}$, but the convergents goes to p^{-1}. We need to make an average on x and p.

The formula is valid only for very small $h \approx p^{-k}$, but the convergents goes to p^{-1}. We need to make an average on x and p.
The goal is to prove that for $S_{a}=\sum_{n=1}^{p} e^{2 \pi i P(n) a / p}$

$$
C_{1} \sqrt{p} \leq S_{a} \leq C_{2} \sqrt{p}
$$

for $\mu p \leq a \leq \nu p, 0<\mu<\nu<1$.

The formula is valid only for very small $h \approx p^{-k}$, but the convergents goes to p^{-1}. We need to make an average on x and p.
The goal is to prove that for $S_{a}=\sum_{n=1}^{p} e^{2 \pi i P(n) a / p}$

$$
C_{1} \sqrt{p} \leq S_{a} \leq C_{2} \sqrt{p},
$$

for $\mu p \leq a \leq \nu p, 0<\mu<\nu<1$.
Chamizo- Ubis proved for $P(x)=x^{k}$ and $k \mid p-1$,

$$
\sum_{p \alpha \leq a \leq p \beta}\left|S_{a}\right|^{2} \sim(k-1)(\beta-\alpha) p^{2}
$$

The formula is valid only for very small $h \approx p^{-k}$, but the convergents goes to p^{-1}. We need to make an average on x and p.
The goal is to prove that for $S_{a}=\sum_{n=1}^{p} e^{2 \pi i P(n) a / p}$

$$
C_{1} \sqrt{p} \leq S_{a} \leq C_{2} \sqrt{p},
$$

for $\mu p \leq a \leq \nu p, 0<\mu<\nu<1$.
Chamizo- Ubis proved for $P(x)=x^{k}$ and $k \mid p-1$,

$$
\sum_{p \alpha \leq a \leq p \beta}\left|S_{a}\right|^{2} \sim(k-1)(\beta-\alpha) p^{2}
$$

An easy application of Jacobi sums gives in this case

$$
\left|S_{a}\right| \leq(k-1) \sqrt{p}
$$

which implies the previous inequality for $C_{1}=\frac{1}{2}$ for at least $\frac{p}{k}(\beta-\alpha)$ values of a and $p \equiv 1(\bmod k)$

This is not true in general. For example, $(k, p-1)=1$ and $P(x)=x^{k}$, then $x \rightarrow x^{k}$ is an isomorphism of \mathbb{F}_{p}^{*} and so $S_{a}=0$.

This is not true in general. For example, $(k, p-1)=1$ and $P(x)=x^{k}$, then $x \rightarrow x^{k}$ is an isomorphism of \mathbb{F}_{p}^{*} and so $S_{a}=0$.
This is one example of a permutation polynomial on \mathbb{F}_{p}.

This is not true in general. For example, $(k, p-1)=1$ and $P(x)=x^{k}$, then $x \rightarrow x^{k}$ is an isomorphism of \mathbb{F}_{p}^{*} and so $S_{a}=0$.
This is one example of a permutation polynomial on \mathbb{F}_{p}.
The only polynomials which are permutation polynomials for infinitely many primes are the composition of linear and Dickson polynomials (Schur's conjecture).

$$
\begin{gathered}
D_{n}(x, \alpha)=\sum_{l=0}^{[n / 2]} \frac{n}{n-l}\binom{n-ノ}{l}(-\alpha)^{\prime} x^{n-2 l} \\
D_{k}(x+\alpha / x, \alpha)=x^{k}+(\alpha / x)^{k} .
\end{gathered}
$$

Theorem

If P is not composition of linear and Dickson polynomials then

$$
\sum^{p-1}\left|S_{a}\right|^{2} \geq p^{2}+O\left(p^{3 / 2}\right)
$$

Theorem

If P is not composition of linear and Dickson polynomials then

$$
\sum^{p-1}\left|S_{a}\right|^{2} \geq p^{2}+O\left(p^{3 / 2}\right)
$$

Theorem

The same is true in general for a positive proportion of primes.
(This is the best one can hope. Dickson polynomial's are permutation polynomials for a set of primes of density $\prod_{p \mid n}(1-2 /(p-1))$

To go from the complete to the incomplete sums we have

Theorem

Given $0<\mu<\nu<1$, we have

$$
\sum_{\mu p \leq a \leq \nu p}\left|S_{a}\right|^{2}=(\mu-\nu) \sum_{a=1}^{p-1}\left|S_{a}\right|^{2}+O\left(p^{3 / 2} \log p\right)
$$

To go from the complete to the incomplete sums we have

Theorem

Given $0<\mu<\nu<1$, we have

$$
\sum_{\mu p \leq a \leq \nu p}\left|S_{a}\right|^{2}=(\mu-\nu) \sum_{a=1}^{p-1}\left|S_{a}\right|^{2}+O\left(p^{3 / 2} \log p\right)
$$

Corollary

Given $0<\mu<\nu<1$ and $\log p=o\left((\nu-\mu) p^{1 / 2}\right)$, for any C there exist Δ such that for a positive proportion of primes we have $C \sqrt{p}<\left|S_{a}\right|<(\operatorname{deg} P-1) \sqrt{p}$ for at least $\Delta(\nu-\mu) p$ values of a in the interval $\mu p \leq a \leq \nu p$.

$$
\begin{aligned}
& \qquad f_{a}=\frac{1}{p} \sum_{n=1}^{p} \sum_{\mu p \leq m \leq \nu p} e\left(\frac{n}{p}(a-m)\right) \\
& \sum_{\mu p \leq a \leq \nu p}\left|S_{a}\right|^{2}=\sum_{\mu p \leq m \leq \nu p} \sum_{n=0}^{p-1} e\left(\frac{-m n}{p}\right) T_{n}=p(\nu-\mu) T_{0}+O\left(p^{3 / 2} \log p\right) \\
& \text { where }
\end{aligned}
$$

$$
T_{n}=\#\left\{(x, y) \in \mathbb{F}_{p} \times \mathbb{F}_{p}: P(x)-P(y)+n=0\right\}-p
$$

$$
\begin{aligned}
& \qquad f_{a}=\frac{1}{p} \sum_{n=1}^{p} \sum_{\mu p \leq m \leq \nu p} e\left(\frac{n}{p}(a-m)\right) \\
& \sum_{\mu p \leq a \leq \nu p}\left|S_{a}\right|^{2}=\sum_{\mu p \leq m \leq \nu p} \sum_{n=0}^{p-1} e\left(\frac{-m n}{p}\right) T_{n}=p(\nu-\mu) T_{0}+O\left(p^{3 / 2} \log p\right) \\
& \text { where } \\
& \quad T_{n}=\#\left\{(x, y) \in \mathbb{F}_{p} \times \mathbb{F}_{p}: P(x)-P(y)+n=0\right\}-p
\end{aligned}
$$

The proof relies in the following lemma.

Lemma

Let K be a field. If charK $=0$, for any non constant polynomial $P \in K[x]$ and any $r \neq 0$ in K, the polynomial $P(x)-P(y)+r$ is irreducible over K. If char $K=p$ the same is true whenever $p \nmid \operatorname{deg} P$.

It is not true for $P(x)+P(y)+r$.

It is not true for $P(x)+P(y)+r$.
Take for example $P(x)=x^{3}-1, r=2$. Then $P(x)+P(y)+2=x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$.

It is not true for $P(x)+P(y)+r$.
Take for example $P(x)=x^{3}-1, r=2$. Then $P(x)+P(y)+2=x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$.

Corollary

Let $P \in \mathbb{Z}[x]$ with degree and leading coefficient odd numbers. Then, $P(x)+P(y)+r$ is absolutely irreducible for any r odd

Proof of the lemma.
$P(x)-P(y)+r=f(x, y) g(x, y)$, with $f(y, y)=u, g(y, y)=r u^{-1}$.

Hence, $f(x, y)-u$ and $g(x, y)-r u^{-1}$ are divisible by $(x-y)$.
Then,

$$
\begin{aligned}
& P(x)-P(y)+r= \\
& =(x-y)^{2} B(x, y) C(x, y)+(x-y)\left(r u^{-1} B(x, y)+u C(x, y)\right)+r
\end{aligned}
$$

Evaluating the formal derivative of $P(x)$ at y we get

$$
P^{\prime}(y)=r u^{-1} B(y, y)+u C(y, y)
$$

Proposition

Let p be and odd prime. If $P(x)=x^{2 p}-2 x^{p+1}+x^{2}+x$, then $P(x)-P(y)+r$ is reducible over \mathbb{F}_{p} for every $r \in \mathbb{F}_{p}$.

Proposition

Let p be and odd prime. If $P(x)=x^{2 p}-2 x^{p+1}+x^{2}+x$, then $P(x)-P(y)+r$ is reducible over \mathbb{F}_{p} for every $r \in \mathbb{F}_{p}$.

Proof.

$$
P(x)-P(y)+r=(x-y+r)+H(x, y)
$$

where
$H(x, y)=\prod_{a=0}^{p-1}(x+y-a)(x-y-a)=\left((x+y)^{p}-(x+y)\right)\left((x-y)^{p}-(x-y)\right)$.

Additional tools

Davenport Lewis conjecture.

Lemma

If the polynomial $(P(x)-P(y)) /(x-y)$ has an absolutely irreducible factor over \mathbb{F}_{p}, then $T_{0} \geq 2 p+O\left(p^{1 / 2}\right)$

Lemma

Let k, d positive integers. There are forms $g_{1}, g_{2} \ldots$ in $\left.\binom{k+d-1}{k}\right)$ variables with integral coefficients such that for any field K, a polynomial $P \in K\left[x_{1}, \ldots, x_{k}\right]$ of degree d is not absolutely irreducible over K if and only if all the forms evaluated at the coefficients of P vanish.

Some elementary Galois theory.

