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Introduction

R(x) =
∑
n≥1

sin(2πn2x)

n2

It is a continuous function differentiable only at infinitely many
rational points. Hardy 1916 and Gerver, 1970

In fact it is multifractal (Jaffard, 1997)
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Introduction

The spectrum of singularities of the function f is the function

df (β) = dimH{x : βf (x) = β}

where βf (x) = sup{γ : f (x + h)− P(h) = O(|h|γ)}

for P ∈ C[X ], degP ≤ γ.

Recall that

dimH(C ) = inf{d ≥ 0 : inf
C⊂∪iBri

∑
i

rdi = 0}.

df (β) is not defined when the set is empty.

A multifractal function is a funcition such that df (β) is defined in
infinitely many points.
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Jaffard found the spectrum of singularities for the function

Ra(x) =
∑
n≥1

sin(2πn2x)

na

for any a > 1.



Introduction

Our interest focuses on the function

F (x) =
∑
n≥1

e2πiP(n)x

nα
,

for P ∈ Z[x ], degP = k.

For the case k = 2, there is theta

function behind.

In this case, γ ≤ 1 so we need to control

F (a/p + h)− F (a/p),

for 1 ≤ a ≤ p, (periodic) and p prime (most interesting).

By Poisson formula

F (a/p + h)− F (a/p) = Ap−1Sah(α−1)/k + O(hα/kp1/2),

for

Sa =

p∑
n=1

e2πiP(n)a/p
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The formula is valid only for very small h ≈ p−k , but the
convergents goes to p−1.

We need to make an average on x and p.

The goal is to prove that for Sa =
∑p

n=1 e2πiP(n)a/p

C1
√

p ≤ Sa ≤ C2
√

p,

for µp ≤ a ≤ νp, 0 < µ < ν < 1.

Chamizo- Ubis proved for P(x) = xk and k |p − 1,∑
pα≤a≤pβ

|Sa|2 ∼ (k − 1)(β − α)p2

An easy application of Jacobi sums gives in this case

|Sa| ≤ (k − 1)
√

p

which implies the previous inequality for C1 = 1
2 for at least

p
k (β − α) values of a and p ≡ 1 (mod k)
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This is not true in general. For example, (k, p − 1) = 1 and
P(x) = xk , then x → xk is an isomorphism of F∗p and so Sa = 0.

This is one example of a permutation polynomial on Fp.

The only polynomials which are permutation polynomials for
infinitely many primes are the composition of linear and Dickson
polynomials (Schur’s conjecture).

Dn(x , α) =

[n/2]∑
l=0

n

n − l

(
n − l

l

)
(−α)lxn−2l

Dk(x + α/x , α) = xk + (α/x)k .
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Theorem

If P is not composition of linear and Dickson polynomials then

p−1∑
a=1

|Sa|2 ≥ p2 + O(p3/2).

Theorem

The same is true in general for a positive proportion of primes.

(This is the best one can hope. Dickson polynomial’s are
permutation polynomials for a set of primes of density∏

p|n(1− 2/(p − 1))
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Introduction

To go from the complete to the incomplete sums we have

Theorem

Given 0 < µ < ν < 1, we have

∑
µp≤a≤νp

|Sa|2 = (µ− ν)

p−1∑
a=1

|Sa|2 + O(p3/2 log p).

Corollary

Given 0 < µ < ν < 1 and log p = o((ν − µ)p1/2), for any C there
exist ∆ such that for a positive proportion of primes we have
C
√

p < |Sa| < (deg P − 1)
√

p for at least ∆(ν − µ)p values of a in
the interval µp ≤ a ≤ νp.
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fa =
1

p

p∑
n=1

∑
µp≤m≤νp

e(
n

p
(a−m))

∑
µp≤a≤νp

|Sa|2 =
∑

µp≤m≤νp

p−1∑
n=0

e(
−mn

p
)Tn = p(ν−µ)T0+O(p3/2 log p)

where

Tn = #{(x , y) ∈ Fp × Fp : P(x)− P(y) + n = 0} − p.

The proof relies in the following lemma.

Lemma

Let K be a field. If charK = 0, for any non constant polynomial
P ∈ K [x ] and any r 6= 0 in K , the polynomial P(x)− P(y) + r is
irreducible over K . If char K = p the same is true whenever
p -degP.
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It is not true for P(x) + P(y) + r .

Take for example P(x) = x3 − 1, r = 2. Then
P(x) + P(y) + 2 = x3 + y3 = (x + y)(x2 − xy + y2).

Corollary

Let P ∈ Z[x ] with degree and leading coefficient odd numbers.
Then, P(x) + P(y) + r is absolutely irreducible for any r odd
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Proof of the lemma.

P(x)− P(y) + r = f (x , y)g(x , y), with
f (y , y) = u, g(y , y) = ru−1.

Hence, f (x , y)− u and g(x , y)− ru−1 are divisible by (x − y).
Then,

P(x)− P(y) + r =

= (x − y)2B(x , y)C (x , y) + (x − y)(ru−1B(x , y) + uC (x , y)) + r

Evaluating the formal derivative of P(x) at y we get

P ′(y) = ru−1B(y , y) + uC (y , y)
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Proposition

Let p be and odd prime. If P(x) = x2p − 2xp+1 + x2 + x, then
P(x)− P(y) + r is reducible over Fp for every r ∈ Fp.

Proof.
P(x)− P(y) + r = (x − y + r) + H(x , y),

where

H(x , y) =

p−1∏
a=0

(x+y−a)(x−y−a) = ((x+y)p−(x+y))((x−y)p−(x−y)).
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Additional tools

Davenport Lewis conjecture.

Lemma

If the polynomial (P(x)− P(y))/(x − y) has an absolutely
irreducible factor over Fp, then T0 ≥ 2p + O(p1/2)

Lemma

Let k , d positive integers. There are forms g1, g2 . . . in
((k+d−1

k

))
variables with integral coefficients such that for any field K , a
polynomial P ∈ K [x1, . . . , xk ] of degree d is not absolutely
irreducible over K if and only if all the forms evaluated at the
coefficients of P vanish.

Some elementary Galois theory.


	Introduction
	 


