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J. Jiménez Urroz, UPC

Benin, July, 16, 2014



Introduction Elliptic Curves

Given an integer n let us consider D(n) = {d : b − a = d , ba = n}.

Problem

For any integer k, find k integers n1, . . . , nk such that∣∣∣∩ki=1D(ni )
∣∣∣ ≥ 3.

b = x + d , a = x − d and so n = x2 − d2. Hence, we need to find
three integers d1, d2, d3 and k 3-tuples (xi , yi , zi ) integer solutions
to

x2 − y2 = d2
1 − d2

2

x2 − z2 = d2
1 − d2

3

Or two integers A,B and k + 1 3-tuples (x , y , z) integer solutions
to

x2 − y2 = A

x2 − z2 = B
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Find two integers A,B and k + 1 3-tuples (x , y , z) integer
solutions to

x2 − y2 = A,

x2 − z2 = B.

By denoting X = x2, we get X − A = y2 and X − B = z2, and
multiplying the equations this is the same as finding k + 1
solutions to

Y 2 = X (X − A)(X − B) (1)

with the three factors being squares.

Theorem

Equation (1) has a solutions with the three factors squares, if and
only if, the point (X ,Y ) on the elliptic curve is the double of
another point.
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Given an integer n is there a right triangle with rational sides and
area n?

a2 + b2 = c2

2ab = 4n.
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Introduction Elliptic Curves

Right triangles, of rational area come from Pythagorean tryples
X 2 + Y 2 = Z 2.

Dividing by Z 2, we get x2 + y2 = 1, the equation of the circle with
the trivial solution (1, 0).

Draw the line y = t(x − 1) and substituting into the equation we
get

x =
1− t2

1 + t2
, y =

−2t

1 + t2
.

t = a
b gives

X = D(a2 − b2), Y = D(2ab), Z = D(a2 + b2)

for (a, b) = 1 a 6≡ b (mod 2).

How the program knows if there are solutions or not?
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Given an integer n is there a right triangle with rational sides and
area n?
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(a + b)2 = c2 + 4n

(a− b)2 = c2 − 4n.

y2 = x(x − 4n)(x + 4n) = x3 − 16n2x
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n = 6. Since 352 = 25× 1× 49 = 253 − 242 × 25, we see that
(3, 4, 5) form a right triangle with area 6.

We can find the sides (a, b, c) from the solution, for example as
follows: from the solution to the equation of the elliptic curve we
know c = 5. Then

a2 + b2 = 25

ab = 12.

The first tells us that a, b are less than
√

25 = 5 and since they are
divisors of 12 the unique solution is a = 3, b = 4 or viceversa.

What for other n, for example n = 1/4?
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Problem

Is there an integer solution to x4 + y4 = z4?

Multiply by z2/x6 and change z/x = x2, zy2/x3 = y to get

y2 = x3 − x

No points except (0, 0), (1, 0), (−1, 0) and so no nontrivial
solutions to the equation.
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Elliptic Curves

Given the field K , an Elliptic curve is a subset of K × K given by a
cubic equation. The most simple is the Weierstrass equation.

E := {(x , y) ∈ K × K : y2 = x3 + Ax + B}U{O}, (2)

where O is an extra point at infinity and the coefficients A,B ∈ K .

In order to call it an elliptic curve, we do not allow singular
equations, which means that

((e1 − e2)(e3 − e2)(e1 − e3))2 = −(4A3 + 27B2) 6= 0,

where e1, e2, e3 are the roots of x3 + Ax + B.

E (L) denotes the solutions to the equation describing E in the field
K ⊂ L.
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y2 − 2y + 1 = x3 + Ax + B, is the same as y2 = x3 + Ax + B
adding 1 to the y coordinate.

In general we will consider E ′ to be “the same” elliptic curve as E
if we can go from one to the other, and backwards, by a change of
variables.

If char(K ) 6= 2, 3 then we can reduce the generalized Weierstrass
equation

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, (3)

with a1, a2, a3, a4, a6 ∈ K to

Y 2 = X 3 + AX + B

with A,B ∈ K .
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Exercise: Many generalized Weierstrass equations correspond to
the same Weierstrass equation. Which ones?

Let j = 1728 4A3

4A3+27B2 .

Theorem

Two elliptic curves are isomorphic over K , if and only if they have
the same j invariant. In fact, there exist µ ∈ K so that the change
of variables (X ,Y ) = (µ2x , µ3y) brings one to the other.

Remark. There are curves which are isomorphic, but they are not
the same over their field of definition. For example y2 = x3 − 25x
has infinitely many rational points, while y2 = x3 − x has only
four. Both have j invariant 1728.

Remark. y2 = x3 + 3j
1728−j x + 2j

1728−j has j invariant j . y2 = x3 + 1

and y2 = x3 + x have 0 and 1728 as j invariants. These curves
have more automorphisms than the trivial (x , y)→ (x ,−y).



Introduction Elliptic Curves

Exercise: Many generalized Weierstrass equations correspond to
the same Weierstrass equation. Which ones?

Let j = 1728 4A3

4A3+27B2 .

Theorem

Two elliptic curves are isomorphic over K , if and only if they have
the same j invariant. In fact, there exist µ ∈ K so that the change
of variables (X ,Y ) = (µ2x , µ3y) brings one to the other.

Remark. There are curves which are isomorphic, but they are not
the same over their field of definition. For example y2 = x3 − 25x
has infinitely many rational points, while y2 = x3 − x has only
four. Both have j invariant 1728.

Remark. y2 = x3 + 3j
1728−j x + 2j

1728−j has j invariant j . y2 = x3 + 1

and y2 = x3 + x have 0 and 1728 as j invariants. These curves
have more automorphisms than the trivial (x , y)→ (x ,−y).



Introduction Elliptic Curves

Exercise: Many generalized Weierstrass equations correspond to
the same Weierstrass equation. Which ones?

Let j = 1728 4A3

4A3+27B2 .

Theorem

Two elliptic curves are isomorphic over K , if and only if they have
the same j invariant. In fact, there exist µ ∈ K so that the change
of variables (X ,Y ) = (µ2x , µ3y) brings one to the other.

Remark. There are curves which are isomorphic, but they are not
the same over their field of definition. For example y2 = x3 − 25x
has infinitely many rational points, while y2 = x3 − x has only
four. Both have j invariant 1728.

Remark. y2 = x3 + 3j
1728−j x + 2j

1728−j has j invariant j . y2 = x3 + 1

and y2 = x3 + x have 0 and 1728 as j invariants. These curves
have more automorphisms than the trivial (x , y)→ (x ,−y).



Introduction Elliptic Curves

Exercise: Many generalized Weierstrass equations correspond to
the same Weierstrass equation. Which ones?

Let j = 1728 4A3

4A3+27B2 .

Theorem

Two elliptic curves are isomorphic over K , if and only if they have
the same j invariant. In fact, there exist µ ∈ K so that the change
of variables (X ,Y ) = (µ2x , µ3y) brings one to the other.

Remark. There are curves which are isomorphic, but they are not
the same over their field of definition. For example y2 = x3 − 25x
has infinitely many rational points, while y2 = x3 − x has only
four. Both have j invariant 1728.

Remark. y2 = x3 + 3j
1728−j x + 2j

1728−j has j invariant j . y2 = x3 + 1

and y2 = x3 + x have 0 and 1728 as j invariants. These curves
have more automorphisms than the trivial (x , y)→ (x ,−y).



Introduction Elliptic Curves

There are some other equations which can be reduced to
Weierstrass form.

Legendre form Transform y2 = (x − e1)(x − e2)(x − e3) into
Y 2 = (X )(X − 1)(X − λ) where λ = e3−e1

e2−e1 . Not over K

Cubic equations Every cubic equation C (x , y) = 0 over K
with P ∈ E (K ) and char(K ) 6= 2, 3, can be transformed into
Weierstrass equation. Example y3 + x3 = 1 can be
transformed into y2 = x3 − 432. Maybe singular

Quartic equations If C := v2 = au4 + bu3 + cu2 + du + e,
P ∈ C (K ), and char(K ) 6= 2, it has Weierstrass form.

Interserction of two Quadric surfaces The intersection of
the two surfaces au2 + bv2 = e and cu2 + dw2 = f is an
elliptic curve, whenever the intersection is nonempty in a field
K of char(K ) 6= 2.
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Group Law

Let P1 = (x1, y1),P2 = (x2, y2) points on E and denote
P3 = P1 + P2 = (x3, y3). Consider the equations given by
−P1 = (x1,−y1).

x3 = m2 − x2 − x1,

y3 = m(x1 − x3)− y1, (4)

where

m =

{
y2−y1
x2−x1 if P1 6= ±P2,
3x21+A
2y1

if P1 = P2 and y1 6= 0.

Observe that if y1 = 0, then P1 = −P1 and then 2P1 = O.

Theorem

Let E := y2 = x3 + Ax + B be an elliptic curve. Then, the
equations in (4) give structure of group to the curve E .



Introduction Elliptic Curves

Group Law

Let P1 = (x1, y1),P2 = (x2, y2) points on E and denote
P3 = P1 + P2 = (x3, y3). Consider the equations given by
−P1 = (x1,−y1).

x3 = m2 − x2 − x1,

y3 = m(x1 − x3)− y1, (4)

where

m =

{
y2−y1
x2−x1 if P1 6= ±P2,
3x21+A
2y1

if P1 = P2 and y1 6= 0.

Observe that if y1 = 0, then P1 = −P1 and then 2P1 = O.

Theorem

Let E := y2 = x3 + Ax + B be an elliptic curve. Then, the
equations in (4) give structure of group to the curve E .



Introduction Elliptic Curves

Endomorphisms

Definition

An endomorphism of an elliptic curve E defined over K is a map
α : E (K )→ E (K ) such that α(P + Q) = α(P) + α(Q) and

α(x , y) = (r1(x), yr2(x)) =

(
p1(x)

q1(x)
, y

p2(x)

q2(x)

)
.

It is separable if one of p′1(x), q′1(x) is not identically zero.
Otherwise is inseparable.

We call Degree of α to be Max{deg(p1(x)), deg(q1(x))}

Remark. If q1(x) = 0, then α(x , y) = O. If q1(x) 6= 0, then
q2(x) 6= 0.

Remark. If the characteristic is 0 there are no inseparable
polynomials. If char(K ) = p the inseparable polynomials are g(xp).
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Examples. Multiplication by an integer n is an endomorphism for
any elliptic curve, simply because its group structure. In the
particular case of n = 2, the equations are given by the Doubling
equations.

r1(x) =
x4 − 2Ax2 − 8Bx + A2

4(x3 + Ax + B)
,

r2(x) =
−(8B2 − 5Ax4 + 5x2A2 + 4AxB − 20x3B − x6 + A3)

8(x3 + Ax + B)2
.
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In the finite field Fq, with characteristic p and q = pr elements,
the most important endomorphism is called the Frobenius
endomorphism

φq(x , y) = (xq, yq). (5)

Theorem

Let E be an elliptic curve defined over the finite field Fq. The
Frobenius map is an inseparable endomorphism of E of degree q.

Proof We need φq(E ) ∈ E and φq(P + Q) = φq(P) + φq(Q). It
follows from the identities xq = x and (a + b)q = aq + bq. The
degree and separability are consequences of the definition.

The set of endomorphisms of an elliptic curve has ring structure.
In fact it is a Z-module.



Introduction Elliptic Curves

In the finite field Fq, with characteristic p and q = pr elements,
the most important endomorphism is called the Frobenius
endomorphism

φq(x , y) = (xq, yq). (5)

Theorem

Let E be an elliptic curve defined over the finite field Fq. The
Frobenius map is an inseparable endomorphism of E of degree q.

Proof We need φq(E ) ∈ E and φq(P + Q) = φq(P) + φq(Q). It
follows from the identities xq = x and (a + b)q = aq + bq. The
degree and separability are consequences of the definition.

The set of endomorphisms of an elliptic curve has ring structure.
In fact it is a Z-module.



Introduction Elliptic Curves

Proposition

Let E be and elliptic curve, and α a non trivial endomorphism of
E . Then, if it is separable then deg(α) = |Ker(α)| and
deg(α) > |Ker(α)| otherwise.

Proof. Let α = (r1(x), yr2(x)) and r1(x) = p/q(x). Since it is an
endomorphism it is enough to see that |α−1(P)| =deg(α) for any
P in the image of α. Now it is enough to find a so that r1(x) = a
and r ′1(x) 6= 0. This guaranties that p − aq does not have multiple
roots, and hence, with a suitable a it will have precisely deg(α)
roots. For each of them, the second coordinate is fixed by the
definition of the endomorphism.



Introduction Elliptic Curves

For the proof, we need r1(x) to take infinitely many values. In fact,
it takes them all.

Theorem

Let E be and elliptic curve, and α a non trivial endomorphism of
E . Then, α(E (K )) = E (K ).

Proof. If p − aq is not constant the result is trivial. But it can
only be constant for one value of a. Take another point, and add it
to get a in the image.

We now state a condition on separability important for the
applications.

Proposition

Let E be an elliptic curve over q a power of the prime p, and r , s
integers not both zero. Then rφ+ s is separable if and only if p - s.
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The proof is a direct application of the following results.

Lemma

Let α1 = (R1(x), yS1(x)), α2 = (R2(x), yS2(x)) endomorphims
and let α3 = α1 + α2 = (R3(x), yS3(x)).If

R ′1(x)/S1(x) = c1 and R ′2(x)/S2(x) = c2,

then R ′3(x)/S3(x) = c1 + c2.

This lemma is a consequence of the chain rule.
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Corollary

Let n(x , y) = (Rn(x), ySn(x)), the multiplication by n in E . Then

R ′n(x)/Sn(x) = n.

Proof. For positive n it is an straighforward application of the
previous lemma and induction. For negative n recall that
−n(x , y) = (Rn(x),−ySn(x)).
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Introduction Elliptic Curves

Singular curves

Two results are important in case the discrimant of the curve
vanishes.

Theorem

Let E := y2 = x3 be defined over K . Then, the map α from
E (K )− (0, 0) to (K ,+) given by

α(x , y) =
x

y
, α(O) = 0,

is an isomorphism. The inverse is α−1(t) = ( 1
t2
, 1
t3

).
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Theorem

E := y2 = x3 + a2x2 over K . α from E (K )− (0, 0)

α(x , y) =
y + ax

y − ax
, α(O) = 1.

i) if a ∈ K ∗ then α is an isomorphism to (K ∗,×).

α−1(t) =

(
4a2t

(t − 1)2
,

4a3t(t + 1)

(t − 1)3

)
.

ii) If a /∈ K , then α is an isomorphism to the multiplicative group

{u + av : (v , v) ∈ K × K , u2 − a2v2 = 1},

α−1(u, v) =

((
u + 1

v

)2

− a,
u + 1

v
x

)
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The proofs are consequences of the parametrizations exhibited and
the addition laws. When the curve in the first theorem arises from
reducing a curve modulo a prime, se say that the curve have
additive reduction. If it is the case i) or ii) of the second theorem,
we say that the reduction is split or nonsplit multiplicative
respectively. If the reduction is non singular, we say good
reduction.
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Curves modulo composite integers.

The problem when working modulo composite integers is that we
are working with rings that have divisors of zero. To avoid this
problem, we have to work on the projective spaces so we can
somehow forget about denominators. The notion of primitive is
important.

Definition

Let R be a commutative ring. An n-tuple (r1, . . . , rn) is primitive if
there are elements (x1, . . . xn)of R so that x1r1 + · · ·+ xnrn = 1.

We say that two primitive triples (x , y , z) and (x ′, y ′, z ′) are
equivalent if there exist u ∈ R∗ so that (x ′, y ′, z ′) = u(x , y , z). P2

R

are the primitive triples modulo the equivalence relation, and we
denote (x : y : z) the class of the triple (x , y , z).
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Definition

An elliptic curve E defined over R is an homogeneous equation
y2z = x3 + Axz2 + Bz3 with A,B ∈ R and so that
4A3 + 27B2 ∈ R∗.

Theorem

Let E := y2z = x3 + Axz2 + Bz3 be an elliptic curve defined in
P2
R . There exist three sets of equation wich give group structure to

E (R).

Remark The equation are in the book of Washington. The
theorem ensures that some of the equations in the set allow to
define the addition of two points avoiding the problems in the
denominators.

See Example 2.10 in the same book.
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Corollary

Let (n1, n2) = 1 odd and E over Z/n1n2Z. Then, the CRT gives a
group isomorphism E (Z/n1n2Z) ' E (Z/n1Z)× E (Z/n2Z).

Corollary

Let ,E/Z, and n an integer coprime with the discriminant. Then
redn : (x : y : z)→ (x : y : z) (mod n)

gives a group homomorphism between E (Q) and E (Z/nZ).

Corollary

Let R a ring and I an ideal. Then,
redI : (x : y : z)→ (x : y : z) (mod I )

gives a group homomorphism between E (R) and E (R/I ).

The result needs mild conditions on R and I .
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Torsion Elliptic curves over C Pairings Finite Fields

Given E := y2 + Ax + B we are interested in the torsion part.

If K = Fq then E (K ) ' Etors(K ).

In particular we will study

E [n] = {P ∈ E (K ) : nP = O}.

Example: n = 2.
• charK 6= 2. 2P = O, E := {y2 = P(x)}, with deg(P) = 3.

E [2] = {(e1, 0), (e2, 0), (e3, 0),O} ' Z/2Z× Z/2Z,

where P(x) = (x − e1)(x − e2)(x − e3)

In characteristic 2, E := {y2 + xy + x3 + a2x
2 + a6 = 0}, a6 6= 0

or E := {y2 + a3y + x3 + a4x + a6 = 0}, a3 6= 0 and E [2] ' Z/2Z
or E [2] = O.
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Torsion Elliptic curves over C Pairings Finite Fields

Example n = 3.
• charK 6= 2, 3. 2P = −P This means that 2P and P has the
same x coordinates.

m2 − 2x = x , where m =
3x2 + A

2y

Clearing denominators, we get

3x4 + 6AX 2 + 12Bx − A2 = 0

The discriminant of the polynomial is −6912(4A3 + 27B2)2

E [3] ' Z/3Z× Z/3Z,
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Torsion Elliptic curves over C Pairings Finite Fields

• charK = 3. In this case we have
E := y2 = x3 + a2x

2 + a4x + a6, and taking into account 3 = 0,
some terms dissapear in the addition equations. We get(

2a2x + a4
2y

)2

− a2 = 3x = 0,

which simplifies to

a2x
3 + a2a6 − a24 = 0.

If a2 = 0 there are no solutions, and otherwise has a triple root.
Hence, E [3] = O or E [3] ' Z/3Z in characteristic 3.
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Torsion Elliptic curves over C Pairings Finite Fields

For given A, B, we define the Division polynomial ψn(x , y) by
the following recursive formula.

ψ1 = 1

ψ2 = 2y

ψ3 = 3x4 + 6AX 2 + 12Bx − A2

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx − 8B2 − A3)

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1, for m ≥ 2

ψ2m = (2y)−1ψm(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1), for m ≥ 3.

From here, one can see that ψ2n+1 ∈ Z[x ], ψ2n ∈ 2yZ[x ], and

ϕm = xψ2
m − ψm−1ψm+1,

ωm = (4y)−1(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1), (1)

are indeed polynomials and {ϕm, ω2m} ⊂ Z[x ] while
ω2m+1 ∈ yZ[x ].
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Theorem

Let P = (x , y) be a point on the elliptic curve y2 = x3 + Ax + B,
and let n be a positive integer. Then,

nP =

(
ϕn

ψ2
n

,
ωn

ψ3
n

)
.

Theorem

Multiplication by n is an endomorphism of degree n2.

Proof.

ϕm(x) = xm
2

+ lower degree terms,

ψm(x)2 = m2xm
2−1 + lower degree terms.
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Torsion Elliptic curves over C Pairings Finite Fields

Theorem

Let E/K be an elliptic curve and char(K ) = p.
a) If p - n then E [n] ' Z/nZ× Z/nZ.
b)If p|n then E [n] ' Z/n′Z× Z/n′Z. or E [n] ' Z/n′Z× Z/nZ,
where n′ is the greatest divisor of n coprime with p.

Remark. When E [p] = Z/pZ the curve is called ordinary. If
E [p] = O then it is supersingular.

Proof. The degree of the multiplication by n is n2, which is the
size of the kernel when p - n. Hence, by the clasification of finite
abelian groups, it must be Z/nZ× Z/nZ.
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If p - n, then there exist P,Q ∈ E [n] so that R = aP + bQ for any
R ∈ E [n] and some a, b ∈ Z. Moreover, if α is and homomorphism
of E , then

α(nP) = nα(P),

so α : E [n]→ E [n]. we can associate a 2 by 2 matrix in M2(Z/nZ)
to each homomorphism of the curve. (endomorphism or
automorphism of the field K )

Example: E := y2 = x3 − x . p = 11, n = 3

ψ3(x) = 3x4 − 6x2 − 1; ψ3(4) = 42(3 · 42 − 6)− 1

E [3] =< (4, 4), (7, 5
√

2) >=< P,Q >

φ11(4, 4) = (4, 4), φ11(7, 5
√

2) = (7, 6
√

2) = −Q, hence

φ11 =

(
1 0
0 −1

)
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Torsion Elliptic curves over C Pairings Finite Fields

Elliptic curves over C.

Let L = mω1 + nω2 be a lattice in C, and denote E(L) the set of
meromorphic functions on C/L. In particular f (z + ω) = f (z) for
all ω ∈ L. Let F be a fundamental domain for C/L

Theorem

Any function in E(L) without poles in F is constant.

Proof. Liouville’s theorem

Theorem

For f ∈ E(L) and z0 ∈ C, the sum of the residues of f in z0 + F is
zero.

Proof Cauchy’s theorem (The only condition needed is that f has
no poles at the boundary of z0 + F )
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zero.

Proof Cauchy’s theorem (The only condition needed is that f has
no poles at the boundary of z0 + F )
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Corollary

For f ∈ E(L) and z0 ∈ C, the sum of the orders of zeroes in
z0 + E(L) is equal to the sum of the order of poles in z0 + E(L)
counting multiplicities.

Proof Take f ′

f .

Example: P(z) = 1
z2

+
∑

ω∈L
ω 6=0

(
1

(z−ω)2 −
1
ω2

)
P ′(z) = −

∑
ω∈L

1
(z−ω)3 .

P is even. P ′ is odd.

Theorem

In the conditions above

E(L) = C(P,P ′). In fact, E(L)+ = C(P)

P ′2 = aP3 + bP2 + cP + d, for some a, b, c , d ∈ C.
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Corollary

For any integer n P(nz) is a rational function of P(z) and P ′(z)

Theorem

The map z → (P(z),P ′(z)) is an analytic one to one
correspondence between C/L and the elliptic curve
y2 = 4x3 + g2(L)x + g3(L).
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Pairings

We call µn the group of n-th roots of unity in K .

Theorem

Let E/K be an elliptic curve, and char(K ) - n. There exist a
pairing

en : E [n]× E [n]→ µn,

which is bilinear, non-degenerate, Galois compatible, and such that
en(P,P) = 1 and en(α(P), α(Q)) = en(P,Q)deg(α).

1 = en(T + S ,T + S) = en(T ,T )en(T ,S)en(S ,T )en(S ,S),

hence
en(T ,S) = en(S ,T )−1
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Corollary

If T1,T2 is a basis of E [n], then en(T1,T2) is a primitive n-th root
of unity.

Corollary

If E [n] ∈ E (K ), then µn ∈ K.

Corollary

Let E/Q be an elliptic curve. E [n] /∈ E (Q) for n ≥ 3.
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To any endomorphism α we can associate a 2× 2 matrix αn with
entries in Z/nZ.

Proposition

Let E be an elliptic curve over K with char(K ) = p. Let α be an
endomorphism of E and n an integer not divisible by p. Then
deg(α) ≡det(αn) (mod n).

Proof.

ζdegα = en(α(T1), α(T2)) = en(aT1 + bT2, cT1 + dT2)

= en(T1,T2)ad−bc .

Proposition

deg(aα+bβ) = a2degα+b2degβ+ab(deg(α+β)−degα−degβ).
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Finite Fields

Examples. y2 = x3 + x + 1 over F5.

x x3 + x + 1 y Points
0 1 ±1 (0, 1), (0, 4)
1 3
2 1 ±1 (2, 1), (2, 4)
3 1 ±1 (3, 1), (3, 4)
4 4 ±2 (4, 2), (4, 3)

Therefore, E (F5) =< (0, 1) > has order 9.

y2 = x3 + 2 over F7. Then
E (F7) = {O, (0, 3), (0, 4), (3, 1), (3, 6), (5, 1), (5, 6), (6, 1), (6, 6)}.
Every point satisfy 3P = O, so E (F7) ' Z/3Z× Z/3Z.
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Theorem

Let E/Fq be an elliptic curve. Then, for some n1|n2.

E (Fq) ' Z/n1Z× Z/n2Z,

Theorem

(Hasse) Let E/Fq be an elliptic curve. Then

|#E (Fq)− q − 1| ≤ 2
√
q.

Proof E (Fq) =Ker(φq − 1) and φq − 1 is separable, hence,
#E (Fq) = deg(φq − 1).

r2q + s2 − rsa = deg(rφq − s) ≥ 0, where a = q + 1−#E (Fq).
Since this is true for any r , s, we get qx2 − ax + 1 ≥ 0 for any real
x . The result follows.
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Corollary

Let E (Fq) ' Z/nZ× Z/nZ. Then, q = n2 + 1, q = n2 ± n + 1 or
q = (n ± 1)2.

Proof Observe that E [n] ⊂ E (Fq), and so µn ∈ Fq. Hence,
n|q − 1, and so n2 = q + 1− a gives a = 2 + kn for some integer
k . Hasse’s Theorem gives now the result.
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Theorem

Let q = pn and N = q + 1− a There exist an elliptic curve over
E/Fq with N = #E (Fq) if and only if a ≤ 2

√
q and

p - a.
n is even and a = ±2

√
q

n is even, p 6≡ 1 (mod 3) and a = ±√q.
n is odd, p = 2, 3 and a = ±p(n+1)/2

n is even, p 6≡ 1 (mod 4) and a = 0

n is odd and a = 0.
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Theorem

Let the conditions of the above theorem and N = pen1n2 with
n1|n2 and p - n1n2. There is an elliptic curve E/Fq such that

E (Fq) ' Z/peZ× Z/n1Z× Z/n2Z

if and only if,

n1|q − 1 and we are not in the second case of the previous
theorem,

n1 = n2 in the second case of the previous theorem.
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Group order

Theorem

Let E/Fq be an elliptic curve and a = q + 1−#E (Fq). Then, a is
the unique integer so that

φ2q − aφq + q = 0.

Moreover, a ≡Trace((φq)m) (mod m) for any (m, q) = 1.

Theorem

Let #E (Fq) = q + 1− a and x2 − ax + q = (x − α)(x − β). Then
#E (Fqn) = q + 1− sn

where sn = αn + βn.

Lemma

sn is an integer

Proof. sn+1 = asn − qsn−1.
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Example.

Compute E (F2101), where E := y2 + xy = x3 + 1.

#E (F2) = 4. Therefore, a = −1, and we obtain

x2 + x + 2 =

(
x − −1 +

√
−7

2

)(
x − −1−

√
−7

2

)
Using the recurrence for sn or using sufficiently high precision
floating point arithmetic yields(
−1+

√
−7

2

)101
+
(
−1−

√
−7

2

)101
= 2969292210605269.

Therefore, #E (F2101) = 2101 + 1− 2969292210605269 =
2535301200456455833701195805484.
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Definition

E/Fq is said to be supersingular if E [p] = O.

However, we have an alternative definition which is the one we are
interested on now.

Proposition

E/Fq es supersingular if and only if |E (Fq)| ≡ 1 (mod p) which is
the same as a = q + 1− |E (Fq)| ≡ 0 (mod p).

Proof. Consequence of the previous theorem, the recurrence
relation of sn, and Fermat’s Little Theorem.
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Example

The curve y2 = x3 − x is supersingular for any prime p ≡ 3
(mod 4).

If E/Z has CM by Q(
√
−d), E (mod p) is supersingular if and

only if −d is not a square modulo p. Therefore E , is supersingular
for approximately half of the primes. If E has not CM complex
multiplication, the set of primes for which is supersingular is infinite
but for p < x is less than Cx/ln2−ε(x). It has been conjectured by
Lang and Trotter that the truth would be C

√
x/ log x . This has

been shown to be true ”on average” by Fouvry and Murty.
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But In general, how do we find the order?

Trying points at random.
Suppose E (Fq) ' Z/n1Z× Z/n2Z with n1|n2. What is the chance
that the least common multiple of the orders of random points is
n2?
Let ordP1 = n1, ordP2 = n2, generators. If P ∈ E (Fq) then
P = a1P1 + a2P2 with 0 ≤ ai < ni . Let pe ||n2.
Prob(p - a2) = 1− 1/p hence, pe |ordP. If p is large, it is very
likely If p is small, say p = 2, then the probability is at least 1/2.

Proposition

Let E/Fq be an elliptic curve. Write E (Fq) ' Z/n1Z× Z/n2Z
with n1|n2. Suppose that q is not one of the following:

3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29,

31, 37, 43, 61, 73, 181, 331, 547.

Then n2 uniquely determines n1.
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If we can find a point of order greater than 4
√
q, there can be only

one multiple of this order in the correct interval, and it must be
#E (Fq). Even if the order of the point is smaller than 4

√
q, we

obtain a small list of possibilities for #E (Fq). Using a few more
points often shortens the list enough that there is a unique
possibility for #E (Fq).

Examples
y2 = x3 + 7x + 1 over F101. ord(0, 1) = 116.

101 + 1− 2
√

101 ≤ |E (F101)| ≤ 101 + 1 + 2
√

101,

hence
|E (F101)| = 116. The group is cyclic.
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y2 = x3 − 10x + 21 over F557. ord (2, 3) = 189 and
511 ≤ |E (F557)| ≤ 605. Therefore |E (F557)| = 567 = 3 · 189.

y2 = x3 + 7x + 12 over F103. ord(−1, 2) = 13 ord(19, 0) = 2.
Therefore |E (F103)| is a multiple of 26. But 84 ≤ |E (F103)| ≤ 124.
So |E (F103)| = 104
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How do we find the order of a point?

Baby Step Giant Step Algorithm We choose an integer
m >

√
2q1/4. Then, since |a| < 2

√
q, we can express it on base m

as a = u + vm with 0 ≤ u ≤ m, −m ≤ v < m. Observe that, if a
positive integer a = u + vm, then
−a = −u − vm = m − u − (v + 1)m.

Baby Step. From Pj = jP compute (j + 1)P for j = 1 up to
(m − 1)P.

Giant Step. From Qk = (q + 1 + km)P compute
q + 1 + (k + 1)mP for k = −m + 1 up to m.

Factor N = q + 1− j + km and let p1, . . . , pr its prime factors.

Compute N/piP if it is O repeat with N = N/pi . Otherwise
N = ord(P).

There will be a match Pu = Q−v and we have done 3m ∼ 3
√

2q1/4

additions and two multiplitacions (q + 1)P and mP.
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Example.

y2 = x3 − 10x + 21 over F557,P = (2, 3). We follow the procedure
above.

Q = 558P = (418, 33).

Let m = 5 > 5571/4.
jP = {O, (2, 3), (58, 164), (44, 294), (56, 339), (132, 364)}.
When k = 2, we have Q + kmP = (2, 3) = P.

We have (q + 1 + mk − j)P = 567P = O.

Factor 567 = 347. Compute (567/3)P = 189P = O. We now
have 189 as a candidate for the order of P.

Factor 189 = 337. Compute (189/3)P = (38, 535) 6= O and
(189/7)P = (136, 360) 6= O. Therefore ordP = 189.
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Schoof algorithm is the best to obtain the group of points on an
elliptic curve. It works in polynomial time in the number of digits
of q. It is based on computing the numer of points modulo enough
prime factors. Each of those calculations can be done using the
characteristic polynomial of the Frobenius and the division
polynomials.

Choose a set of primes S = {2, 3, 5, ..., L} (with p /∈ S) such that∏
l∈S l > 4

√
q.

If l = 2, we have a ≡ 0 (mod 2) if and only if
gcd(x3 + Ax + B, xq − x) 6= 1.

For each odd prime l ∈ S do the following.
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1 (a) Let ql ≡ q (mod l)) with |ql | < l/2.
(b) Compute the x-coordinate x ′ of
(x ′, y ′) = ((xq

2
, yq

2
) + ql)(x , y) (mod ψl)

(c) For j = 1, 2, ..., (l − 1)/2, do the following.
i. Compute the x-coordinate xj of (xj , yj) = j(x , y).
ii. If x ′ − xqj ≡ 0 (mod ψl), go to step (iii). If not, try the
next value of j (in step (c)). If all values been tried, go to
step (d).
iii. Compute y ′ and yj . If (y ′ − yqj )/y ≡ 0 (mod ψl) then
a ≡ j (mod l). If not, then a ≡ −j (mod l).
(d) Let w2 ≡ q (mod l). Otherwise a ≡ 0 (mod l)
(e) If gcd(numerator(xq − xw ), ψl) = 1, then a ≡ 0 (mod l)).
Otherwise, if gcd(numerator((yq − yw )/y), ψl) 6= 1, a ≡ 2w
(mod l). Otherwise, a ≡ −2w (mod l).

2 Compute a (mod
∏

l∈S l) and choose the value of a that
satisfies |a| < 2

√
q. The number of points in E (Fq) is

q + 1− a.
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Example

y2 = x3 + 2x + 1 (mod 19). We will show a ≡ 1, 2, 3 modulo
2, 3, 5 respectively. Then a ≡ 23 (mod 30) and since
|a| < 2

√
19 < 9, a = −7.

•l = 2. x19 − x ≡ x2 + 13x + 14 (mod x3 + 2x + 1). Hence
gcd(x19 − x , x3 + 2x + 1) = 1.

•l = 3. ql = 1. We compute the x coordinate of

(x361, y361) + (x , y) which is
(
y361−y
x361−x

)2
− x361 − x modulo ψ3.

We cannot make the inverse, since
gcd(x361 − x , 3x4 + 12x2 + 12x − 4) = x − 8.

But then |E (F19)| ≡ 0 (mod 3) or a ≡ 2 (mod 3).
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•l = 5, ql = −1

We get
(
y361−y
x361−x

)2
− x361 − x ≡

(
3x38+2
2y19

)2
− 2x19 (mod ψ5(x)).

Hence a ≡ ±2 (mod 5).

The y coordinate, y ′ of (x361, y361) + (x ,−y) is
y(9x11 + 13x10 + 15x9 + 15x7 + 18x6 + 17x5 + 8x4 + 12x3 + 8x + 6)
(mod ψ5).
The y coordinate, y ′′, of 2(x , y) is
y(13x10 + 15x9 + 16x8 + 13x7 + 8x6 + 6x5 + 17x4 + 18x3 + 8x + 18)
(mod ψ5)
and so
(y ′ + y ′′19)/y ≡ 0 (mod ψ5). Hence a ≡ −2 (mod 5).
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In order to build secure cryptosystems, we need to have behind a
difficult mathematical problem. Breaking the cryptosystem would
means solve the problem. One of them is the Discrete logarithm
problem, DLP.

Problem. (DLP) Given a multiplicative group G =< g > and
a ∈ G find the integer k, so that gk = a.

The integer k shares properties with the logarithm.

gL(h) ≡ h (mod p). Then,

gL(h1h2) ≡ h1h2 ≡ gL(h1)+L(h2) (mod p), Hence

L(h1h2) ≡ L(h1) + L(h2) (mod p − 1).

It is believed that it cannot be found in polynomial time. Recently
there are good algorithms for small characteristic
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Index Calculus: F∗p
Solve the DLP for small primes and find g ja to be smooth. End
with linear algebra.

Remark. A number is B-smooth, if all its prime factors are
bounded by B.

ψ(X ; X 1/u)/X ∼ u−u

Example. Let p = 1217 and g = 3. Solve 3k ≡ 37 (mod 1217).

324 ≡ −22 · 7 · 13 (mod 1217)

325 ≡ 53

330 ≡ −2 · 52

354 ≡ −5 · 11

387 ≡ 13

316 · 37 ≡ 23 · 7 · 11
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3(p−1)/2 = −1, so L(−1) = 608.

24 ≡ 608 + 2L(2) + L(7) + L(13) (mod 1216)

25 ≡ 3L(5)

30 ≡ 608 + L(2) + 2L(5)

54 ≡ 608 + L(5) + L(11)

87 ≡ L(13)

16 + L(37) ≡ 3L(2) + L(7) + L(11)

L(37) = 588, hence 3588 ≡ 37 (mod 1217).

The expected running time is O(exp(
√

2 log p log log p))
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Pollard’s ρ method

Any function f (Pi ) = Pi+1 has a periodic orbit in a finite group.
Hence, there is a match.

|G | = N. We want to find kP = Q.

1 Split G into s sets Si and choose randomly Mi = aiP + biQ

2 Choose random P0 = a0P + b0Q

3 If Pi ∈ Sj , then Pi+1 = Pi + Mj

4 The match Pl = Pm gives ulP + vlQ = umP + vmQ

5 k ≡ (vm − vl)
−1(ul − um) (mod N)

Remark. If (vm − vl ,N) = d the equation gives d possible values
of k .
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Example

Let G = E (F1093), E := y2 = x3 + x + 1. s = 3.

P = (0, 1), Q = (413, 959). Find kP = Q. ord(P) = 1067.

P0 = 3P + 5Q, M0 = 4P + 3Q, M1 = 9P + 17Q, M2 = 19P + 6Q.

f (x , y) = (x , y) + Mi if x ≡ i (mod 3).

f (P0) = P0 + M2 = (727, 589), since P0 = (326, 69) and 326 ≡ 2
(mod 3).

P5 = P58. P5 = 88P + 46Q and P58 = 685P + 620Q.

Therefore, O = P58 − P5 = 597P + 574Q.

k ≡ (−574)−1597 ≡ 499 (mod 1067).
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MOV Attack

Reduce the DLP on the elliptic curve, to DLP on a finite field via
the Weil pairing.

Lemma

Let E/Fq and ordP = N coprime with q. Q ∈ E (Fq). There exists
k such that Q = kP if and only if NQ = O and the Weil paring
eN(P,Q) = 1.

One direction is trivial. For the other, take P̂ so that P, P̂ is a
base of the N torsion. Recall that, since (q,N) = 1,
E [N] ' Z/NZ× Z/NZ. Then, Q = aP + bP̂ for some integers
a, b, and 1 = eN(P,Q) = eN(P,P)aeN(P, P̂)b = ζb for ζ some
primitive N-th root of unity. In particular N|b which finish the
result.
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1 Choose a random point T ∈ E (Fqm).

2 Compute the order M of T .

3 Let d = gcd(M,N), and let T1 = (M/d)T . Then T1 has
order d , which divides N, so T1 ∈ E [N].

4 Compute ζ1 = eN(P,T1) and ζ2 = eN(Q,T1). Then both ζ1
and ζ2 are in µd ⊂ F∗qm .

5 Solve the discrete log problem ζ2 = ζk1 in F∗qm . This will give
k modulo d .

6 Repeat with random points T until the least common multiple
of the various d ’s obtained is N. This determines k modulo N.
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Remark. With high probability d is big.

Remark. We require E [N] ∈ Fqm then µd ∈ Fqm .

Proposition

Let E be an elliptic curve over Fq and suppose
a = q + 1−#E (Fq) = 0. Let N be a positive integer. If there
exists a point P of E (Fq) of order N, then E [N] ⊂ E (Fq2).

Proof. The Frobenius endomorphism satisfies ϕ2
q = −q. Since

there is a point of order N, we have N|q + 1. Suposse now
S ∈ E [N]. Then S = −qS = ϕq2S as we wanted to see.

Remark. When E is supersingular but a 6= 0, m = 3, 4, or 6.
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Elliptic curve Cryptography

Alice wants to send a message, often called the plaintext, to Bob.
In order to keep the eavesdropper Eve from reading the message,
she encrypts it to obtain the ciphertext. When Bob receives the
ciphertext, he decrypts it and reads the message. In order to
encrypt the message, Alice uses an encryption key. Bob uses a
decryption key to decrypt the ciphertext. Clearly, the decryption
key must be kept secret from Eve.

symmetric encryption, the encryption key and decryption key are
the same, (DES)

public key encryption, or asymmetric encryption. Bob publishes a
public encryption key, which Alice uses. He also has a private
decryption key that allows him to decrypt ciphertexts. Since
everyone knows the encryption key, it should be infeasible to
deduce the decryption key from the encryption key. RSA
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Generally, public key systems are slower than good symmetric
systems.

Diffie-Hellman key exchange

1 Alice and Bob agree on an elliptic curve E over a finite field
Fq such that the discrete logarithm problem is hard in E (Fq).
They also agree on a point P ∈ E (Fq) such that the subgroup
generated by P has large prime.

2 Alice chooses a secret integer a, computes Pa = aP, and
sends it to Bob.

3 Bob chooses a secret integer b, computes Pb = bP , and
sends it to Alice.

4 Alice computes aPb = abP .

5 Bob computes bPa = baP .

The public information is E , q, P, Pa, Pb. From here to compute
abP would be enough to solve the DLP on the elliptic curve E . It
is not know if one can compute abP without solving DLP.



Discrete Logarithm Problem Elliptic curve Cryptography Other Applications

Generally, public key systems are slower than good symmetric
systems.
Diffie-Hellman key exchange

1 Alice and Bob agree on an elliptic curve E over a finite field
Fq such that the discrete logarithm problem is hard in E (Fq).
They also agree on a point P ∈ E (Fq) such that the subgroup
generated by P has large prime.

2 Alice chooses a secret integer a, computes Pa = aP, and
sends it to Bob.

3 Bob chooses a secret integer b, computes Pb = bP , and
sends it to Alice.

4 Alice computes aPb = abP .

5 Bob computes bPa = baP .

The public information is E , q, P, Pa, Pb. From here to compute
abP would be enough to solve the DLP on the elliptic curve E . It
is not know if one can compute abP without solving DLP.



Discrete Logarithm Problem Elliptic curve Cryptography Other Applications

Decision Diffie-Hellman problem Given P, aP, and bP in E (Fq),
and given a point Q ∈ E (Fq) determine whether or not Q = abP.

In other words, it is believed that P, aP, and bP do not lick a
single bit of information about abP.

DDH problem can be asked in any group. In the case of elliptic
curves, it is subtle since, in some cases, one could use the Weil
pairing to solve the problem, as we did to solve the DLP.
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Example Consider the curve y2 = x3 + 1 and q ≡ 2 (mod 3).
Then, E (Fq) = q + 1.

β(x , y) = (ωx , y) where ω /∈ Fq is a third root of unity.

ẽn(P1,P2) = en(P1, β(P2)),

Lemma

Assume 3 - n. If P ∈ E (Fq) has order exactly n, then ẽn(P,P) is a
primitive n-th root of unity.

Proof. We see that it is impossible to have a relation between P
and β(P) unless x = 0, but the point P = (0,±1) has order 3|n.
Hence, they are independent, and hence the Weil pairing is a
primitive root. (ψ3 = 3x4 + 6AX 2 + 12Bx − A2)

Assume now that Q = tP. (one can check this) . Then Q = abP
if and only if ab ≡ t (mod n). This is equivalent to
ẽn(Q,P) = ẽn(aP, bP), when 3 - n, by the previous lemma.
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A Public Key Scheme Based on Factoring

n = pq, ed ≡ 1 (mod ϕ(n)) n, e public, d , p, q secret. c = me

(mod n).

If Eve finds d , then finds ϕ(n) = (p − 1)(q − 1) = n + 1− (p + q)
from here and n = pq, she can factor n.

1 Bob chooses two distinct large primes p, q with p ≡ q ≡ 2
(mod 3) and computes n = pq.

2 Bob chooses integers e, d with ed ≡ 1
(mod lcm(p + 1, q + 1)).

3 Bob makes n and e public and keeps d , p, q private.
4 Alice represents her message as a pair of integers (m1,m2)

(mod n). She regards (m1,m2) as a point M on the elliptic
curve E given by y2 = x3 + b (mod n), where b = m2

2 −m3
1

(mod n) (she does not need to compute b).
5 Alice adds M to itself e times on E to obtain

C = (c1, c2) = eM. She sends C to Bob.
6 Bob computes M = dC on E to obtain M.



Discrete Logarithm Problem Elliptic curve Cryptography Other Applications

A Public Key Scheme Based on Factoring

n = pq, ed ≡ 1 (mod ϕ(n)) n, e public, d , p, q secret. c = me

(mod n).
If Eve finds d , then finds ϕ(n) = (p − 1)(q − 1) = n + 1− (p + q)
from here and n = pq, she can factor n.

1 Bob chooses two distinct large primes p, q with p ≡ q ≡ 2
(mod 3) and computes n = pq.

2 Bob chooses integers e, d with ed ≡ 1
(mod lcm(p + 1, q + 1)).

3 Bob makes n and e public and keeps d , p, q private.
4 Alice represents her message as a pair of integers (m1,m2)

(mod n). She regards (m1,m2) as a point M on the elliptic
curve E given by y2 = x3 + b (mod n), where b = m2

2 −m3
1

(mod n) (she does not need to compute b).
5 Alice adds M to itself e times on E to obtain

C = (c1, c2) = eM. She sends C to Bob.
6 Bob computes M = dC on E to obtain M.



Discrete Logarithm Problem Elliptic curve Cryptography Other Applications

A Public Key Scheme Based on Factoring

n = pq, ed ≡ 1 (mod ϕ(n)) n, e public, d , p, q secret. c = me

(mod n).
If Eve finds d , then finds ϕ(n) = (p − 1)(q − 1) = n + 1− (p + q)
from here and n = pq, she can factor n.

1 Bob chooses two distinct large primes p, q with p ≡ q ≡ 2
(mod 3) and computes n = pq.

2 Bob chooses integers e, d with ed ≡ 1
(mod lcm(p + 1, q + 1)).

3 Bob makes n and e public and keeps d , p, q private.
4 Alice represents her message as a pair of integers (m1,m2)

(mod n). She regards (m1,m2) as a point M on the elliptic
curve E given by y2 = x3 + b (mod n), where b = m2

2 −m3
1

(mod n) (she does not need to compute b).
5 Alice adds M to itself e times on E to obtain

C = (c1, c2) = eM. She sends C to Bob.
6 Bob computes M = dC on E to obtain M.



Discrete Logarithm Problem Elliptic curve Cryptography Other Applications

Remarks. The order of E (Zn) is |E (Fp)||E (Fq)| = (p + 1)(q + 1).
Therefore, (p + 1)M ≡ O (mod p) and (q + 1)M ≡ O (mod q)
This means that the decryption works.

If Alice first chooses the x-coordinate as the message, then she is
faced with the problem of computing square roots mod n. This is
computationally equivalent to factoring n.

If Eve factors n as pq, she can decrypt Alice’s message. The
opposite is also true with high probability.
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1 Write ed − 1 = 2kv with v odd and with k ≥ 1.

2 Pick a random pair of integers R = (r1, r2) (mod n), and let
b′ = r22 − r31 and regards R as a point on the elliptic curve E ′

given by y2 = x3 + b′.

3 Compute R0 = vR. If R0 = O (mod n), start over with a new
R. On the other hand if R0 = O mod p only, then Eve has
factored n.

4 For i = 0, 1, 2, ..., k , computes Ri+1 = 2Ri . If Ri+1 ≡ O
(mod p) only or some i , then Ri = (xi , yi ) with yi ≡ 0
(mod p) and gcd(yi , n) = p.

5 If for some i , Ri+1 = O (mod n), then start over with a new
random point.
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Factoring Using Elliptic Curves

p − 1 method. Choose random a. Compute a1 = aB! (mod n)
and gcd(a1 − 1, n).

If p − 1 is B-smooth, then p|(a1 − 1). If l |(q − 1) then there is 1/l
chance that q|(a1 − 1) and we factor n with high probability.

If p − 1 and q − 1 have very large prime factors there is no way to
succeed.
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The elliptic curve method have the freedom of choosing another
curve. Can factor numbers of about 60 digits.

1 Choose several random elliptic curves Ei : y2 = x3 + Aix + Bi

(usually around 10 to 20) and points Pi (mod n).

2 Choose an integer B (perhaps around 108) and compute
(B!)Pi on Ei for each i .

3 If step 2 fails because some slope does not exist mod n, then
we have found a factor of n.

4 If step 2 succeeds, increase B or choose new random curves
Ei and points Pi and start over.
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Factor 4453. Consider y2 = x3 + 10x − 2 (mod 4453) and
P = (1, 3). We try to compute 3P.

Compute 2P.

m =
3x2 + 10

2y
=

13

6
≡ 3713 (mod 4453).

2P = (4332, 3230).

Compute 3P.

m =
3230− 3

4332− 1
=

3227

4331
.

gcd(4331, 4453) = 61, hence 4453 = 61 · 73.

E (Z4453) ' E (F61)× E (F73).

P = (1, 3), 2P = (1, 58), 3P = O, 4P = (1, 3), ... (mod 61).

However,

P = (1, 3), 2P = (25, 18), 3P = (28, 44), ..., 64P = O (mod 73).
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Primality Testing

Theorem

Let n > 1 and let E be an elliptic curve modulo n. Suppose there
exist distinct prime numbers l1, . . . , lk and finite points
Pi ∈ E (Z/nZ) such that

liPi = O for 1 ≤ i ≤ k ,
k∏

i=1

li ≥ (n1/4 + 1)2.

Then n is prime.
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Proof.

Since liPi = O (mod n), liPi = O (mod p) for any p|n. Hence,
li |E (Fp) for 1 ≤ i ≤ k . Hence, by Hasse’s Theorem, for any prime
p|n we have

(n1/4 + 1)2 ≤
k∏

i=1

li ≤ |E (Fp)| < (
√

p + 1)2.

Hence, p ≥
√

n for any prime p|n and, in particular, n is prime.
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Example Let n = 907. y2 = x3 + 10x − 2 (mod n). Let
l = 71 > (9071/4 + 1)2.
P = (819, 784) has 71P = O. Hence, 907 is prime.

How to find the curve E and the point P?

For that, we need to learn the theory of complex multiplication, in
the next CIMPA school.

See you there!!!
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