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Introduction Cryptography

• Bit operation.

Multiplication of a k digits integer by an l digits integer.

11101

×1101

101111001

It needs kl bit operations.

• f = O(g) if f (n) ≤ g(n) for all n ∈ Zr

.

An algorithm in n-variables of ki bits each is called a polynomial
time algorithm if the number of bit operations is O(

∏
i=1..n k

di
i )
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• The Euclidean algorithm to Find the gcd of two integers a < b,
is a polynomial time algorithm.

• Finding the inverse in (Z/mZ)∗ can be done in polynomial time.

• Given n = pq where p, q are distinct primes, it is equivalent to
find ϕ(n) than p and q.

Exercise: Find an algorithm to compute [
√
n] in polynomial time.

• Let m =
∏

pαi
i If (a,m) = 1, aL(m) ≡ 1 (mod m), where

L(m) = lcm{ϕ(pαi
i )}

• Exponentiation an (mod m) is polynomial in n and m

• Multiplying two elements of Fq needs O((log q)3) operations
while ak , for a ∈ Fq and k ∈ Z needs O((log q)3 log k3)
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Theorem (Quadratic Reciprocity law)

Let m, n two odd integers. Then(m
n

)( n

m

)
= (−1)

n−1
2

m−1
2

Proof. Consider p, q primes, and G =
∑q−1

i=0

(
i
q

)
ξi , where ξ ∈ Fpk

is a q-th root of unity. Then,

Gp =

q−1∑
i=0

(
i

q

)
ξip =

(
p

q

) q−1∑
i=0

(
ip

q

)
ξip =

(
p

q

)
G

But also

Gp = (G 2)(p−1)/2G = ((−1)(q−1)/2q)(p−1)/2G

which finish the result.



Introduction Cryptography

Theorem (Quadratic Reciprocity law)

Let m, n two odd integers. Then(m
n

)( n

m

)
= (−1)

n−1
2

m−1
2

Proof. Consider p, q primes, and G =
∑q−1

i=0

(
i
q

)
ξi , where ξ ∈ Fpk

is a q-th root of unity. Then,

Gp =

q−1∑
i=0

(
i

q

)
ξip =

(
p

q

) q−1∑
i=0

(
ip

q

)
ξip =

(
p

q

)
G

But also

Gp = (G 2)(p−1)/2G = ((−1)(q−1)/2q)(p−1)/2G

which finish the result.



Introduction Cryptography

P is the set of plaintext messages, C is the set of ciphertext
message. A cryptosystem is a (biyective) function f : P → C such
that given m ∈ P, c = f (m) is easy to compute, but m = f −1(c)
is very hard, unless an extra information is provided, which is called
the key.

Example: f (m) = m + 3 (mod 26). Will convert philippines into
sklolsslqhv.

bjqhtrjytymjhnrufwjxjfwhmxhmttq

welcometothecimparesearchschool
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hash

• Hash Functions. Is any algorithm that maps data of variable
length to data of a fixed length. (SHA-1,2,3. Secure Hash
algorithm.) It does not need a key.

It is easy to generate hash values from input data and easy to
verify that the data matches the hash, but hard to ’fake’ a hash
value to hide malicious data.

Good for ensuring data integrity. Any change made to the contents
of a message will result in a different hash.
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The same key is used to encrypt and decrypt the messages. It is
also called symmetric encryption.
Example: DES (Data Encryption Standard, IBM, 1970)
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secret key

Secret key cryptography is ideally suited to encrypting messages.

• Advantages:
– Encryption is fast and simple.

– Less computer resources.

– Good to encrypt your own files.

• Disadvantages:
–Secure channel for secret key exchange.

–Ensuring privacy of keys is difficult.

–Origin and authenticity of message cannot be guaranteed.
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Public key

The encryption key ke and the decryption key kd are different.
Depends upon the existence of so-called one-way functions, or
mathematical functions that are easy to compute whereas their
inverse function is very difficult to compute without the key.

The algorithm to encrypt is public, while the keys are secret. Up to
1976 to know how to encipher and decipher were regarded as
equivalent. Is it in this year when Diffie-Hellman invented public
key cryptography.

It is based on the use of a trapdoor function. A biyective function
f : P → P easy to compute, but very hard to find f −1 in any
single value, unless an additional information is provided, the
deciphering key Kd , which is kept secret.
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Public key

Authentication

One of the most important algorithms is digital signatures.

A can send, together with the message, compute fB(f −1
A (P))

In digital signatures it is often used hash functions. Changing the
person, content or the date of the message would change the hash
value.

Public key cryptosystems are often used to send the keys of a
symmetric scheme. This is called key exchange. In order to ensure
security, probabilistic cryptosystems are used: the same plaintext
has many different cipher text, depending on a random parameter.
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RSA

Idea: Inverting without the trapdoor function, allows to solve a
difficult mathematical problem.

RSA is based on the factorization
problem: given n = pq, a product of two large primes, find p and
q.

4294967297

= 22
5

+ 1

= 641× 6700417

Each user A selects two huge primes, pA and qA and computes
nA = pAqA. Then the user selects a random 1 < eA < ϕ(nA)
coprime to ϕ(nA)to be the public key and computes the inverse
e−1
A = dA (mod ϕ(nA)), which will be the private key. c = meA .
m = cdA

Suppose we know n = pq and m such that am ≡ 1 (mod n) for all
(a,m) = 1. Find the factorization of n.

Exercise: How to make the digital signature f −1
A fB when nA and

nB are different?
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