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Abstract

This paper is devoted to study the property of observability for
wave equations guaranteeing that the total energy of solutions may
be estimated by means of the energy concentrated on a subset of
the domain or of the boundary. We prove that this property fails
in three different situations. First, we consider the wave equation
with piecewise smooth coefficients when the observation is made in
the exterior boundary. We also present a wave equation with highly
oscillating Hölder continuous coefficients for which observability fails
from any open set that does not contain the origin. Finally, lack
of observability is proved for the constant coefficient wave equation
when the observation is made from an interior hypersurface. All the
counterexamples presented here are constructed using highly localized
solutions known as Gaussian Beams.
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1 Introduction

This paper is concerned with the analysis of the observability property for
solutions of wave equations. This property is usually formulated by means of
an observability inequality, in which the total energy of the solutions is
uniformly estimated by a partial measurement. Typically, this measurement
is the portion of energy localized in a subset of the domain or of its boundary.
This property of observability is relevant, in particular, in the context of
control problems (see e.g. J.L. Lions [15]).

It is well known that the failure of the observability property for the
wave equation is closely related to the existence of solutions whose energy
is localized near certain curves (t, x (t)) in space-time. These curves, the so
called rays, are, in the interior of Ω, the domain of definition of the equation,
solutions of a Hamiltonian system of ordinary differential equations which
involves the coefficients of the operator (see definition 10). When one of
these trajectories hits the boundary ∂Ω it is reflected according to the law of
geometric optics. Given a ray (t, x (t)) it is possible to construct a sequence of
solutions (uk)k∈N of the wave equation such that the amount of their energy
outside a ball of radius k−1/4 centered at x (t) is of the order of k−1/2. These
solutions, called gaussian beams, are well-known in Optics but relatively
new to mathematicians; in the articles [1], [2] and [17] the reader may find an
extensive bibliography and comments on the historical development of this
construction.

The existence of these solutions gives sharp necessary conditions for the
observability property to hold. As it was remarked by J. Ralston in [17],
in order to observe these gaussian beam solutions, the observation set must
intersect every ray. If this were not the case, one could construct a gaus-
sian beam along a ray that would not hit the observation set; and clearly
this solution could not be observed, since it would be negligible outside an
arbitrarily small neighborhood of the ray. Later on, C. Bardos, G. Lebeau
and J. Rauch proved in their 1992 paper [3] that this condition is “almost”
sufficient. The sharp sufficient condition in [3] requires every ray of geometric
optics to intersect the control region in a non-diffractive point. Finally, N.
Burq and P. Gérard proved in [5], by means of semiclassical defect measures,
that this condition is indeed necessary.

In this paper, using the gaussian beam construction in [17], we prove
the failure of the observability property for the wave equation in three new
situations:

a) A transmission problem for which the construction in [17] can be
adapted to show the existence of solutions trapped in the inner domain and,
thus, contradicting any observability inequality that involves only measure-
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ments made in the outer domain. This requires a suitable monotonicity
assumption on the jump of the coefficients.

b) A wave equation with Hölder continuous coefficients for which we
show the existence of solutions as localized as one wants near a fixed non-
propagating point. The observability property, in this case, fails if the region
where we make the observations does not contain this point.

c) An observability inequality for the constant coefficient wave equation
involving a measurement made on a hypersurface contained in the interior of
the domain. We present examples for which observability fails, even though
every ray intersects the observation hypersurface.

Let us stress that all issues presented here involve the scalar wave equa-
tion; observability failure for systems of wave equations also has been studied,
in the context of the Lamé system, in [14] and [6]. In these papers it is shown
that, besides of the different phenomena that appear in the scalar case, in the
vector case it is important to take polarization into account, that is, the
fact that the energy of the system may be not only concentrated microlocally
but on some preferred component of the solution.

The plan of the present article is as follows: we first recall, in Section
2, the construction of gaussian beams in [17]. The main results in [17] are
collected and summarized in Theorem 1; this requires smoothness in the
coefficients of the equation. That is also necessary for the rays to be well
defined, as they are locally solutions of system (1) which involves the first
derivatives of the coefficients in the principal symbol of the wave operator

However, as we shall prove in Section 3, this construction can be gener-
alized to the case of piecewise smooth coefficients. We consider a system of
two wave equations with propagation speeds a, b ∈ C∞ defined respectively
in an inner domain Ωi and an outer domain Ωo. The equations are cou-
pled at the interface ∂Ωi by transmission conditions, see system (18), (19),
(20). In Theorem 15 we construct gaussian beam solutions for this prob-
lem. In fact, we prove that a gaussian beam defined a priori in Ωi can be
extended to a gaussian beam for the transmission problem: when the beam
hits the interface ∂Ωi, a refracted and a reflected component appear. The
most noticeable property is that the refracted component (the one lying in
Ωo) can be arbitrarily small when the propagation speeds satisfy the relation
|sin (incidence angle)| > a/b at the incidence point. Thus, total reflection
occurs. Similar results were obtained by Hagedorn and Weiss [11] construct-
ing coherent states, and, more recently, by L. Miller in [16], where he analyzes
the propagation of semiclassical defect measures associated to solutions of a
transmission problem.

In Section 4, we exploit the total reflection phenomenon to prove that
the observability property for the transmission problem fails when the ob-
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servation in made on Ωo, provided the coefficients satisfy the monotonicity
relation a < b near the interface and the inner region Ωi is strictly convex.
We state the corresponding non-controllability result which complements the
positive ones already known for the case a > b (see, for instance, [13] and
[15]).

In Section 5 we analyze the observability property for wave equations
whose coefficients are Hölder continuous yet non smooth. It is known that for
the 1−d wave equation, observability holds if the coefficients are of bounded
variation, and recently, C. Castro and E. Zuazua [7], proved the lack of
observability for highly oscillating Hölder continuous coefficients, which are
smooth outside an hypersurface. Here we prove a result in the same vein,
showing the existence of a function c ∈ C0,α

(
Rd
)

for all α ∈ (0, 1) such that
the observability property for solutions of ∂2

t u−div(c∇xu) = 0 fails when the
observation is made in a set that does not contain the origin. The coefficient c
is, in fact, smooth outside the origin x = 0 and the wave operator associated
to it has the property of having periodic rays of arbitrary small radius around
the origin. It is then possible to construct gaussian beams concentrated along
any of those periodic orbits. This contradicts any observability result made
from any open set that does not contain the point x = 0.

Finally, in Section 6 we discuss the observability property for the constant
coefficient wave equation when the observation is made from a hypersurface.
This problem arises in the context of strong stabilization of a singularly
damped wave equation studied in [10]. By means of gaussian beams we
present several geometric situations in which the observability property fails.
It is also worth to stress that, in this case, the lack of observability is not due
to the existence of rays that do not intersect the region of observation, but
rather to the fact that the measurement is too weak to provide an estimate of
the whole energy of the solution. This is, indeed, a multidimensional version
of a well-known result in the context of pointwise observability of the wave
equation. We refer to [9] for the analysis of similar issues arising in the
boundary observation of networks of strings.

Let us conclude this introduction by comparing the microlocal approach
to observability inequalities and the gaussian beam constructions. Necessary
and sufficient conditions for establishing the observability property for wave
equations have been successfully obtained by means of semiclassical defect
measures (also called Wigner measures). Besides the above quoted paper
[5], the sharp necessary condition of Bardos, Lebeau and Rauch was proved
by N. Burq [4], using the semiclassical defect measure technique, for C2

coefficients and C3 boundary. The gaussian beam Ansatz does not apply
to the construction of solutions localized along gliding or grazing rays. On
the other hand, semiclassical measures do not seem to be easily applicable
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to treat observability inequalities for which the measured quantities are of
different orders, as, for instance, the observability problem in Section 6. In
fact, a lot remains be done in order to completely understand this kind of
problems.

2 Preliminaries on gaussian beams

In this section we shall recall the construction of gaussian beams for the wave
equation with C∞ coefficients. The contents of this section are inspired in
the approach given in [17]; the reader may consult [2] and the references
therein for a slightly different viewpoint.

Let us consider the wave operator

� := ∂2
t −

d∑
i,j=1

∂xi

(
gij∂xj

·
)
,

where g = (gij) is a d × d matrix with C∞ bounded coefficients which we
shall assume to be uniformly elliptic. The symbol of � is ξT · g (x) · ξ − τ 2;
in what follows, we shall denote H (x, ξ) := ξT · g (x) · ξ. Recall that a null
bicharacteristic of � is a solution of the system

ṫ (s) = −2τ (s) ,
ẋ (s) = ∂ξH (x (s) , ξ (s)) ,
τ̇ (s) = 0,

ξ̇ (s) = −∂xH (x (s) , ξ (s)) ,

H (x (0) , ξ (0)) = τ (0)2 .

(1)

If t (0) = t0, x (0) = x0, τ (0) = τ0, ξ (0) = ξ0 are such that H (x0, ξ0) = τ0
then, since system (1) is Hamiltonian, we have H (x (s) , ξ (s)) = τ (s)2 for
all s ∈ R. In the sequel we shall always take τ = −1/2. This implies that
t (s) = s+ t0 and (x (t) , ξ (t)) still satisfy (1) and, since H is homogeneous in
ξ, this will not be a restriction. A ray for the operator � will be a curve x (t)
that solves (1) with H (x (t) , ξ (t)) = 1/4. It can be proved (see, for instance,
[18], Chapter 1, section 11) that x (t) is a geodesic for the Riemannian metric
defined by g−1.

Given a ray x (t), we shall describe the construction of approximate so-
lutions of the equation

�u = 0 on (0, T )× Rd (2)

with energy

Eg (u (t, ·)) =
1

2

∫
Rd

|∂tu (t, x)|2 +H (x,∇xu (t, x)) dx,
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concentrated on x (t) for every t ∈ (0, T ). This construction is by now well-
known and can be found, for instance, in [17] and [2].

These solutions will have the structure:

uk (t, x) := kd/4−1a (t, x) eikψ(t,x), (3)

with a phase function ψ of the form
ψ (t, x) = ξ (t) · (x− x (t)) +

1

2
(x− x (t))T ·M (t) · (x− x (t)) ,

where M (t) is a d× d complex symmetric matrix with
positive definite imaginary part.

(4)

Observe that

|uk (t, x)|2 = kd/2−2 |a (t, x)|2 e−k(x−x(t))
T ·ImM(t)·(x−x(t));

so ImM (t) > 0 implies that |uk| is essentially a gaussian profile translated
along x (t).

The main result that we recall in this section establishes the existence
of functions of the form (3), (4) that are approximate solutions of the wave
equation (2):

Theorem 1 ([17]) Let x (t) be a ray for �. Then there exist a, ψ ∈ C∞ (Rt × Rd
x

)
with ψ of the form (4) such that the functions uk defined by (3) satisfy for
any T > 0:

• the uk are approximate solutions of the wave equation:

sup
t∈(0,T )

‖�uk (t, ·)‖L2(Rd
x) ≤ Ck−1/2, (5)

• the energy of uk is bounded with respect to k: more precisely, for
t ∈ (0, T ),

lim
k→∞

Eg (uk (t, ·)) =
πd/2 |a (t, x(t))|2

4
√

det (Im∇2
xψ (t, x (t)))

, (6)

• the energy of the uk is exponentially small off x (t):

sup
t∈(0,T )

∫
Rd\Bk(t)

|∂tuk (t, x)|2 +H (x,∇xuk (t, x)) dx ≤ Ce−β
√
k. (7)

Here Bk (t) denotes the ball centered at x (t) of radius k−1/4 and C, β are
positive constants that depend on T but not on k. Moreover, the functions a,
ψ can be constructed to satisfy a (t0, x0) = a0, M (t0) = M0 for any t0, a0 ∈ R
and any d×d complex symmetric matrix M0 with positive definite imaginary
part.
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We shall not give a complete proof of this theorem, that may be found in
[17]; we are just going to highlight the ingredients of the construction that
we shall need in the sequel.

First of all, we shall need a technical lemma whose proof is straightfor-
ward:

Lemma 2 Let b ∈ L∞
(
Rd
x

)
be a function satisfying |x− x0|−α b (x) ∈ L∞

(
Rd
x

)
for some x0 ∈ Rd and some α ≥ 0, and let A be a symmetric, positive definite,
real d× d matrix. Then∫

Rd

∣∣∣b (x) e−kx
T ·A·x

∣∣∣2 dx ≤ Ck−d/2−α

for some C > 0 that does not depend on k.

Proof of Theorem 1. Let uk be of the form (3). Then one readily sees
that

�uk = kd/4−1eikψ�a+

+ kd/4eikψi
(
a�ψ + 2∂ta∂tψ − 2∇xa

T · g · ∇xψ
)
+

+ k1+d/4eikψ
(
∇xψ

T · g · ∇xψ − (∂tψ)2) a.
Let us write the above expression as

�uk =: kd/4−1eikψr0 + kd/4eikψr1 + k1+d/4eikψr2.

We are going to construct a and ψ in such a way that the terms of higher
order in k, namely r2 and r1, vanish on x (t) up to order 2 and 0 respectively
on x (t). If so, then, by Lemma 2 (with α = 3 for r2 and α = 1 for r1), we
have

‖�uk (t, ·)‖2
L2(Rd

x)
≤ C

(
k−2 + k−1 + k−1

)
≤ Ck−1,

with a constant C uniform in t ∈ (0, T ).
1. Analysis of the r2 term: We want to construct ψ such that

∂αx r2 (t, x (t)) = 0 for all t ∈ R and all α ∈ Nd with |α| ≤ 2; this is equivalent
to solving the eikonal equation

H (x,∇xψ (t, x))− (∂tψ (t, x))2 = 0 (8)

up to order 2 on (t, x (t)). Next we prove that this can be done if ψ is of
the form (4) for a suitable M (t), that can be chosen to satisfy ImM (t) > 0.
Denote R (t, x) := H (x,∇xψ (t, x))−(∂tψ (t, x))2; since ∇xψ (t, x (t)) = ξ (t),
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∂tψ (t, x (t)) = −1/2 and (x (t) , ξ (t)) solves (1), we have R (t, x (t)) = 0. An
easy computation shows

∇xR (t, x) = ∂xH (x,∇xψ (t, x)) + ∂ξH (x,∇xψ (t, x)) · ∇2
xψ (t, x)

−2∂tψ (t, x)∇x∂tψ (t, x) .
(9)

Taking into account that
∇2
xψ (t, x (t)) = M (t) ,

∇x∂tψ (t, x (t)) = ξ̇ (t)−M (t) · ẋ (t) ,

∂2
t ψ (t, x (t)) = −ξ̇ (t) · ẋ (t)− ẋ (t)T ·M (t) · ẋ (t) ,

(10)

we find, ∇xR (t, x (t)) = 0. Finally, the equation ∇2
xR (t, x (t)) = 0 results in

a nonlinear ODE for M (t):

d

dt
M (t) +M (t)C (t)M (t) +B (t)M (t) +M (t)B (t)T + A (t) = 0, (11)

where C (t), B (t) and A (t) are d×d matrices whose coefficients only depend
on the first and second derivatives of H evaluated along (x (t) , ξ (t)). This
is a Riccati equation and it can be shown ([2],[17]) that, given a symmetric
d× d matrix M0 with ImM0 > 0, there exist a global solution M (t) of (11)
that satisfies M (t0) = M0, M (t) = M (t)T and ImM (t) > 0 for all t ∈ R.
This completes the construction of ψ.

2. Analysis of the r1 term: Now we construct a that makes r1 vanish
on (t, x (t)). Substituting the values of ∂tψ, ∇xψ in r1 and evaluating in
(t, x (t)), we obtain the following equation for a (t, x (t)):

d

dt
a (t, x (t)) = a (t, x (t)) �ψ (t, x (t)) .

This linear ODE determines a (t, x (t)) uniquely from a (t0, x (t0)).
3. Proof of the energy formula (6): First of all, observe that

Eg (uk (t, ·)) =
kd/2

2

∫
Rd

|a|2
(
∂tψ

2 +∇xψ
T · g · ∇xψ

)
e−2k Imψdx

+Rk (t) ,

where supt∈(0,T ) |Rk (t)| → 0 when k →∞. By construction we have ∇xψ
T ·

g ·∇xψ = ∂tψ
2 = 1/4, and formula (6) follows by a straightforward evaluation

of the resulting gaussian integral.
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4. Proof of the energy concentration estimate (7): We have

1

2

∫
Rd\Bk(t)

|∂tuk|2 +H (x,∇xu (t, x)) dx ≤ Ckd/2
∫

Rd\Bk(t)

e−2k Imψ(t,x)dx

≤ C

∫
Rd\B(0;k1/4)

e−2xT ·M(t)·xdx

≤ Ce−β
√
k

∫
Rd

e−x
T ·M(t)·xdx.

with β = inf {Imψ (t, x) : t ∈ (0, T ) , |x− x (t)| = 1} > 0 and C > 0 depend-
ing on the L∞ norm of a, ψ and their gradients.

At this point, it is convenient to introduce some terminology:

Definition 3 A sequence of functions of the form (3), (4) constructed as in
Theorem 1 will be called a gaussian beam along the ray x (t).

Remark 4 As a consequence of formulae (10), the quadratic form Im∇2
t,xψ (t, x (t))

is positive when restricted to {0}×Rd
x and null when evaluated along the vector

(1, ẋ (t)). It then follows by elementary linear algebra that Im∇2
t,xψ (t, x (t))

is positive in any complement of the space spanned by (1, ẋ (t)).

Remark 5 The above construction applies almost identically to the wave
operator ρ (x) ∂2

t −
∑
∂xi

(
gij∂xj

·
)

when ρ ∈ C∞ (Rd
x

)
is bounded from above

and below by positive constants.

Remark 6 Let θ ∈ C∞
c

(
Rt × Rd

x

)
be identically equal to one in a neighbor-

hood of the ray {(t, x (t) : t ∈ R)}. Then the functions θuk also satisfy (5),
(6), (7).

Remark 7 As shown in [17], it is possible to find correcting terms ψ̃, a1,..,aN
and a cut-off function θ as in the preceding Remark such that the functions

uk = θkd/4−1

(
a+

N∑
j=1

ajk
−j

)
eik(ψ+ψ̃)

still satisfy the conclusions of Theorem 1 and moreover, for 0 ≤ s ≤ N ,

sup
t∈(0,T )

‖�uk (t, ·)‖Hs(Rd
x) ≤ Cks−N−1/2.



10

The construction of Theorem 1 can be adapted to obtain highly localized
solutions of the Dirichlet problem

�u = 0 in (0, T )× Ω,
u = 0 in (0, T )× ∂Ω,
u|t=0 = u0, ∂tu|t=0 = u1.

(12)

Obviously, if Ω is bounded there may exist rays that exit Ω in finite time;
so for an arbitrary T > 0 a gaussian beam will not satisfy in general the
Dirichlet boundary condition. In order to overcome this difficulty, one has to
superpose two gaussian beams, one reflected of the other at the boundary.

In what follows, Ω will be a domain of Rd with smooth boundary and ν
will be a field of unit normal vectors of ∂Ω (with respect to the metric g−1)
pointing in the inwards direction. We shall work in a system of geodesic
normal coordinates (see, for example, C.5 of [12]): for (y, s) ∈ ∂Ω× [0, ε)
let γ (y, s) denote the geodesic of g−1 defined by γ (y, 0) = y and γ̇ (y, 0) =
ν (y). For ε > 0 small enough, the mapping (y, s) 7−→ γ (y, s) defines a
system of local coordinates. The change of variables formula for the principal
symbol of a differential operator asserts that the laplacian ∆g in geodesic

normal coordinates has principal symbolH
(
γ (y, s) , (dγ−1)

T
γ(y,s) (η, σ)

)
; here

we have denoted by (η, σ) the dual variables of (y, s) in the principal symbol;
they are related to the “old” variable ξ by (η, σ) = ξT · dγ(y,s). Observe

that (dγ−1)
T
γ(y,s) (0, σ) is normal to γ (∂Ω× {s}) at γ (y, s) (for the euclidean

metric) and (dγ−1)
T
γ(y,s) (η, 0) is tangent (indeed, (dγ−1)

T
γ(y,0) (η, 0) = η). A

simple computation shows that

H
(
γ (y, s) ,

(
dγ−1

)T
γ(y,s)

(η, σ)
)

= σ2 + r (y, s, η) ,

where r (y, s, η) is a polynomial of second order in η and r (y, 0, η) = H (y, η).
Now, let (x− (t) , ξ− (t)) be a ray with x− (0) ∈ Ω, y0 := x− (t0) ∈ ∂Ω for

some t0 > 0 and x− (t) ∈ Ω for t ∈ (0, t0); suppose that ξ− (t0) is (η0, σ0) when
written in geodesic normal coordinates. Let u−k be a gaussian beam along
x− (t). The next result (also to be found in [17]) describes the construction of
a reflected gaussian beam u+

k which, superposed to u−k , achieves the Dirichlet
boundary condition on Rt × ∂Ω:

Proposition 8 Let (x− (t) , ξ− (t)) and u−k be as above, y0 := x− (t0) ∈ ∂Ω.
Moreover, suppose that ξ− (t0) is transversal to ∂Ω at y0 (i.e. σ0 6= 0). Then
there exists a gaussian beam u+

k , constructed along the ray (x+ (t) , ξ+ (t))
given by

x+ (t0) = y0, ξ
+ (t0) = (η0,−σ0) , (13)
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which satisfies ∥∥u−k + u+
k

∥∥
H1((0,T )×∂Ω)

≤ Ck−1/2 (14)

whenever T > 0 is small enough to ensure that x+ (t) remains in Ω if t ∈
(t0, T ).

Proof. In order to use Theorem 1 to construct the beam u+
k = kd/4−1a+eikψ

+

we must specify the values of a+, ∇xψ
+ and ∇2

xψ
+ at (t0, y0).

First of all, we impose that the derivatives of ψ+ involving the tangential
and time directions equal those of ψ− at (t0, y0); of course, we have written
u−k = kd/4−1a−eikψ

−
. This results in ∇yψ

+ (t0, y0, 0) = ∇yψ
− (t0, y0, 0) = η0,

∇2
yψ

+ (t0, y0, 0) = ∇2
yψ

− (t0, y0, 0) (ψ± (t, y, s) denotes the expression of ψ± in
geodesic normal coordinates). It only remains to define ∂sψ

+, ∂2
sψ

+, ∇y∂sψ
+

at the point (t0, y0). This will be done by solving the eikonal equation

(∂sψ)2 + r (y, s,∇yψ)− (∂tψ)2 = 0. (15)

If ∇yψ
+ (t0, y0, 0) = (η0, σ

+) then we obtain σ+ = ±
√

1/4− η0 = ± |σ0|; the
only admissible choice, which ensures that ∇yψ

+ (t0, y0, 0) points inside Ω, is
σ+ = −σ0.

The second order derivatives are found by requiring that equation (15)
is satisfied at first order in (t0, y0); at this point it is essential that σ0 6= 0.
Observe that, by Remark 4, we still have that Im∇2

xψ
+ (t0, y0, 0) is positive

definite.
Finally, we define a+ (t0, y0, 0) := −a− (t0, y0, 0). Then, when restricted

to Rt × ∂Ω we have

u−k + u+
k = kd/4−1

(
a− + a+

)
e−ikψ

±
,

and (14) follows by lemma 2, since (a− + a+) (t0, y0, 0) vanishes, Im∇2
t,yψ

+ (t0, y0, 0)
is positive definite and, at (t0, y0, 0),∣∣∇t,yu

−
k +∇t,yu

+
k

∣∣2 ≤ kd/2C
(
k−2

∣∣∇t,ya
− +∇t,ya

+
∣∣2 + 2

∣∣(a− + a+
)
∇t,yψ

±∣∣2) e−2k Imψ.

Remark 9 Property (13) can be restated as

ẋ+ (t0) = ẋ− (t0)− 2
(
ẋ− (t0) · g−1 (y0) · ν (y0)

)
ν (y0) . (16)

This means that x+ (t) is obtained from x− (t) by reflection with respect to ν
(in the metric g−1), see Figure 1. When the metric g−1 is conformal to the
euclidean metric (i.e. g is a multiple of the identity matrix), equation (16)
results in the well-known geometric optics law.
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Now we recall the notion of generalized ray, which is a particular case of
definition 24.2.2 in [12]:

Definition 10 Let I be a bounded interval; a curve x : I → Ω̄ will be called
a generalized ray for � in Ω if there exists a finite set B ⊂ I and a curve
ξ (t) : I → Rd such that:

i) (x (t) , ξ (t)) solve (1) for t ∈ I \B.
ii) For t ∈ B, x (t) ∈ ∂Ω and ξ± (t) := lim s→t±ξ (s) satisfy (13) and

ξ± (t) is transversal to ∂Ω at x (t).

It is now clear that, given a generalized ray x (t) such that B = {t1, ..., tN}
is finite, it is possible to construct functions uik, i = 0, ..., N , such that uik is
a gaussian beam along the ray x (t) with t ∈ (ti, ti+1) (we have set t0 = inf I
and tN+1 = sup I) and ∥∥∥∥∥

N∑
i=0

uik

∥∥∥∥∥
H1(I×∂Ω)

≤ Ck−1.

We shall call the function
∑N

i=0 u
i
k a gaussian beam along the generalized

ray x (t); we shall denote a (t, x (t)) the function defined as the amplitude of
the gaussian beam uik (evaluated at (t, x (t))) when t ∈ (ti, ti+1); M (t) will
have an analogous meaning.

We now deduce the following properties for the exact solutions of the
Dirichlet problem for the wave equation (2) whose initial data are those of a
gaussian beam:

Corollary 11 Let x (t) be a generalized ray in Ω defined on (0, T ) and χ ∈
C∞
c (Ω) with χ ≡ 1 in a neighborhood of x (0). Suppose uk is a gaussian beam

constructed along x (t) and wk be the solutions of the Cauchy problem:
�wk = 0 in (0, T )× Ω,
wk|(0,T )×∂Ω = 0,
wk|t=0 = χuk|t=0, ∂twk|t=0 = χ∂tuk|t=0.

Then we have:

i) lim
k→∞

Eg (1Ωwk (t, ·)) =
πd/2

4
|a (t, x(t))|2 |det (ImM (t))|−1/2 for t ∈ (0, T )\

B,

ii) sup
t∈(0,T )

∫
Ω\Bk(t)

|∂twk (t, x)|2 +H (x,∇xwk (t, x)) dx ≤ Ck−1/2.

Here Bk (t) is defined as in Theorem 1.
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Proof. Let θ (t, x) = χ (x− x (t) + x (0)) and denote fk := 1Ω� (θuk),
gk := θuk|(0,T )×∂Ω. Let vk be the solution of the problem

�vk = fk in (0, T )× Ω,
vk|(0,T )×∂Ω = gk,
vk|t=0 = 0, ∂tvk|t=0 = 0.

We recall the well-known estimate

sup
t∈(0,T )

Eg (vk (t, ·)) ≤ C
(
Eg(vk (0, ·)) + ‖fk‖L1(0,T ;L2(Rn)) + ‖gk‖H1((0,T )×∂Ω)

)
,

which in our case results in supt∈(0,T )Eg (vk (t, ·)) ≤ Ck−1/2. Since vk =
θuk − wk, this proves i).

To prove the part ii) it suffices to observe that

sup
t∈(0,T )

∫
Rd\Bk(t)

|∂twk (t, x)|2 +H (x,∇xwk (t, x)) dx

≤ C

[
sup
t∈(0,T )

∫
Rd\Bk(t)

|∂tuk (t, x)|2 +H (x,∇xuk (t, x)) dx+ sup
t∈(0,T )

Eg (vk (t, ·))

]
≤ C

(
e−β

√
k + k−1/2

)
.

Remark 12 By conservation of energy we have that lim
k→∞

E (wk (t, ·)) is con-

stant; thus |a (t, x(t))|2 /
√

det (ImM (t)) does not depend on t.

Remark 13 If we consider in Corollary 11 a gaussian beam uk corrected as
in Remark 7 one can show that ‖wk (t, ·)− uk (t, ·)‖Hs(Ω) → 0 for 0 ≤ s ≤ N .
This requires a straightforward modification of Proposition 8 as done in [17].

3 Gaussian beams for a transmission problem

In this section we shall generalize the construction of gaussian beams to
a wave equation with coefficients having jump discontinuities. Let Ω be a
domain of Rd with smooth boundary and consider the problem

�cu (t, x) = 0 in (0, T )×Ω,
u(t, x) = 0 on (0, T )× ∂Ω,
u (0, x) = u0(x), ∂tu (0, x) = u1(x);

(17)



14

where c is a piecewise smooth positive function of the form

c(x) =

{
a (x)2 if x ∈ Ωi,

b (x)2 if x ∈ Ω \ Ωi,

with a, b ∈ C∞ (Rd
)

bounded from below by a positive constant. We have
denoted by �c the wave operator ∂2

t − div (c (x)∇x·).
We shall assume that Ωi is a subdomain of Ω with smooth boundary and

Ωi ⊂ Ω. We shall refer to Ωi and Ωo := Ω \ Ωi as the inner and outer
regions respectively, and to ∂Ωi as the interface.

First of all, observe that rays are no longer well-defined. To have an
insight of what curves should be their natural substitutes we look at the
following equivalent formulation of our wave equation: every solution u of
problem (17) can be written as u (t, ·) = v (t, ·)1Ωi

+w (t, ·)1Ωo where (v, w)
are solutions of the system:{

�a2v = 0 in (0, T )×Ωi,
v (0, ·) = u0|Ωi

, ∂tv (0, ·) = u1|Ωi
,

(18)


�b2w = 0 in (0, T )×Ωo,
w = 0 on (0, T )× ∂Ω,
w (0, ·) = u0|Ωo , ∂tw (0, ·) = u1|Ωo ;

(19)

coupled at the interface by transmission conditions:

v = w, a2∂νv = b2∂νw on (0, T )×∂Ωi. (20)

From now on, ν will denote a field of normal unit vectors of ∂Ωi pointing
towards Ωo.

The techniques developed in section 2 allow us to construct gaussian beam
solutions to equations (18) and (19). We now describe how these solutions
can be assembled in order to satisfy the transmission conditions (20).

Let (x (t) , ξ (t)) be a ray for (18). We shall restrict to a certain class of
rays:

Assumption T: x (0) ∈ Ωi and at a time t0, ξ0 := ξ (t0) hits the interface
∂Ωi transversely at y0 := x (t0); moreover, for t < t0, x (t) ∈ Ωi.

Let v−k = kd/4−1A−eikψ
−

be a gaussian beam constructed along x (t). In
Theorem 15 below, we prove that there exist gaussian beams v+

k = kd/4−1A+eikψ
+
,

and wk = kd/4−1Beikϕ, defined for the operators �a2 and �b2 respectively,
such that the pair

(
v−k + v+

k , wk
)

satisfies approximately (20).
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The gaussian beam v+
k is constructed along the ray (x+ (t) , ξ+ (t)) ob-

tained from x (t) by reflection at the interface ∂Ωi, that is

x+ (t0) = y0, ξ
+ (t0) = ξ0 −

cos θ

a (y0)
ν (y0) , (21)

where θ is the angle of ξ0 with respect to the normal ν (hence cos θ =
2a (y0) (ξ0 · ν (y0))).

The form of wk depends on θ; as we shall see below, if η0 := ∇xϕ (t0, y0)
(recall that ϕ is the phase of wk) then

the tangential components of ξ0 and η0 are equal,

η0 · ν (y0) =
1

2

√
1

b (y0)
2 −

sin2 θ

a (y0)
2 .

(22)

Thus, two different kind of phenomena may occur:
1. Refraction: this corresponds to the case |sin θ| < a (y0) /b (y0) (Fig-

ure 2). Then, η0 · ν (y0) is real and wk is a gaussian beam constructed along
the ray (y (t) , η (t)) in Ωo with y (t0) = y0, η (t0) = η0 and the angle φ of η0

with respect to the normal ν at y0 satisfies Snell’s law:

a (y0) |sinφ| = b (y0) |sin θ| .

2. Total reflection: this is the case if |sin θ| > a (y0) /b (y0) (Figure
3). Now, η0 · ν (y0) is purely imaginary and it makes no sense to speak
of the ray with η (t0) = η0. Indeed, wk degenerates in a function that is
exponentially small off ∂Ωi; we still make Ansatz (3) to construct wk, but
the phase function ϕ is no longer of the form (4). The next proposition
describes the construction in this case:

Proposition 14 Suppose (y, s) is a system of geodesic normal coordinates
in Ω near ∂Ω and � a general wave operator as described in section 2. Let
a, ψ ∈ C∞ (Rt × ∂Ω) and (t0, y0) ∈ Rt × ∂Ω having the following properties

Imψ (t0, y0) = 0, Im dψ(t0,y0) = 0,
r (y0, 0, η0)− τ 2

0 > 0,
Im∇2

(t,y)ψ (t0, y0) > 0.

Let σ0 = i
√
r (y0, 0, η0)− τ 2

0 . Then there exist a phase function ϕ and an
amplitude b with

ϕ|Rt×∂Ω = ψ at (t0, y0) up to order 2, b|Rt×∂Ω = a at (t0, y0)
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that satisfy:
• ψ is of the form

ϕ (t, y, s) = ψ (t, y) + iσ0s+O
(
|sy|+ |s|2 + |y|3

)
,

and, as a result,
∣∣kd/4−1beikϕ

∣∣ decays exponentially in the (positive) s direc-
tion.

• The functions kd/4−1beikϕ are approximate solutions of the wave equa-
tion: ∥∥� (kd/4−1beikϕ

)∥∥
L2((0,T )×Ω)

≤ Ck−1/2.

• The energy of kd/4−1beikϕ in the region s > 0 tends to zero as k tends
to infinity:

sup
t∈(0,T )

Eg
(
1s>0k

d/4−1b (t, ·) eikϕ(t,·)) ≤ Ck−1/2.

The proof of this result, very similar to that of Proposition 8, can be
found in [17].

Remark that total reflection is only possible if a (y0) < b (y0), while re-
fraction is always the case when a (y0) > b (y0). Since critical incidence
|sin θ| = a (y0) /b (y0) cannot be treated with our Ansatz we shall assume:

Assumption NC: The ray (x (t) , ξ (t)) does not hit the interface with
the critical angle, i.e. |sin θ| 6= a (y0) /b (y0).

We now can state the main result of this section:

Theorem 15 Let (x (t) , ξ (t)) be a ray such that assumptions T and NC
above hold. Let v−k = kd/4−1A−eikψ

−
be a gaussian beam along x (t). There

exist gaussian beams v+
k = kd/4−1A+eikψ

+
, wk = kd/4−1Beikϕ such that

A+ (t0, y0) =

(
a (y0)

2 ξ0 + b (y0)
2 η0

)
· ν (y0)(

a (y0)
2 ξ0 − b (y0)

2 η0

)
· ν (y0)

A− (t0, y0) ,

B (t0, y0) =
2a (y0)

2 ξ0 · ν (y0)(
a (y0)

2 ξ0 − b (y0)
2 η0

)
· ν (y0)

A− (t0, y0) ,

(23)

v+
k is a gaussian beam for �a2 constructed along the ray

(
x+ (t) , ξ (t)+) de-

fined by (21) and

• if |sin θ| < a (y0) /b (y0) then wk is a gaussian beam for �b2 propagating
along the ray (y (t) , η (t)) given by (22),
• if |sin θ| > a (y0) /b (y0) then wk is constructed as in Proposition 14 with
� = �b2.
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Here, T > 0 is small enough in order to guarantee that for t ∈ (0, T ),
x+ (t) and y (t) remain respectively in Ωi and Ωo. Moreover, setting vk :=
v−k + v+

k we have:{
‖vk − wk‖H1((0,T )×∂Ωi)

≤ Ck−1/2,

‖a2∂νvk − b2∂νwk‖L2((0,T )×∂Ωi)
≤ Ck−1/2.

(24)

Proof. We shall proceed in two steps:
1. Construction of ψ+ and ϕ: In order to apply Theorem 1 we must

determine the Taylor series of ψ+, ϕ at (t0, y0) up to order 2 and the values
A+ (t0, y0), B (t0, y0). We first impose the condition that the time and tan-
gential derivatives up to order 2 of ψ±, ϕ must be equal at (t0, y0); it remains
to determine the derivatives involving the normal component.

We begin with ∂νψ
+, ∂νϕ: since the phase functions must satisfy the

eikonal equations {
a2 (∇xψ

±)
2 − (∂tψ

±)
2

= 0,

b2 (∇xϕ)2 − (∂tϕ)2 = 0,

at the point (t0, y0) and the time derivatives must be equal, we have (∇xψ
+)

2
=

|ξ0|2, (∇xϕ)2 = (a/b)2 |ξ0|2. Taking into account that the tangential compo-
nents of the gradients are identical, we conclude (∂νψ

+)
2

= (ξ0 · ν (y0))
2 and

(∂νϕ)2 = (ξ0 · ν (y0))
2 + (a (y0)

2 /b (y0)
2 − 1) |ξ0|2. We make the following

choices:{
∂νψ

+ (t0, y0) = − (ξ0 · ν (y0)) ,

∂νϕ (t0, y0) =
√

(ξ0 · ν (y0))
2 + 1/4(1/b (y0)

2 − 1/a (y0)
2).

(25)

These are made in order to ensure that v+
k and wk propagate inside Ωi and

Ωo respectively. Remark that (25) is equivalent to ∇xψ
+ (t0, y0) = ξ+ (t0)

and ∇xϕ (t0, y0) = η0, where ξ+ (t0), η0 were defined in (21) and (22).
2. Construction of the amplitudes A+, B: we can now compute

the values of the amplitudes at (t0, y0). One easily obtains v±k (t0, y0) =
kd/4−1A± (t0, y0), wk = kd/4−1B (t0, y0) and for the normal derivatives{

∂νv
±
k (t0, y0) = kd/4−1 (∂νA

± (t0, y0) + ikA± (t0, y0) ∂νψ
± (t0, y0)) ,

∂νwk (t0, y0) = kd/4−1 (∂νB (t0, y0) + ikB (t0, y0) ∂νϕ (t0, y0)) .

If we want conditions (20) to be satisfied at first order we must have, at point
(t0, y0), {

A− + A+ = B,
a2 (A−∂νψ

− + A+∂νψ
+) = b2B∂νϕ.

(26)
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Substituting ∂νψ
±, ∂νϕ by their previously computed values and solving the

resulting system one obtains (23). Applying Lemma 2 as in the proof of
Proposition 8 and we get (24).

Finally, we complete the construction of v+
k by applying Proposition 8. If

|sin θ| < a (y0) /b (y0) the beam wk is also constructed using Proposition 8.
In the case |sin θ| > a (y0) /b (y0) the result follows by Proposition 14.

Remark 16 We could have considered as well the system{
a−2∂2

t v −∆v = 0 in (0, T )×Ωi,
v (0, ·) = u0|Ωi

, ∂tv (0, ·) = u1|Ωi
,

b−2∂2
tw −∆w = 0 in (0, T )×Ωo,

w = 0 on (0, T )× ∂Ω,
w (0, ·) = u0|Ωo , ∂tw (0, ·) = u1|Ωo ;

with transmission conditions

v = w, ∂νv = ∂νw on (0, T )×∂Ωi,

which correspond to viewing a−2 and b−2 as densities. The results of the
preceding theorem are still valid in this case, except for the values of the
transmitted and reflected amplitudes A+, B that can be easily computed by
considering the analog of system (26).

4 On the lack of observability and controlla-

bility for the transmission problem

Here we use the results of the preceding section to study the following ob-
servability problem:

Let ω ⊂ Ωo be a neighborhood of ∂Ω (i.e. ω = Ωo∩O with O neighborhood
of ∂Ω in Rd) and T > 0. Does there exist a constant C = C (T, ω) > 0 such
that

Ea2(1Ωi
v (0, ·)) + Eb2 (1Ω0w (0, ·)) ≤ C

∫ T

0

∫
ω

|∂tw (t, x)|2 dxdt (27)

holds for every finite energy solution (v, w) of (18), (19), (20)?

This problem is relevant in the context of controllability and stabilization
of wave equation (17), see, for example [13] and Chapter 6 of [15] for the
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problem of observability from the boundary. By means of the results of these
authors one can give (using, for example, the techniques in Chapter 7 of [15])
sufficient conditions on Ωo, ω and T for (27) to hold under the monotonicity
assumption a > b. In particular, (27) holds when ω is a neighborhood of ∂Ω
and T is large enough.

Here we shall concentrate in the case a < b. More precisely we shall
suppose that a is constant and equal to a0 > 0 in some neighborhood U ⊂ Ωi

of ∂Ωi and that a0 < b0 := inf∂Ωi
b.

As a consequence of Theorem 15 we are able to prove that there exist
solutions which are essentially trapped in Ωi, i.e. for which the component
w is negligible. More precisely we have the following result:

Theorem 17 Suppose that Ωi is strictly convex and that a, b are as above.
Then, given T > 0 there exist a sequence (vk, wk)k∈N of solutions of (18),
(19), (20) such that

Ea2(1Ωi
vk (0, ·)) + Eb2 (1Ω0wk (0, ·)) = 1 for all k ∈ N

and

lim
k→∞

∫ T

0

∫
Ωo

|∂twk (t, x)|2 = 0.

In particular, inequality (27) does not hold.

Proof. Suppose for the moment that a ≡ a0 in the whole of Ωi. Rays for
the operator �a2 are of the form (x (t) , ξ) where

x(t) = (t− t0) a
ξ

|ξ|
+ x0, ξ = constant, |ξ| = 1

2a
.

Thus, generalized rays are just segments reflected at the interface ∂Ωi fol-
lowing the law of geometric optics. Now, since we have assumed that Ωi is
strictly convex, there exists a generalized ray (x (t) , ξ (t)) for �a2 such that
at every point of incidence at the interface the angle θ between the corre-
sponding segment of the ray and the outer normal ν satisfies |sin θ| > a0/b0,
see Figure 4. Then, iterating the construction in Theorem 15 one obtains
functions v1

k, ..., v
N
k , w1

k, ..., w
N−1
k such that

∑N
i=1 v

i
k is a gaussian beam along

x (t) and, for i = 1, ..., N − 1, wik is constructed as in Proposition 14. The

pair (vk, wk) :=
(∑N

i=1 v
i
k,
∑N−1

i=1 wik

)
clearly satisfies the conclusions of the

Theorem, but the equation and the boundary-transmission conditions do not
hold exactly. Arguing in a similar way as we did in Corollary 11 we obtain
the result for the exact solution issued from the initial data corresponding to
(vk, wk).
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In the general case, i.e. a ≡ a0 in a neighborhood U ⊂ Ωi of ∂Ωi only,
the same argument is valid, since the existence of the generalized ray x (t)
that allows us to construct the trapped gaussian beam vk only depends on
the values of a near ∂Ωi.

Remark 18 The hypothesis of Ωi being strictly convex is made only to en-
sure that there exist a generalized ray in Ωi such that |sin θ| > a0/b0 holds
for every incidence angle θ of the ray on the interface ∂Ωi. Of course, there
are geometrical situations in which this property holds and Ωi is not convex.

Remark 19 The same argument can be used to prove that for any finite
time T > 0 it is impossible to find a constant C > 0 such that

Ea2(1Ωi
v (0, ·)) + Eb2 (1Ωow (0, ·)) ≤ C

∫ T

0

∫
∂Ω

|∂νw (t, x)|2 dxdt

holds for every solution of (18), (19), (20) (here we have denoted by ν the
outward unit normal field of ∂Ω).

Remark 20 A simple modification of the construction of section 3 in the
spirit of Remarks 7 and 13 proves that an inequality as (27) is still false even
if the H1 × L2-energy is replaced by the Hs+1 ×Hs-energy for any s < 0.

We conclude this section by stating the non-controllability result issued
from Theorem 17:

Theorem 21 Let Ωi, a and b be as in Theorem 17. Given T > 0, there
exists (u0, u1) ∈ L2 (Ω)×H−1 (Ω) such that the solution of

∂2
t u− c2∆xu = 1Ωof in (0, T )×Ω,
u = 0 on (0, T )× ∂Ω,
u (0, ·) = u0, ∂tu (0, ·) = u1,

(28)

satisfies (u (T ) , ∂tu (T )) 6= 0 whatever f ∈ L2 ((0, T )× Ωo) is.

Proof. The proof of this result from Theorem 17 is classical; we shall
only sketch the main ideas involved in it, see [15] for further details.

Suppose that system (28) were exactly controllable in time T from Ωo,
in other words, for every initial data u = (u0, u1) ∈ L2 (Ω) ×H−1 (Ω) there
existed a control function fu ∈ L2 ((0, T )× Ωo) such that the corresponding
solution u of (28) satisfied u (T ) = ∂tu (T ) = 0. In that case, the closed graph
theorem would ensure that the map that to an initial datum associates its
least norm control f , would be continuous. By duality, this is equivalent to
that fact that an inequality such as (27) holds, and this would contradict
Theorem 17.
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Remark 22 This result shows that, when Ωi is strictly convex and a, and
b are as above it is impossible to observe and control the solutions of the
transmission problem from the outer region. Of course these constructions
have local nature and therefore can be easily extended to the case where the
coefficients have jump discontinuities. along several hypersurfaces.

5 Localization of gaussian beams for oscillat-

ing coefficients

This section is devoted to proving the following result

Theorem 23 Let d ≥ 2. Then there exists a bounded, Hölder continuous
function c ∈ C0,α

(
Rd
)
, for all α ∈ (0, 1), such that c ∈ C∞ (Rd \ {0}

)
,

c (x) ≥ 1 for all x ∈ Rd and the following holds:
Let Ω ⊂ Rd be a smooth domain with 0 ∈ Ω and let ω ⊂ Ω be a neigh-

borhood of 0. For every T > 0, there exists a sequence (uk)k∈N of solutions
of {

∂2
t uk − div (c (x)∇xuk) = 0 in (0, T )× Ω,
uk = 0 in (0, T )× ∂Ω,

(29)

such that
lim
k→∞

Ec (1Ωuk (t, ·)) > 0 for all t ∈ (0, T )

and

lim
k→∞

∫ T

0

∫
Ω\ω

|∂tuk (t, x)|2 + c (x) |∇xuk (t, x)|2 dxdt = 0.

According to this result, it is possible to construct solutions of (29) as
concentrated near the origin as wanted. Notice that at the point x = 0
the solutions of (1) are not well-defined due to the low regularity of the
coefficient; the Theorem suggests that rays starting at x = 0 are stationary,
that is, propagate with zero velocity. This, as we have shown before, cannot
be the case when the coefficients are smooth enough, since solutions can only
concentrate near a point propagating along a ray.

In particular, this implies that given T > 0 and a neighborhood of the
origin ω ⊂ Ω it is impossible to find a constant C (T, ω) > 0 such that the
following observability inequality holds

Ec (1Ωu (0, ·)) ≤ C

∫ T

0

∫
Ω\ω

|∂tu|2 + c |∇xu|2 dxdt (30)
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for all finite energy solution u of (29). As an immediate consequence of this
result, one can show that the controllability property of system (29) may not
be achieved by means of controls with support in Ω \ ω.

We shall construct explicitly a function c having the following property:
for every j ∈ N there exists a ray for �c := ∂2

t − div (c (x)∇x·) contained
in the corona 2−j < |x| < 2−j+1, see Figure 5. If uk is gaussian beam
constructed along this ray then, as we know, the energy of uk outside the
ray tends to zero; taking j large enough, this contradicts any inequality like
(30).

A similar result has been recently obtained by C. Castro and E. Zuazua
[7]. They construct, for dimension d = 1, a C0,α function ρ, α ∈ (0, 1),
smooth outside a single point, such that the observability inequality (30)
fails. The result for d > 1 then follows by considering the tensor product
of this function which, necessarily, is singular in a hypersurface. Of course,
our construction is not valid for d = 1, but provides a function c which is
singular only at the origin.

The fact that allows us to carry out the proof is the following:

Lemma 24 Suppose κ (x) = |x|2 for ε < |x| < 2ε. Then the operator �κ

has a ray contained in the corona ε < |x| < 2ε.

Proof. The ray equations are{
ẋ = 2κ (x) ξ,

ξ̇ = − |ξ|2∇xκ (x) ,

with |ξ|2 κ (x) ≡ 1/4. From this one obtains

d

dt
(x · ξ) = |ξ|2 (2κ (x)− x · ∇xκ (x))

and
d

dt
|x|2 = 4κ (x) (x · ξ) .

Since |x|2 solves the equation 2κ (x) − x · ∇xκ (x) = 0 the result follows
choosing |x (0)| ∈ (ε, 2ε) and x (0) · ξ (0) = 0.

Now we proceed to construct the function c. Let Ij := [2−j, 2−j + δj] with

δj ∈ (0, 2−j−1) such that δβj 2
2j → 0 as j →∞ for every β ∈ (0, 1). We define

κ (r) =
∣∣2jr∣∣2 if r ∈ Ij

and extend κ to a C∞ ((0,∞)) function that satisfies 1 ≤ κ (r) ≤ 2 for all
r ∈ (0,∞) and

sup
r∈Ij

|κ′ (r)| = sup
r∈[2−j ,2−j+1]

|κ′ (r)| ;
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this last condition is required in order to ensure that the extension does not
produce “extra” oscillations, see Figure 6.

Now

|κ|C0,α(Ij)
= max

r,s∈Ij

22j |r2 − s2|
|r − s|α

= 22j max
r,s∈Ij

|r − s|1−α |r + s|

= 22jδ1−α
j 2

(
2−j + δj

)
,

and this is enough in order to prove that κ ∈ C0,α ([0,∞)). Define c (x) :=
κ (|x|). Then, with this highly oscillating coefficient c, the operator �c pos-
sesses gaussian beam solutions which are as localized as one wants near the
origin. This clearly contradicts any observability inequality from a subset of
Ω that does not contain the origin.

The reader should recall that the observability inequality (30) is true when
the coefficients are smooth, under a suitable geometric control condition. For
the one-dimensional wave equation, c ∈ BV suffices, see [8]; in the general
case, c ∈ C2 gives the inequality, as shown by N. Burq [4]. Notice that this
is the weakest regularity assumption for which rays are well defined. The
problem of giving sharp conditions for the inequality to hold for coefficients
c ∈ C1,α, α ∈ (0, 1] still remains open.

6 Observability of waves from a hypersurface

Consider the wave equation
∂2
t u−∆xu = 0 in (0, T )×Ω,
u = 0 on (0, T )× ∂Ω,
u (0, ·) = u0, ∂tu (0, ·) = u1,

(31)

where Ω is a smooth domain of Rd and ∆x is the euclidean laplacian. In this
section we shall be concerned with the following observability problem:

Given a smooth hypersurface M ⊂ Ω and a time T > 0, does there exist
a constant C = C (T,M) > 0 such that

E (1Ωu (0, ·)) ≤ C

∫ T

0

∫
M

|∂tu|2 dSdt (32)

holds for every finite energy solution u of (31) with
∫ T

0

∫
M
|∂tu|2 dSdt <∞?



24

This question was addressed in [10] in the context of the study of the
asymptotic behavior of the solutions of the following system:

∂2
t v −∆xv + ∂tvδM = 0 in (0,∞)×Ω,
v = 0 on (0,∞)× ∂Ω,
v (0, ·) = v0, ∂tv (0, ·) = v1,

(33)

where δM is the Dirac mass supported on M . In [10] it is shown that when-
ever M is not a nodal set for the Dirichlet laplacian in Ω (i.e. no linear
combination of eingenfunctions of the laplacian corresponding to the same
eigenvalue vanishes on M), the energy of any solution of (33) tends to zero
when t→∞. The observability inequality (32) is then necessary in order to
guarantee that the decay rate of solutions of (33) is uniform with respect to
the initial data. The proof of this is classical, but we include it for the sake
of completeness:

Proposition 25 Suppose that the solutions of (33) with initial data in H1
0 (Ω)×

L2 (Ω) decay uniformly to zero when t→∞. Then there exist C, T > 0 such
that (32) holds.

Proof. It is well known that uniform energy decay for the solutions for
(33) is equivalent to the existence of constants C, T > 0 such that

E (1Ωv (0, ·)) ≤ C

∫ T

0

∫
M

|∂tv|2 dSdt

holds for every finite-energy solution of (33). Now let (u0, u1) ∈ H1
0 (Ω) ×

L2 (Ω) and v and u be the respective solutions of (31) and (33) corresponding
to the initial data (u0, u1). We can write u = v + w where w solves

∂2
tw −∆xw + ∂twδM = ∂tuδM in (0,∞)×Ω,
w = 0 on (0,∞)× ∂Ω,
w (0, ·) = 0, ∂tw (0, ·) = 0.

(34)

Thus

E (1Ωu (0, ·)) ≤ C

∫ T

0

∫
M

|∂tv|2 dSdt

≤ 2C

[∫ T

0

∫
M

|∂tu|2 dSdt+

∫ T

0

∫
M

|∂tw|2 dSdt
]

;

however, taking the inner product in L2 ((0, T )× Ω) of (34) by ∂tu we get∫ T

0

∫
M

|∂tw|2 dSdt ≤
∫ T

0

∫
M

|∂tu|2 dSdt
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and this concludes the proof.
Here we shall use the techniques developed so far to give necessary con-

ditions on M for (32) to hold. The following result is stated in [10] in the
two-dimensional case, but it holds in any space dimension:

Proposition 26 Suppose Ω is strictly convex and the distance between M
and ∂Ω is strictly positive. Then (32) fails for every T > 0.

Proof. Let ε > 0 be smaller than the distance between M and ∂Ω.
Since Ω is strictly convex there exists a generalized ray γ contained in an ε-
neighborhood of ∂Ω. Take T > 0 and let (uk)k∈N be the gaussian beam along
γ with supt∈(0,T ) ‖�uk (t, ·)‖H1(Rd

x) → 0 (uk is of the form k1−d/4θeikψ (a0 + k−1a1),

see Remark 7). Clearly

lim
k→∞

∫ T

0

∫
M

|∂tuk|2 dSdt = 0,

since if ω ⊂ Ω is an open set that contains M and that does not intersect
γ, one has

∫ T
0

∫
M
|∂tuk|2 dSdt ≤

∫ T
0
‖∂tuk (t, ·)‖2

H1(ω) dt and this last quantity
tends to zero when k →∞. The conclusion is still valid for the exact solutions
by Remark 13. On the other hand, for t ∈ (0, T ), limk→∞E (1Ωuk (t, ·)) > 0;
this contradicts the existence of a constant C > 0, independent of u, for
which (32) holds.

Next we prove that if Ω possesses a diameter, (i.e. there exist points
p, q ∈ ∂Ω such that the segment pq is contained in Ω and is orthogonal to ∂Ω
at p and q) and the hypersurface M intersects this diameter orthogonally,
then the observability inequality (32) is false.

Theorem 27 Suppose that Ω has a diameter l. Let M be a smooth hy-
persurface such that M ∩ l = {m1, ..,mN} and M is orthogonal to l at
mi, i = 1, .., N . Moreover, suppose that dist (mi, ∂Ω) / |l| is rational for
i = 1, ..., N − 1. Then (32) fails for every T > 0.

Proof. We proceed in several steps:
Step 1: We first show how to produce gaussian beams u±k such that∫ T

0

∫
M

∣∣∂tu+
k + ∂tu

−
k

∣∣2 dSdt ≤ Ck−1 (35)

for some T > 0. This construction does not depend on the geometric prop-
erties of M . Take a point a point x0 ∈ M and a ray x− (t) such that
x− (t0) = x0 and x− (t) 6∈ M for t ∈ (0, t0). It is always possible to find
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a ray x+ (t) with x+ (t0) = x− (t0), x
+ (t) 6∈ M for t ∈ (0, t0) (see Figure

7) and to construct gaussian beams u±k along x± (t) in such a way that the
superposition u+

k + u−k satisfies (35); just argue as in Proposition 8. Then,
T is characterized by the condition that both x (t)± do not intersect again
M for t ∈ (t0, T ). Notice that, as in Proposition 26, we must require that
supt∈(0,T )

∥∥�u±k (t, ·)
∥∥
H1(Rd

x)
→ 0 in order to ensure that the exact solutions

satisfy (35).
Step 2: When Ω andM satisfy the hypotheses of the Theorem, the above

argument can be made global in time. First suppose that M ∩ l = {m}
and m is the midpoint of l; the geometric situation is that of Figure 8.
Choose as x− (t) a generalized ray lying in l (this is possible since l intersects
M orthogonally); then the ray x+ (t) constructed as in Step 1 also lies in
l. Since rays x± (t) always intersect M at point m and the amplitudes of
u± still cancel at m after every bounce at the boundary we can apply the
construction above to this case for every T > 0, see Figure 9.

Step 3: Now suppose that M ∩ l = {m1, ..,mN} and the distance to the
border ∂Ω of every mi is rational with respect to |l|: dist (mi, ∂Ω) / |l| = pi/q.
Then a similar construction can be achieved by superposing 2q beams, as in
shown in Figure 10. Fix a point r0 ∈ ∂Ω∩l and let rj, j = 1, ...q be the points
located at distance j |l| /q from r0. Using the construction of Step 2 one can
produce beams along rays contained in l, u0,−

k , uq,+k and uj,±k , j = 1, .., q − 1
such that (setting u0,+

k = uq,−k = 0) uj,±k propagates along the generalized ray
x±j (t), lying in l, pointing, at t = 0, towards rq, and satisfying x±j (0) = rj.
These beams also satisfy, for j = 0, ..., q:

lim
k→∞

∥∥uj,±k ∥∥H1((0,T )×Ω)
≤ C,

∥∥�uj,±k ∥∥H1((0,T )×Ω)
≤ Ck−1/2.

We set uqk :=
∑q

j=0 θ
j,±uj,±k where θj,± (t, x) are cut-off functions being equal

to 1 near x±j (t) and vanishing outside a 1/ (4q)-neighborhood of x±j (t) built

as follows: take χ ∈ C∞
c

(
Rd
)

such that χ|B(0;1/6) ≡ 1 and χ (x) = 0 if
|x| > 1/4; we define θj,± (t, x) := χ

(
q
(
x− x±j (t)

))
.

Then, if M is a smooth hypersurface that orthogonally intersects l at the
points rj, j = 1, ..., q − 1, we have∫ T

0

∫
M

|∂tuqk|
2 dSdt ≤ Cqk−1

and

‖uqk‖H1((0,T )×Ω) ≤ 2Cq (1 + qRk) , ‖�uqk‖H1((0,T )×Ω) ≤ 2Cq
(
k−1/2 + q2Rk

)
;
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the term Rk tends to zero as e−β
√
k. The terms qRk and q2Rk appear because

of the presence of the derivatives of the cut-off functions θj,± (t, x) in the
estimates above.

Step 4: Finally, for the case dist (mN , ∂Ω) / |l| =: s0 is irrational, we do
the following: take a sequence (µn)n∈N of points in l such that µn → m as
n→∞ and dist (µn, ∂Ω) / |l| = pn/qn. This points can be chosen to satisfy∣∣∣∣pnqn − s0

∣∣∣∣ ≤ 1

q2
n

.

Suppose dist (mi, ∂Ω) / |l| = pi/q for i = 1, .., N − 1. The construction of the
previous paragraph produces a sequence (uqnk )n,k∈N of solutions of the wave

equation such that E (1Ωu
qn
k (0, ·)) is bounded and∫ T

0

∫
Mn

|∂tuqnk |
2 dSdt ≤ Cqnk

−1,

for any T > 0, Mn being a hypersurface which is identical to M outside a
small neighborhood of mN and such that it intersects orthogonally l at the
point µn. Recall that uqnk is the superposition of 2qqn beams; in order to have
a bounded sequence, we consider vn := q−1

n uqnqn . By construction, we have∫ T

0

∫
Mn

|∂tvn|2 dSdt ≤ Cq−1
n

and
‖vn‖H1((0,T )×Ω) ≤ C, ‖�vn‖H1((0,T )×Ω) ≤ Cq−1/2

n .

To prove the result, it suffices to estimate ∂tvn near mN , so we place ourselves
in a system of geodesic normal coordinates Φ : U × (s0 − ε, s0 + ε) → Rd

such that Φ (U, s0) is a neighborhood of mN in M and Φ (U, pn/qn) is a
neighborhood of µn in Mn (see Section 2); we write this coordinates as (y, s) .
Then we have∣∣∣∣∫ T

0

∫
Φ(U,pn/qn)

|∂tvn|2 dSdt−
∫ T

0

∫
Φ(U,s0)

|∂tvn|2 dSdt
∣∣∣∣

=

∣∣∣∣∫ T

0

∫
U

|∂tvn (t, y, pn/qn)|2 dSdt−
∫ T

0

∫
U

|∂tvn (t, y, s0)|2 dSdt
∣∣∣∣ ≤

≤
∣∣∣∣pnqn − s0

∣∣∣∣ ‖∂s∂tvn (·, θn)‖L2((0,T )×U) ≤ q−2
n ‖∂s∂tvn (·, θn)‖L2((0,T )×U) ,

where θn lies between s0 and pn/qn.
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But now, for every ε > 0,

‖∂s∂tvn (·, θn)‖L2((0,T )×U) ≤ ‖vn‖H5/2+ε((0,T )×Ω) ;

using Lemma 2 and interpolation gives∥∥uqnqn∥∥H5/2+ε((0,T )×Ω)
≤ Cq5/2+ε

n ,

and thus
q−2
n ‖vn‖H5/2+ε((0,T )×Ω) ≤ Cq−1/2+ε

n .

Taking ε sufficiently small, the Theorem is proved.
According to this result, there are situations in which all rays intersect

the hypersurface M and the observability inequality (32) still fails. The
obtention of sharp necessary (or sufficient) conditions for (32) to hold is an
open problem. In particular, as far as we know, there are no examples in the
literature of domains Ω and hypersurfaces M for which (32) holds.

It is interesting to compare this result with its one-dimensional version
(see [10]): if Ω is an interval andM is a single point, the observability inequal-
ity (32) never holds. However, when the ratio between M and the length of
Ω is irrational, there are instances in which an observability inequality holds,
provided the energy E is replaced by a weaker one.
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Figure 1: x+ is obtained from x− by reflection.
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Figure 2: Refraction, |sin θ| > a/b.
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Figure 3: Total reflection, |sin θ| < a/b.
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Figure 4: The trapped ray.
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Figure 5: The rays associated to c.
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Figure 6: The function κ.
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Figure 7: The rays x± in the local case.
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Figure 8: The rays x± in the global case.
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Figure 9: ∂tu
+
k + ∂tu

−
k cancel on M for all t.
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Figure 10: Six beams are needed when dist(m, ∂Ω) / |l| = 1/3


