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Abstract. In this note we show how the convergence analysis of numerical algorithms
for the computation of internal controls for the wave equation depends on the Group
Velocity properties of the numerical scheme used to discretize the wave equation. This is
done by means of theory of Wigner measures associated to discrete functions developed
in [7]. Some results on the convergence of partial controls are also given.

1 An algorithm for the numerical computation of interior
controls for the wave equation

The interior control problem for the wave equation with periodic B.C. consists
in the following: given an open set ω ⊂ Q := (0, 1)d and a time T > 0 we would
like to know wether or not it is possible, for any pair of initial data (u0, u1) in
the energy space1 H1

per (Q) × L2
per (Q), to find a control F ∈ L2 ((0, T ) ×Q),

supported in (0, T ) × ω, such that the solution of the initial value problem{
ρ (x) ∂2

t u (t, x) −Δxu (t, x) = F (t, x) in Rt ×Q,

u|t=0 = u0, ∂tu|t=0 = u1, u (t, ·) is Q-periodic,
(1)

is brought to rest in time t = T , i.e. u|t=T = ∂tu|t=T = 0. If this is the case,
we say that the system (1) is exactly controllable in time T with controls
supported in ω. In all the results presented here, the density ρ (x) will be assumed
to be a strictly positive, Q-periodic, bounded, twice-differentiable function.

By means of J.-L. Lions’ Hilbert Uniqueness Method, H.U.M. (see e.g.
[6]), exact controllability (for T and ω) is shown to be equivalent to establishing
the following observability inequality for the homogeneous adjoint problem:
there exists CT,ω > 0 such that∫ T

0

∫
Q

ρ (x) |∂tϕ (t, x)|2 dxdt ≤ CT,ω

∫ T

0

∫
ω

ρ (x) |∂tϕ (t, x)|2 dxdt (2)

� Appeared in: Mathematical and numerical aspects of wave propagation WAVES 2003
(Jyväskylä, 2003). Springer-Verlag, Berlin, 2003, 195–200.

1 The subscript per accompanying a function space means we are dealing with its
variant consisting of periodic functions.
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holds for every solution of{
ρ (x) ∂2

t ϕ (t, x) −Δxϕ (t, x) = 0 in Rt ×Q,

ϕ|t=0 = ϕ0, ∂tϕ|t=0 = ϕ1, ϕ (t, ·) is Q-periodic,
(3)

with initial data in H1
per (Q) × L2

per (Q).
A necessary and sufficient condition on (T, ω) for (2) to hold (and hence, for

(1) to be exactly controllable) is known (see [12] and [1]):

Geometric Control Condition (G.C.C.): every ray x (t) must intersect
the control region ω in time less than T .

By a ray we intend the x-component of a solution of the ray equations:{
ẋ (t) = ρ (x (t))−1

ξ (t) / |ξ (t)| ,
ξ̇ (t) = 1/2ρ (x (t))−2 |ξ (t)|2 ∇xρ (x (t)) ,

(4)

The reason that the G.C.C. is necessary is closely related to the fact that, given
any ray x (t) it is possible to find a sequence of solutions of the wave equation
(sometimes called gaussian beams solutions) whose energy at time t concen-
trates around the point x (t).

We now bring our attention to the numerical computation of the control F
associated to a pair of initial data (u0, u1) in energy space. The simplest idea to
solve this problem consists in discretizing the initial data on a gridQh := Q∩hZd,
thus obtaining a couple of discrete functions

(
Uh

0 , U
h
1

)
, and then computing the

(finite-dimensional) control Fh with the properties that Fh
n = 0 if hn ∈ Qh \ ω

and Uh (T ) = ∂tU
h (T ) = 0, the function Uh (t) being the solution of the semi-

discretized wave equation:{
ρ (hn) ∂2

tU
h
n (t) − LhU

h
n (t) = Fh

n (t) in Rt ×Qh,

Uh (0) = Uh
0 , ∂tU

h (0) = Uh
1 , Uh (t) is Qh-periodic.

(5)

Here we have taken as Lh the usual finite-difference discretization of the Lapla-
cian:

LhU
h
n :=

1
h2

d∑
j=1

[
Uh

n+ej
+ Uh

n−ej
− 2Uh

n

]
,

the vectors e1,..., ed being those of the canonical basis of Zd. Now we must en-
sure that the discrete controls Fh converge2 to the continuous one F . Again,
an application of H.U.M. gives that the convergence of our algorithm is equiv-
alent to proving an uniform observability estimate: there exists CT,ω > 0
independent of h, such that∫ T

0

hd
∑

hn∈Qh

ρ (hn)
∣∣∂tΦ

h
n (t)

∣∣2 dt ≤ CT,ω

∫ T

0

hd
∑

hn∈ω

ρ (hn)
∣∣∂tΦ

h
n (t)

∣∣2 dt, (6)

2 in order to lighten the exposition, we are deliberately vague on this point. For more
details see [5] and [11]



The effect of Group Velocity in the numerical analysis of control problems 5

for every solution Φh of the semi-discrete wave equation:{
ρ (hn) ∂2

t Φ
h
n − LhΦ

h
n = 0 in Rt ×Qh,

Φh (0) = Φh
0 , ∂tΦ

h (0) = Φh
1 , Φh (t) is Qh-periodic.

(7)

2 A non-convergence result: Group Velocity and Wigner
Measures

Unfortunately, the algorithm we have just presented does not converge. In the
related case of boundary controllability this was numerically observed by R.
Glowinski and J.-L. Lions (see e.g. [4]). E. Zuazua proved rigorously that the
inequality analog to (6) in that context fails to hold for a constant-coefficient
wave equation (see. e.g. [13]). The purpose of this section is to prove this phe-
nomenon takes place in the case of interior control, variable coefficients and,
what is more important, to completely describe the convergence failure in terms
of Group Velocity. This will be done by means of the theory of Wigner measures
associated to discrete functions introduced in [7] (see also [10]).

Our main result states that the semi-discrete wave equation (7) possesses
solutions with energy concentrating along modified rays, which do not coincide
with the ones corresponding to the original continuous problem (4). These new
rays are given by the x-component of the solutions to⎧⎪⎨⎪⎩ ẋj (t) = ρ (x (t))−1 sin ξj (t) /

(
4

∑d
k=1 sin2 (ξk (t) /2)

)1/2

,

ξ̇j (t) = 2ρ (x (t))−2
∂xj

ρ (x (t))
∑d

k=1 sin2 (ξk (t) /2) .
(8)

The above discussion is made precise in the following:

Theorem 1. Given x0, ξ
0 ∈ Rd, ξ0 �= 0 there exists a sequence of solutions(

Φh
)
h>0

of the semi-discrete wave equation (7) of total energy equal to one and
such that its energy density concentrates near the points x (±t), the curve x (t)
being the (x-component) of the solution of (8) corresponding to the initial data(
x0, ξ

0
)
. More precisely:

lim
h→0

hd
∑

hn∈Qh

ρ (hn)
∣∣∂tΦ

h
n (t)

∣∣2 ψ (hn) =
1
2

[ψ (x (t)) + ψ (x (−t))] (9)

for every t ∈ R and ψ ∈ C∞
per (Q) .

By testing in (9) with functions ψ ∈ C∞
c (ω) we arrive to the following

necessary condition for the uniform observability estimate (6) to hold:

Every modified ray x (t) must intersect the control region ω in a time less than
T .
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This condition is of a completely different nature that the G.C.C.. Notice
that (9) has non-trivial stationary solutions

(
x0, ξ

0
)
, corresponding to critical

points of the density ∇xρ (x0) = 0 and frequencies ξ0 �= 0 with components of
the form ±π or 0. Formula (9) gives then for this rays the existence of sequences
of solutions to (7) with energy density concentrating along the fixed point x0,
i.e. for which Group Velocity vanishes.

This implies that, in general, inequality (6) fails to be true. In the constant-
coefficient case, due to the simple structure of the ray equations, it is possible
to prove that uniform observability fails unless ω = Qh up to a null measure set
(see [9]). Consequently, the numerical scheme for the computation of the control
F proposed in the preceding section does not converge.

The proof of this result is based on showing that the limits of the quadratic
quantities:

Mh
t (x, ξ) :=

hd

(2π)d

∑
m,n∈Zd

∂tΦh
m (t)∂tΦ

h
n (t) ei(m−n)·ξδhm (x) , for x, ξ ∈ Rd.

are Radon measures μt (the Wigner measure of ∂tΦ
h (t)) such that

lim
h→0

hd
∑

hn∈Qh

ρ (hn)
∣∣∂tΦ

h
n (t)

∣∣2 ψ (hn) =
∫

Q×[−π,π)d

ψ (x) dμt (x, ξ)

and then verifying that μt is determined from μ0 by transport along the modified
rays (8). This is indeed a property that holds for every sequence of solutions of
(7). Then it suffices to show the existence of a sequence such that its correspond-
ing μ0 is precisely δx0 ⊗ δξ0 , typically a gaussian wavepacket concentrating in
x0 and oscillating in the frequency ξ0 (see [8], [11]). For a general reference on
Wigner measures in the continous setting, see [3].

3 Uniform observability for filtered solutions

We finally show that (6) holds provided we restrict ourselves to solutions with
filtered high-frequencies. This is not surprising, since the propagation failure
results described above are of high-frequency nature. In terms of the convergence
of our algorithm this observability inequalities for filtered solutions express the
convergence of partial controls, i.e. that bring to rest only a finite number of
Fourier modes of the solutions (see [5]).

Similarly as done in [13] we consider the spaces

Jρ
γ :=

⎧⎪⎨⎪⎩Φh
n (t) =

∑
ωh

j
≤γ/σ(h)

[
eiωh

j tÛh
+ (j) + e−iωh

j tÛh− (j)
]
Eh

j,n

⎫⎪⎬⎪⎭ ;

where ωh
j and Eh

j are respectively the eigenfrequencies and eigenmodes of prob-
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lem (7), γ > 0 is the cut-off frequency parameter and σ is positive a function
tending to zero as h→ 0 such that h/σ (h) is bounded.

Two different type of results are obtained, depending on wether σ (h) = h
or h << σ (h): in the second regime we recover the geometric condition of the
continuous problem:

Theorem 2. If h << σ (h) then the uniform observability estimate (6) holds
for every solution in Jρ

γ (the cut-off parameter γ being arbitrary) if and only if
(T, ω) satisfy the Geometric Control Condition.

This is no longer true if σ (h) = h since, as we explained in the preceding
section, the energy propagates following the flow of the modified rays (8). How-
ever, the latter rays are close to the original ones (4) for ξ small (simply due to
the fact that sin ξ ∼ ξ for ξ << 1). This remark leads to the following result:

Theorem 3. There exists γ > 0 such that the uniform observability estimate
(6) holds in Jh

γ if (T, ω) satisfy the Geometric Control Condition.

In the proof of both results, the role of Wigner measures is fundamental (see
[7] and the proofs of similar results in the continuous setting, e.g. [2]).

Acknowledgements. This work has been supported by projects HYKE (ref.
HPRN-CT-2002-00282) and HMS2000 (ref. HPRN-CT-2000-00109) of the Eu-
ropean Union and project BFM02-03345 of MCyT (Spain).

References

1. Bardos, C.; Lebeau, G.; Rauch, J. Sharp sufficient conditions for the observation,
control, and stabilization of waves from the boundary. SIAM J. Control Optim.
30(5), (1992), 1024–1065.
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