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One of the historical problems appearing in SPH formulations is the inconsistencies
coming from the inappropriate implementation of boundary conditions. In this work, this
problem has been investigated; instead of using typical methodologies such as extended
domains with ghost or dummy particles where severe inconsistencies are found, we included
the boundary terms that naturally appear in the formulation. First, we proved that in the 1D
smoothed continuum formulation, the inclusion of boundary integrals allows for a consistent
O (h) formulation close to the boundaries. Second, we showed that the corresponding discrete
version converges to a certain solution when the discretization SPH parameters tend to zero.
Typical tests with the first and second derivative operators confirm that this boundary
condition implementation works consistently. The 2D Poisson problem, typically used in
ISPH, was also studied, obtaining consistent results. For the sake of completeness, two
practical applications, namely, the duct flow and a sloshing tank, were studied with the
results showing a rather good agreement with former experiments and previous results.

Subject Index: 024

§1. Introduction

The SPH scheme is a Lagrangian model based on a smoothing of the spatial dif-
ferential operators of fluid-dynamics equations and on their subsequent discretization
through a finite number of fluid particles. The smoothing procedure is performed
at the continuum level using a compact support kernel function whose characteristic
length is the smoothing length h. The resolution of the discrete SPH scheme is a
function of the smoothing length h and the mean particle distance Δx. In this frame-
work, the (continuous) equations of the fluid-dynamics should be recovered as both
h and Δx/h simultaneously tend to zero.1) Colagrossi and Landrini2) demonstrated
that when boundaries are not present, the SPH approximation of a function 〈u〉 (x)
differs O(h2) from the analytical function u (x). Quinlan et al.3) studied the errors
in the first-order derivatives of a classical SPH implementation and its dependence
on the particle spacing and smoothing length when no boundaries were considered.
In Ref. 4), this work was extended to 3D and a complete consistency study was
performed for first- and second-order derivatives.

The SPH simulations in engineering usually involve solid boundary conditions
(BC) for both the velocity and pressure fields. In the SPH framework, these con-
ditions have been implemented in the past in a number of different ways: by using
boundary force-type models,5),6) by modifying the structure of the kernel in the
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neighborhood of the boundaries,7) by creating virtual particles at the other side
of the boundary through mirroring techniques2) and by renormalizing the bound-
ary terms that explicitly appear in the integral SPH formulation.8)–10) This latter
approach is the main focus of the present work.

An incompressible fluid is one in which the density is not altered by pres-
sure changes and the only local condition to obtain mass conservation is that of
a divergence-free velocity field. Depending on how the density and incompressibility
constrain are treated, different formulations can be found in the SPH literature when
incompressible fluids are simulated. On the one hand, the WCSPH uses an explicit
formulation where the pressure gradient and the divergence and Laplacian of the
velocity field are calculated applying discrete and smoothed versions of these oper-
ators to a discretized field. Physically, the pressure plays a thermodynamic derived
role through the state equation. An interesting discussion about the influence of the
truncation of differential operators close to the boundaries in WCSPH can be found
in Ref. 11) where a complete analysis of several formulations of the pressure gradient
and velocity divergence operators is performed when an inviscid flow is considered in
the presence of a free surface. These ideas were extended to the Laplacian operator
in Ref. 12).

On the other hand, in the ISPH14) and MPS15) approximations, the zero diver-
gence condition is enforced by solving a Poisson equation for the pressure field at
every time increment. Here, the pressure acts as a Lagrange multiplier to satisfy
the incompressible hypothesis. In this incompressible formulation, pressure moves
as a wave that propagates with an infinite sound speed. Although no real fluid
is completely incompressible, it is generally accepted that the incompressibility as-
sumption is a good approximation when the Mach number M = v/c < 0.3, where
v is the characteristic fluid speed and c is the speed of sound. Many techniques
presented in the literature16)–19) solving the incompressible Navier-Stokes system
of mass and momentum conservation are based on projection methods. This tech-
nique is often referenced in the literature as the ‘fractional step’, ‘semi-implicit’ or
‘pressure-Poisson equation’ method. The projection method decouples velocity and
pressure by factorizing the Navier-stokes system in such a way that the system can
be solved as a sequence of two simpler steps. In the first step, an intermediate veloc-
ity u∗ is calculated and, in the second, this intermediate velocity is projected onto
a divergence-free space, which requires the solution of a Poisson equation to obtain
the pressure field p. The solution of the Poisson problem has a demonstrated con-
sistency with the most common boundary conditions used in fluid mechanics when
classical numerical methods are applied (finite elements, finite differences, finite vol-
umes, etc...). Some contentious issues related to the boundary conditions used in
the second step are easily found in the literature.

Different versions of the Laplacian operator have been used in the SPH context;
for a complete review of the different versions, see Ref. 13). Another interesting
discussion about this discretization is included in Ref. 14) where two different dis-
cretizations are studied; the first is an exact discretization of the Laplacian operator
whilst the second is an approximation of it. It seems that some numerical inconsis-
tencies appear when the exact formulation is used. Following the suggestion from
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Ref. 20), the approximate Laplacian operator with the same form as a diffusion term
is also used here.

Generally, two types of boundary conditions are used in SPH: prescribed velocity
on a moving or steady wall and a constant pressure for any free surface. When the
velocity is prescribed on a boundary, a homogeneous Neumann boundary condition
is used for the pressure. On the other hand, when a free surface is present, a Dirichlet
boundary condition is imposed to obtain a constant pressure on the boundary.

These boundary conditions are present in previous ISPH works14),20) where the
Poisson equation was solved and the pressure was calculated. The methodology
used to impose boundary conditions does not differ at all from the ones used by
any other discretization methods, and in most of these cases, the presence of extra
particles is necessary to satisfy the kernel completeness. Another important remark
is that very few consistency tests can be found when the discretization parameters
(number of particles and the smoothing length) tend to the continuous formulation.
In the work performed by Macià et al.,21) the inconsistency evidence was presented
when boundary conditions were implemented artificially extending the domain. An
important improvement was achieved and described in Refs. 8), 9) and 10), where
boundary integrals were used to impose the boundary conditions in a weakly com-
pressible SPH (WCSPH) formulation, preventing the need to extend the physical
domain. Nonetheless, in Refs. 8), 9) and 10), a consistency analysis remains to be
performed and has not yet been applied to incompressible formulations where the
Poisson equation is solved.

This work is divided as follows: in §2, a continuous smoothed formulation of
the involved differential operators and their corresponding consistency study is pre-
sented; in §3, the discrete versions of those differential operators in the presence of
boundaries are formulated; in §4, the previous formulations are applied to the Pois-
son equation; in §5, different tests and examples are presented; in §6, a generalization
to 2D is carried out; finally, in §7 two complex SPH problems are solved: a duct flow
and a classical sloshing problem.

We should remark that the aim of this paper is to focus on the recovered consis-
tency when boundary integral terms are included in the SPH formulation. For this
reason, in §2 to §6, we will simplify some of the requirements that typically appear
in SPH formulations (such as the symmetric properties of the gradient operator)
and focus on the formulation consistency. In §7, where the boundary treatment is
applied to complex problems, those typical symmetry requirements will be added
and a detailed description of the treatment of each operator will be provided.

§2. Continuous smoothed formulation of differential operators

For the sake of clarity, all the analyses and most of the preliminary tests will
be carried out in 1D; this simplifies the notation and the mathematical process;
these ideas can be extended to 2D or 3D without any lack of generality. In order to
present an immediate extension of these ideas to a 2D application, a Poisson problem
is presented in §6.

Consider a bounded interval (a, b) ⊂ R and let Wh (x) be a symmetric SPH
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kernel defined on R, such that ∫ ∞

−∞
Wh(y)dy = 1.

In order to simplify the technical details of our analysis, we shall assume that the
kernel Wh (x) vanishes for |x| > 2h. This assumption is fulfilled, for instance, when
Wh is a Wendland-type kernel.22)

Let us define the Shepard normalization factor γ as

γh (x) :=
∫ b

a
Wh (x − y) dy. (2.1)

The SPH approximation with respect to the kernel Wh of a scalar function p (x) on
R taking real values is defined as

〈p〉 (x) :=
1

γh (x)

∫ b

a
p (y) Wh (x − y) dy. (2.2)

The approximation defined in (2.2) is consistent, and its consistency can be expressed
as

〈p〉 (x) = p (x) +
{ O (h) for x at a distance ≤ 2h from the boundary,

O (h2
)

otherwise. (2.3)

Assuming that 4h < b − a. Suppose that x ∈ (a, b) is far from the boundary, i.e.,
|x − a| > 2h and |x − b| > 2h. Then, γh (x) = 1 and, since the support of Wh (x − ·)
is contained in (a, b) one has

〈p〉 (x) =
∫ ∞

−∞
p (y) Wh (x − y) dy; (2.4)

therefore,

〈p〉 (x) − p (x) =
∫ ∞

−∞
(p (y) − p (x)) Wh (x − y) dy (2.5)

=
∫ ∞

−∞

(
dp

dx
(x) (y − x) + O

(
(x − y)2

))
Wh (x − y) dy (2.6)

= O (h2
)
; (2.7)

using the property that, since Wh is symmetric, we have∫ ∞

−∞
(y − x) Wh (x − y) dy = 0. (2.8)

When x is at a distance less or equal to 2h from either a or b, it is not possible to
exploit this cancellation property. If p is differentiable and x and y are in the support
of Wh, then |p(y) − p(x)| ≤ C|y − x| ≤ 2Ch, where C is a constant. Therefore,

〈p〉 (x) − p (x) =
1

γh (x)

∫ b

a
(p (y) − p (x)) Wh (x − y) dy = O (h) . (2.9)

It should be remarked that if the factor 1/γh is not present in Eq. (2.2), the obtained
result would be similar to the one in Ref. 11), which is 〈p〉 (x) − p (x) /2 = O (h).
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2.1. Approximation of the first-order derivative

The SPH approximation of the first-order derivative dp/dx is set to be〈
dp

dx

〉
(x) :=

1
γh (x)

∫ b

a

dp

dx
(y)Wh (x − y) dy. (2.10)

It follows that (see, for instance, Hu and Adams23)), in the absence of a boundary
(i.e., when (a, b) = R), one has 〈dp/dx〉 (x) = dp/dx (x)+O (h2

)
. Nonetheless, when

boundaries are present, integrating by parts, we obtain〈
dp

dx

〉
(x) =

1
γh (x)

∫ b

a

p (y)W ′
h (x − y) dy +

1
γh (x)

[p (b) Wh (x − b) − p (a)Wh (x − a)] ,

(2·11)
where W ′

h (s) stands for the derivative of the kernel with respect to s.
Again, this approximation is consistent:〈
dp

dx

〉
(x) =

dp

dx
(x) +

{ O (h) for x at a distance ≤ 2h from the boundary,
O (h2

)
otherwise.

(2.12)
To check this identity, we proceed by following the ideas of the preceding section.
While 4h < b − a and x ∈ (a, b) at a distance from the boundary greater than 2h,
the contribution to Eq. (2·11) involving boundary terms vanishes. Moreover, since
the support of the kernel is contained in the interval (−2h, 2h), the integral in (2·11)
can be extended to R. This implies that expression (2·11) coincides with the usual
SPH approximation of the gradient.

Suppose now |x − b| ≤ 2h (the analysis in the case |x − a| ≤ 2h is completely
analogous); note that, in this case, Wh (x − a) = 0 and the following identity holds:

1
γh (x)

p (b) Wh (x − b) = − 1
γh (x)

∫ b

a
p (b) W ′

h (x − y) dy. (2.13)

Hence, 〈
dp

dx

〉
(x) =

1
γh (x)

∫ b

a
(p (y) − p (b)) W ′

h (x − y) dy (2.14)

=
1

γh (x)

∫ b

a
(p (y) − p (x) + p (x) − p (b)) W ′

h (x − y) dy (2.15)

=
dp

dx
(x)

1
γh (x)

∫ b

a
(y − b) W

′
h (x − y) + O (h) (2.16)

=
dp

dx
(x) + O (h) . (2.17)

As pointed out in Ref. 11), if a proper and consistent formulation is searched when a
gradient is calculated near the boundary, the boundary terms cannot be neglected.
In our case, the improvements are coming from the combination of the boundary
terms and the normalization factor 1/γh. We should also comment that although
the consistency results are greatly improved with this formulation, if this expression
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is used for pressure gradient calculations, an important drawback appears as the
nonpreservation of linear momentum. This drawback could be fixed if a symmetrized
formulation is used; see Ref. 11).

2.2. Approximation of the second-order derivative

We recall that the SPH approximation of the second-order derivative d2p/dx2

on R of a function p (x) is defined as〈
d2p

dx2

〉
(x) :=

1
γh (x)

∫ b

a

d2p

dx2
(y)Wh(x − y)dy. (2.18)

As proved by Español and Revenga,24) again in the boundaryless case,
〈
d2p/dx2

〉
(x)

= d2p/dx2 (x) + O(h2). When the fluid domain is limited by a boundary, we can
again integrate by parts to obtain〈

d2p

dx2

〉
(x) =

1
γh (x)

∫ b

a

dp

dx
(y)W ′

h(x − y)dy +
1

γh (x)

[
dp

dx
(b)Wh(x − b) − dp

dx
(a)Wh(x − a)

]
.

(2·19)
We propose the following discretization of the above formula:〈

d2p

dx2

〉
(x) =

2
γh (x)

[∫ b

a

p (y) − p (x)
y − x

W ′
h (x − y) dy

+
p (x) − p (b)

x − b
Wh (x − b) −p (x) − p (a)

x − a
Wh (x − a)

]
. (2·20)

This formula is clearly exact if p is constant or linear. It turns out that it is also
exact for p (x) = x2:〈

d2p

dx2

〉
(x) =

2
γh (x)

[∫ b

a

(y + x)W ′
h (x − y) dy + (x + b)Wh (x − b) − (x + a)Wh (x − a)

]

=
2

γh (x)

[∫ b

a

yW ′
h (x − y) dy + bWh (x − b) − aWh (x − a)

]

=
2

γh (x)

∫ b

a

Wh (x − y) dy

= 2.

More generally, formula (2·20) defines a consistent approximation to the second
derivative:〈

d2p

dx2

〉
(x) =

d2p

dx2
(x) +

{ O (h) for x at distance ≤ 2h of the boundary,
O (h2

)
otherwise.

(2.21)
Let h satisfy 4h < b − a. In that case, if |x − a| > 2h and |x − b| > 2h, then,

Wh(x − a) = Wh(x − b) = 0, γh(x) = 1, (2.22)

and, therefore, the contribution of the boundary terms in the expression (2·20) also
vanishes. This implies〈

d2p

dx2

〉
(x) = 2

∫ b

a

p (y) − p (x)
y − x

W ′
h (x − y) dy = 2

∫ +∞

−∞

p (y) − p (x)
y − x

W ′
h (x − y) dy, (2·23)
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and the O (h2
)

error term in formula (2.21) coincides with the analysis described in
Ref. 24).

Therefore, it is sufficient to check (2.21) for the points x ∈ [a, b] that are at a
distance less or equal to 2h from the boundary of the interval. We shall assume in
what follows that |x − b| ≤ 2h, the analysis for the other boundary point a being
completely analogous. The limited range assumption on the SPH kernel implies that
Wh (x − a) = 0, and the finite difference appearing in the boundary term of (2·20)
can be approximated by

p (x) − p (b)
x − b

=
dp

dx
(x) +

1
2

d2p

dx2
(x) (b − x) + O (h2

)
. (2.24)

Analogously, the integrand appearing in (2·20) can be expanded as

2
p (y) − p (x)

y − x
= 2

dp

dx
(x) +

d2p

dx2
(x) (y − x) + O

(
(x − y)2

)
. (2.25)

Integrate the above formula against γ−1
h (x) W ′

h (x − y) on y ∈ (a, b). The left-hand

side simply gives the expression of
〈

d2p
dx2

〉
(x) with the boundary terms removed. The

terms on the right-hand side of (2.25) give the following contributions:

dp

dx
(x)

2
γh (x)

∫ b

a
W ′

h (x − y) dy = −dp

dx
(x)

2
γh (x)

Wh (x − b) , (2.26)

and

d2p

dx2
(x)

1
γh (x)

∫ b

a
(y − x)W ′

h (x − y) dy =
d2p

dx2
(x)
(

1 +
(x − b)
γh (x)

Wh (x − b)
)

. (2.27)

Therefore,〈
d2p

dx2

〉
(x) = −dp

dx
(x)

2
γh

Wh (x − b) +
d2p

dx2
(x)
(

1 +
(x − b)
γh (x)

Wh (x − b)
)

+ O (h)

+
2

γh (x)

{
dp

dx
(x) +

1
2

d2p

dx2
(x) (b − x) + O (h2

)}
Wh (x − b) , (2.28)

and canceling terms, we conclude:〈
d2p

dx2

〉
(x) =

d2p

dx2
(x) + O (h) . (2.29)

Note that the fact that the order of consistency for x close to the boundary is smaller
than the one obtained in the interior is due to the absence of cancellations (that take
place in the boundaryless case, or in the interior) of second-degree terms in h in the
expression (2.24).

As pointed out in Ref. 12), when a Laplacian is calculated near the boundary
using typical SPH formulations, local inconsistencies might appear. In our case,
the presence of boundary terms and the normalization factor 1/γh achieve local
consistency.
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§3. Discrete SPH formulation of differential operators

Now, we describe the discrete versions of the continuous SPH approximations of
first and second derivatives introduced in the preceding section. Let us assume that
we have a discretization {x1, x2, . . . , xN} of (a, b) using N particles at these positions
and that x1 = a, xN = b. We discretize the first-order derivative as〈

dp

dx

〉
m

=
1

γm

∑
n

mn

ρn
pnW ′

h(xm−xn)+
1

γm
[ pbWh(b − xm) − paWh(a − xm)] , (3.1)

where the subscript m is used for the particle studied and n for the neighboring
particles. A detail worth mentioning is that the index n only affects the interior
particles and excludes the boundary particles; this is n �= a and n �= b. Each particle
n possesses mass mn, density ρn, position xn, and the value of the function p(xn)
is noted as pn for that particle. We abuse the notation for p1 and pN , referring to
them as pa and pb, respectively.

Regarding the second-order derivative, we define〈
d2p

dx2

〉
m

=
2

γm

[∑
n

mn

ρn

pm − pn

xm − xn
W ′

h(xm − xn)

+
pm − pb

xm − xb
Wh(b − xm) − pm − pa

xm − xa
Wh(a − xm)

]
, (3.2)

which is a particular one-dimensional version of the following expression introduced
independently by Español and Revenga and Morris et al. in Refs. 24) and 25) re-
spectively, in the absence of boundaries

∇2pm ≈ 2
ρm

∑
n

mn
pmnxmn · ∇xWh(xmn)

|xmn|2
, (3.3)

where pmn = pm − pn and xmn = xm − xn.

§4. Discrete Poisson problem and boundary conditions

As introduced in §1, the solution of the incompressible Navier-Stokes system
is commonly based on well-known techniques such as projection or fractional step
methods.16)–19) These methodologies decouple velocity and pressure and the evolu-
tion of the Navier-Stokes system can be solved iterating simpler substeps per time
step. Under the incompressibility assumption, in the second substep of the fractional
step method, the following Poisson-type equation must be solved:

∇2p =
ρ

Δt
(∇ · u∗), (4.1)

where ∇2 stands for the Laplace operator, ρ is the density and Δt is the time step
used in the temporal discretization.

This equation requires boundary conditions that are imposed on the boundary
Γ of the fluid domain. Depending on the nature of the problem under consideration,
different boundary conditions can be used; the most common ones being:
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• Dirichlet boundary conditions. When free surface flows are involved in the
calculation, the free surface is assumed to have a constant pressure equal to the
gas that lies on the other side. In atmospheric flows, relative pressure is most
commonly used and, consequently, the pressure boundary condition at the free
surfaces ΓF is p = 0.

• Neumann boundary conditions. These boundary conditions are usually em-
ployed to model a wall that constrains the expansion of the fluid. The boundary
condition imposed on the boundary ΓW is ∂p/∂n = 0.

The Poisson problem we shall be dealing with can be described as follows: given a
function f(x), we wish to compute a function p(x) that is a solution to the following
problem:

−∇2p = f(x), x ∈ [a, b],
+ Boundary Conditions. (4.2)

The discretization of the Laplacian involves the construction of a matrix that rep-
resents the operator. In our case, the matrix representing the Laplacian operator in
1D (left-hand side of Eq. (3.2)) can be explicitly found in the Appendix.

Once the matrix representation of the Laplacian operator has been constructed,
boundary conditions should be implemented by suitably modifying the rows and
columns of the matrix affected by these conditions. In 2D and 3D, the presence of a
wall is implemented by the use of only one layer of boundary particles.

§5. Numerical results

5.1. Consistency and numerical convergence

We consider different basic problems in order to test the convergence of the
method. The discretization of the Laplacian previously introduced corresponds to a
consistent numerical approximation when

Δx → 0, (5.1)
h → 0, (5.2)

Δx/h → 0, (5.3)

and the solution obtained through our numerical approximation tends to the exact
solution. In order to deal with the different situations that could appear in a fluid
dynamic computation, we can distinguish between the direct and inverse problems.
In the direct problem, the field p is given and the first and second derivatives are
computed (this type of analysis falls under what is usually called consistency study);
on the other hand, by inverse problem, we mean the problem of actually computing,
for a given field f , the corresponding solution to the approximate equation through
the inversion of a linear system that takes the boundary conditions into account.
This is usually what stability and convergence analyses deal with.

5.1.1. Gradient computation
The simplest problem in this context is to consistently compute, for a given field

p(x), the first derivative in the interval [a, b]. Table I shows the maximum local
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error (in L∞ norm) obtained for the first-order derivative when expression (3.1)
is used for different polynomial functions p(x) = xk, k = 0, 1, 2 in the interval
[a, b] = [−5/2, 5/2]. For all the tests and problems presented in this work, the
Wendland kernel22) was used.

As can be observed in Table I, the method is fully consistent and, in the contin-
uum limit, the accuracy of the computation increases.

5.1.2. Primitive computation
Let us now consider the problem:

−dp

dx
= f(x), x ∈ [a, b], (5.4)

p(a) = λ. (5.5)

In contrast to the problem presented in 5.1.1, the p(x) function is now an unknown
field and f(x) is a given function. This problem is well posed only if a Dirich-
let boundary condition is used, whilst the solution is undetermined if a Neumann
boundary condition is used. Using Eqs. (2·11) and (3.1) to represent the first deriv-
ative, we obtain the continuous SPH version of the problem (5.4):

− 1
γh (x)

[∫ b

a
p(y)W ′

h(y − x)dy + p(b)Wh(b − x) − p(a)Wh(a − x)
]

=
1

γh (x)

∫ b

a
f(y)Wh(y − x)dy. (5.6)

Analogously, the discrete version of this problem for a particle at x = xm is

− 1
γm

∑
n

mn

ρn
pnW ′

h(xm − xn) − 1
γm

[pbWh(b − xm) − paWh(a − xm)]

=
1

γm

∑
n

fnWh(xn − xm). (5.7)

Given the values fn, the values of p that satisfy problem (5.4) can be computed,
writing Eq. (5.7) as a linear system:

A ·

⎛
⎜⎜⎜⎝

p1

p2
...

pN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
γ1

∑
n

fnWh(xn − x1)

1
γ2

∑
n

fnWh(xn − x2)

...
1

γN

∑
n

fnWh(xn − xN )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.8)

where A is the matrix that represents the gradient operator. To implement the
boundary condition, we transform the matrix A into a new matrix A′ with the same
dimensions and whose first row is zero with the exception of the element A(1, 1) = 1.
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Table I. Maximum errors obtained when the gradients (first derivatives in 1D) of the different

functions p(x) = {1, x, x2} are calculated with the expression (3.1) in the interval [a, b] =

[−5/2, 5/2].

1 x x2

1/Δx h/Δx max
m

|∇pm| max
m

|∇pm − 1| max
m

|∇pm − 2xm|
42 8 0.0049 0.0122 0.5929

62 12 0.0033 0.0081 0.3814

82 16 0.0024 0.0061 0.2809

162 32 0.0012 0.0031 0.1365

202 40 9.7656e-004 0.0024 0.1086

302 60 6.5104e-004 0.0016 0.0718

Table II. Maximum errors obtained when the problem given by Eqs. (5.4) and (5.5) is solved with

f(x) = 0, 1, x and λ = 1 in the interval [a, b] = [−5/2, 5/2].

f(x) = 0 f(x) = 1 f(x) = x

1/Δx h/Δx max
m

|pm − 1| max
m

|pm − (−x − 3/2)| max
m

|pm − (−x2/2 + 33/8)|
42 8 0.0207 0.0854 0.1230

62 12 0.0188 0.0663 0.0589

82 16 0.0177 0.0626 0.0389

162 32 0.0157 0.0608 0.0215

202 40 0.0153 0.0598 0.0190

302 60 0.0147 0.0581 0.0164

We also replace the first element of the right-hand side vector of Eq. (5.8) by λ in
order to satisfy the boundary condition. Note that the addition of the boundary
terms corrects the classical boundary errors coming from the incompleteness of the
kernel.

Let us now solve the problem described by Eqs. (5.4) and (5.5) in the interval
[a, b] = [−5/2, 5/2] for three different polynomial functions f(x) = 0, 1, x fixing the
value λ = 1. For the functions f(x) = 0, f(x) = 1 and f(x) = x, the exact
solutions of the problems are the constant function p(x) = 1, the linear function
p(x) = −x − 3/2 and the quadratic function p(x) = −x2/2 + 33/8, respectively. As
we can observe in Table II, convergence is achieved as the parameters Δx and Δx/h
both tend to zero.

5.1.3. Laplacian computation
We now proceed to compute consistently the second derivative of a given field

p(x) in the interval [a, b]. Table III shows the L∞-norm errors obtained using the
expression (3.2) as an approximation to the second derivative for different functions
p(x) = x, x2 in the interval [a, b] = [−5/2, 5/2].

As can be noticed, the method is also fully consistent and, in the continuum
limit, the agreement accuracy of the obtained approximations to the exact Laplacian
increases.
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Table III. Maximum errors obtained when the Laplacians (second derivatives in 1D) of the

different functions p(x) = {x, x2} are calculated with the expression (3.2) in the interval

[a, b] = [−5/2, 5/2].

p(x) = x p(x) = x2

1/Δx h/Δx max
m

|∇2pm| max
m

|∇2pm − 2|
42 8 0.0079 0.0400

62 12 0.0057 0.0285

82 16 0.0044 0.0221

162 32 0.0023 0.0116

202 40 0.0019 0.0094

302 60 0.0013 0.0063

5.1.4. Poisson problem
Next, we solve a one-dimensional Poisson problem, involving a second-order

operator. More precisely, the problem we are interested in is the following:

−d2p

dx2
= f(x) x ∈ [a, b], (5.9)

p(a) = λ, (5.10)
p(b) = μ. (5.11)

As usual, the goal is to compute the unknown field p(x) for a given source term
f(x). For this early stage, we shall restrict ourselves to the case of Dirichlet bound-
ary conditions. Later, similar results are obtained when one boundary condition is
replaced by a Neumann type. Using Eqs. (2·11) and (3.1) to approximate the second-
order derivative leads to the following continuous SPH version of the problem in the
interval [a, b]:

− 2
γh (x)

[∫ b

a

p (x′) − p (x)
x′ − x

W ′
h

(
x − x′) dx′

+
p (x) − p (b)

x − b
Wh (x − b) − p (x) − p (a)

x − a
Wh (x − a)

]

=
1

γh (x)

∫ b

a
f(y)Wh(y − x)dy. (5.12)

The discrete counterpart for a particle at x = xm can be written as

− 2
γm

[∑
n

mn

ρn

pm − pn

xm − xn
W ′

h(xm − xn)

+
pm − pb

xm − xb
Wh(xm − b) − pm − pa

xm − xa
Wh(xm − a)

]

=
1

γm

∑
n

fnWh(xn − xm). (5.13)
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Table IV. Maximum errors obtained when the problem given by Eqs. (5.9)–(5.11) is solved with

f(x) = 1, λ = 1 and μ = 1 in the interval [a, b] = [−5/2, 5/2].

f(x) = 1 λ = 1 μ = 1

1/Δx h/Δx maxm |pm − (x2/2 − 17/8)|
42 8 7.2300e-4

62 12 2.5175e-4

82 16 1.1380e-4

162 32 1.5631e-5

202 40 8.1440e-6

302 60 2.4683e-6

Writing Eq. (5.9) as a linear system, we have

B ·

⎛
⎜⎜⎜⎝

p1

p2
...

pN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
γ1

∑
n

fnWh(xn − x1)

1
γ2

∑
n

fnWh(xn − x2)

...
1

γN

∑
n

fnWh(xn − xN )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.14)

where B is the matrix representation of the Laplacian operator; see the Appendix
for an explicit representation.

To implement the boundary condition, we transform matrix B into a new matrix
B′ with the same dimensions, whose first and last rows are zero with the exception
of the elements B(1, 1) = 1 and B(N, N) = 1. We also replace the first and last
elements of the right-hand side vector by λ and μ.

Let us now solve the problem presented in (5.9)–(5.11) for two different cases.
In the first case, f(x) = 1, λ = 1 and μ = 1 in the interval [a, b] = [−5/2, 5/2], and in
the second case, f(x) = sin(x), λ = 1 and μ = −1 in the interval [a, b] = [π/2, 3π/2];
the exact solutions of those problems are the functions p(x) = x2/2 − 17/8 and
p(x) = sin(x), respectively. As can be observed in Fig. 1, the presented agreement
between the numerical and exact solutions is remarkable. We can also appreciate in
Table IV that the consistency of the problem for the first case is fully achieved.

Let us now consider a particular problem where two different boundary condi-
tions are used, one for each side of the domain. The problem can be formulated
as

−d2p

dx2
= x − 1

2
, x ∈ [0, 1], (5.15)

p(x = a) = 0, (5.16)

p
′
(x = b) = 0. (5.17)

The exact solution to this problem in the interval [a, b] = [0, 1] has the closed ana-
lytical form p(x) = −x3/6 + x2/4. We will show that the SPH discretization of this
equation is able to approximate the analytical solution.
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Fig. 1. Solution for the Dirichlet problem (5.9)–(5.11) when f(x) = 1(left) and f(x) = sin(x)(right),

Δx = 1/42 and h = 1/2

Fig. 2. Tendency towards the continuum for the Dirichlet-Neumann homogeneous case when f =

x − 1/2.

Using the boundary condition p′(x = b) = 0, we can simplify Eq. (5.12) and
thus obtain

−2
γm

∑
n

mn

ρn

pm − pn

xm − xn
W ′

h(xm−xn)− 2
γm

pm − pa

xm − xa
Wh(a−xm) =

1
γm

∑
n

fnWh(xn−xm).

(5.18)
The analytical and different numerical approximations for the different discretization
levels are plotted in Fig. 2. As can be observed, the numerical solution tends to the
analytical solution when the parameters Δx and h tend to zero.

We should remark that if instead of using the boundary terms present in Eq. (5.18),
the Dirichlet boundary condition were implemented extending the domain with few
rows of dummy particles, strong inconsistencies O(1/h) and large discontinuities
would be observed in the proximity of the boundaries (see Fig. 1, left). Several
problems regarding the inconsistencies of extended domains are well documented in
Ref. 21).
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§6. 2D generalization

In this section, a typical 2D example has been included to show that the 2D
extrapolation of the previous 1D formulation does not add further complications.
Recalling the SPH approximation of the second derivative d2p/dx2 on R

2 of a func-
tion p (x): 〈∇2p

〉
(x) :=

1
γh (x)

∫
Ω
∇2

yp(y)Wh(x − y)dy. (6.1)

Integrating by parts the first term, we obtain

〈∇2p
〉
(x) =

1
γh (x)

∫
Ω
∇yp(y) · ∇xWh(x − y)dy

+
1

γh (x)

∫
Γ

(∇yp(y) · nΓ (y)) Wh(x − y)dy, (6.2)

where nΓ (y) is the unit outward normal vector to the boundary.
Equation (6.2) can be written as

〈∇2p
〉
(x) =

2
γh (x)

∫
Ω

(p (y) − p (x))
y − x

|y − x|2 · ∇Wh (x − y) dy

+
2

γh (x)

∫
Γ

(p (y) − p (x))
(y − x) · nΓ

|y − x|2 Wh (x − y) dΓ. (6.3)

The discrete version of Eq. (6.3) is therefore:

〈∇2p
〉
m

=
2

γm

∑
n

mn

ρn
(pm − pn)

rm − rn

|rm − rn|2 · ∇Wh (rm − rn)

+
2

γm

∑
n

(pm − pn)
(rm − rn) · nΓ

|rm − rn|2 Wh (xm − xn) ΔΓ, (6.4)

where ΔΓ is the distance between two consecutive boundary particles.
Let us apply expression (6.4) to the following problem:

∇2p = 2
(π

5

)2
sin
(πx

5
+

π

2

)
sin
(πy

5
+

π

2

)
x, y ∈ [−5/2, 5/2], (6.5)

p(x = −5/2, y) = 0, (6.6)
p(x = 5/2, y) = 0, (6.7)

p(x, y = −5/2) = 0, (6.8)
p(x, y = 5/2) = 0. (6.9)

The problem (6.5)–(6.9) has p(x, y) = − sin(π(x/5 + 0.5)) sin(π(y/5 + 0.5)) as an
analytical solution. Three different sets of parameters were used for the computation
(Δx = 1/4, h = 1), (Δx = 1/9, h = 2/3) and (Δx = 1/16, h = 1/2), and consistent
results were once again obtained; see Table V. As an example, in Fig. 3, the complete
solution for the case (Δx = 1/42, h = 1/2) is represented; furthermore, a cut of this
solution by the plane y = 0 and the equivalent solution without boundary terms
have been compared.
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Table V. Maximum errors (L∞ norm) obtained for the 2D Poisson problem (6.5)–(6.9).

1/Δx h/Δx maxm |pm + sin(π(x/5 + 0.5)) sin(π(y/5 + 0.5))|
22 4 0.2327

32 6 0.1575

42 8 0.1180

Fig. 3. Left: solution of the 2D Poisson problem (6.5)–(6.9), Δx = 1/42 and h = 1/2. Right: cut

by a plane y = 0 of the solutions with and without the boundary terms.

§7. Practical applications

As was mentioned in the introduction and for the following practical applications,
the WCSPH equations used will be the following:

1. mass conservation

dρa

dt
= − 1

γa

(∑
b

mbvab · ∇Wab −
∑

s

ρsvas · nΓ WabΔΓ

)
, (7.1)

2. momentum conservation

dva

dt
= − 1

γa

[∑
b

mb

(
pa

ρ2
a

+
pb

ρ2
b

)
∇Wab −

∑
s

ρs

(
pa

ρ2
a

+
pb

ρ2
b

)
nΓ WabΔΓ

]
+ g

+
2μ

γaρa

[∑
b

mb

ρb

vab

r2
ab

rab · ∇Wab −
∑

s

vab
rab · nΓ

r2
ab

WabΔΓ

]
, (7.2)

3. kinematics
dra

dt
= va, (7.3)

4. equation of state

p =
(

c2ρ0

7

)((
ρ

ρ0

)7

− 1

)
, (7.4)
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where the subscript a refers to a generic fluid particle, subscript b is used for the
neighboring fluid particles of particle a and subscript s is used for the neighboring
boundary particles. The double subscript notation means F ab = F a − F b. The
different terms in Eqs. (7.1)–(7.4) are as follows: v is the particle velocity, p is
the pressure, r is the position vector, nΓ is the unit inward normal vector to the
boundary where the boundary particle s is situated, ΔΓ is the distance between
boundary particles and t is time. Other parameters are as follows: g is gravity,
μ is the dynamic viscosity of the fluid, c is the sound speed and ρ0 is a reference
density. During the following simulations, the density of the boundary particles ρs

is interpolated from the fluid particles for every time step. A Wendland kernel has
been used in the following simulations.

7.1. Duct flow

A stationary flow inside a square duct, driven by a constant pressure gradi-
ent along the axis of the duct (essentially a two-dimensional counterpart to plane
Pouseuille flow) is now considered. The duct flow is a classical and paradigmatic
example that points out the advantages of using a formulation where boundary
conditions are consistently implemented for the velocity of the flow. This kind of
computation is one of the first steps that has to be performed when a global stability
analysis of a duct flow is computed; see Refs. 26) and 27).

A schematic representation of the domain is shown in Fig. 4 where a constant
pressure gradient has been imposed along the z direction. The domain is defined
as (x, y) ∈ [−1, 1] × [−1, 1]. The constant pressure gradient drives a steady laminar
flow that is independent of z and possesses a velocity vector (0, 0, w) with a single
component w(x, y) along the z spatial direction. According to these hypotheses,
Eqs. (7.1) and (7.2) can be reduced to the following Poisson equation:

μ∇2w(x, y, t) = ∇P, (7.5)

where μ is the fluid viscosity and ∇P is the constant pressure gradient that drives

Fig. 4. Schematic representation of the duct flow problem.
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the flow. The boundary conditions can be expressed as

w(x,−1) = 0,

w(x, 1) = 0,

w(−1, y) = 0,

w(1, y) = 0.

Taking ∇P/μ = −2, expression (7.5) can be written in SPH formalism as

2
γaρa

[∑
b

mb

ρb

wab

r2
ab

rab · ∇Wab −
∑

s

wab
rab · nΓ

r2
ab

WabΔΓ

]
= 2. (7.6)

Since this case is a practical application, the convergence criteria has been adapted to
typical industrial applications where the computational demands and the accuracy
of the solution must be balanced. Systematic convergence procedures such as the
ones shown in previous sections would increase the matrix size too much, leading to
an excessive CPU time. The standard procedure is normally performed by increasing
the number of particles Δx → 0 while the ratio h/Δx = 2 is kept constant.

The solution obtained by the SPH approximation using boundary integrals has
been compared with the equivalent solution obtained when a finite element method
(FEM) is used. The number of nodes of the unstructured mesh used in the FEM
calculation has been systematically increased until a final converged solution has
been obtained. In this context, the FEM solution should be approximated by the
SPH computations as the number of particles is increased, making Δx tend to zero.

Figure 5 shows the comparison between four different solutions for Δx = 1/k2,
k = 6, 8, 10, 12 and the FEM solution. As can be observed in Fig. 5, when the number
of particles is increased, the SPH solution is able to approximate the reference FEM
solution even in the vicinity of the boundary. The maximum error region can be
found where the iso-contour lines have maximum separation.

In Fig. 6, the maximum velocity found at the middle point of the domain (x, y) =
(0, 0) is plotted for different values of k. Despite the convergence process not being
as systematic as in the previous section where the three parameters h, Δx/h and
Δx were tending to zero, a noticeable tendency towards the solution given by FEM(
wFEM

max = 0.5836
)

can be appreciated as the value of k = 1/(Δx)2 increases.

7.2. A 2D sloshing tank

Since interest in the natural gas industry is increasing, the sloshing load is be-
coming a relevant research area, involving SPH as a simulation tool.28) In this
section, the results obtained when a sloshing phenomenon takes place in a rectan-
gular tank are described. Experiment details (part of the SPHERIC benchmark∗))
are described by Botia-Vera et al.29) In this article, lateral water impacts are exper-
imentally measured with a pressure sensor. In Fig. 7, a schematic representation of
the tank is shown. The water filling level for this experiment was h = 93 mm and
the roll movement period was T = 1.919 around an axis placed at the middle point

∗) http://wiki.manchester.ac.uk/spheric/index.php/Validation Tests
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Fig. 5. Comparison between the SPH solution and FEM reference result for an increasing number

of particles, Δx = 1/k2, k = 6 (top left), k = 8 (top right), k = 10 (bottom left), k = 12

(bottom right).

of the bottom wall (red dot in Fig. 7). Pressure is measured for sensor 1; see Fig. 7.
In our simulations, 148800 fluid particles were used, the artificial viscosity factor
was α = 0.02 and no periodic density reinitialization was considered. The value
used for the sound speed in this problem was c = 15m/s following the literature
recommendations,28) and ρ0 = 998Kg/m3 was used as reference fluid density.

In Fig. 8, the measured pressure for the first two wave impacts is shown. Owing
to experimental repeatability difficulties,30) the determination of the pressure peak
value is extremely difficult, indicating that the comparison between experimental
data and simulated results is adequately understood when qualitatively presented.
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Fig. 6. Maximum value of w(x, y) for an increasing number of particles, Δx = 1/k2, k =

6, 8, 10, 12, 14. The maximum value of the reference FEM solution wFEM
max is also plotted as

a red line.

As can be observed, the average values of the SPH computations agree fairly well
with the experimental measurements. In order to demonstrate the advantages of
the boundary condition implementation presented in the previous sections of this
work, our results have been compared with the ones presented by Delorme et al.28)

who used standard implementation of boundary conditions. From the different set
of periods computed in Ref. 28), the most violent case, when the period is 0.9 times
the natural frequency of the system, was selected for comparison. In Fig. 9, the
measured pressures for the first wave impact are shown. As can be appreciated,
introducing boundary conditions, as explained in the previous sections of the present
work, greatly improves SPH results when compared with those of Delorme et al.28)

Finally, in Fig. 10, a snapshot of the simulation corresponding to the moment
when the pressure peak occurs, is represented. It can be seen that the numerical
noise is restricted to the impact area and does not propagate to the whole domain.
This is a significant progress over previous WCSPH implementations that do not
consider boundary integrals (see, e.g. Ref. 20)).

§8. Conclusions

The inconsistencies coming from an inappropriate implementation of boundary
conditions when SPH differential operators are discretized have been investigated.
These inconsistencies clearly appear when studying the evolution of the solution as
the discretization SPH parameters tend to the continuum. The inclusion of boundary
terms that naturally appear in the formulation9),10) is implemented in order to solve
the studied inconsistencies. The following conclusions were obtained:

1. In the smoothed continuum formulation, the inclusion of boundary integrals
and normalization factors in 1D allows for a consistent O (h) formulation.

2. The corresponding discrete version with the inclusion of boundary integrals and
normalization factors converges to the expected solution when the discretization
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Fig. 7. Schematic view of the tank used. Dimensions are in mm.

Fig. 8. Experimental and computational-SPH pressure evolution for sensor 1.

SPH parameters tend to zero.
3. Typical tests with the first and second derivative operators including a 2D

Poisson problem and different practical applications confirm that this boundary
condition implementation works consistently.

The overall conclusion is that the inclusion of both boundary terms and normal-
ization factors in the SPH formulation is an appropriate method of implementing
boundary conditions when consistent solutions of the fluid equations are desired.
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Fig. 9. Pressure evolution in sensor 1.

Fig. 10. Pressure field [Pa] at the pressure peak instant.
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Appendix A
Matrix Representation of the Laplacian Operator in 1D

If a fluid particle m is closer than 2h from a fluid particle n and also from the
left boundary particle a, the following terms must be included at the row matrix m:

Bmm =
2

γm

[∑
n

mn

ρn

W ′
h(xm − xn)
xm − xn

− Wh(a − xm)
xm − xa

]
, (A.1)

Bmn = − 2
γm

mn

ρn

W ′
h(xm − xn)
xm − xn

, (A.2)

Bma =
2

γm

Wh(a − xm)
xm − xa

. (A.3)

If a fluid particle m is closer than 2h from a fluid particle n and also from the right
boundary particle b, the following terms must be included at the row matrix m:

Bmm =
2

γm

[∑
n

mn

ρn

W ′
h(xm − xn)
xm − xn

− Wh(b − xm)
xm − xb

]
, (A.4)

Bmn =
2

γm

mn

ρn

W ′
h(xm − xn)
xm − xn

, (A.5)

Bmb = − 2
γm

Wh(b − xm)
xm − xb

. (A.6)

If a fluid particle m is closer than 2h from a fluid particle n and it is further than
2h from both boundaries:

Bmm =
2

γm

∑
n

mn

ρn

W ′
h(xm − xn)
xm − xn

, (A.7)

Bmn = − 2
γm

mn

ρn

W ′
h(xm − xn)
xm − xn

. (A.8)
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13) F. Macià, J. M. Sánchez, A. Souto-Iglesias and L. M. González, Int. J. Numer. Methods
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