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Abstract. We discuss different aspects of the dynamics of the Schrödinger
flow on a compact Riemannian manifold that are related to the behavior of
high-frequency solutions. In particular we show that dispersive (Strichartz)
estimates fail on manifolds whose geodesic flow is periodic (thus generalizing
the well-known result for spheres proved via zonal spherical harmonics). We
also address the issue of the validity of observability estimates. We show
that the geometric control condition is necessary in manifolds with periodic
geodesic flow and we give a new, geometric, proof of a result of Jaffard on
the observability for the Schrödinger flow on the two-torus. All our proofs
are based on the study of the structure of semiclassical (Wigner) measures
corresponding to solutions to the Schrödinger equation.
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1. Introduction

Let (M, g) be a compact, smooth Riemannian manifold. The Schrödinger flow
on (M, g) associates to an initial datum u0 ∈ L2 (M) the solution u (t, ·) to the
Schrödinger equation:{

i∂tu (t, x) + ∆xu (t, x) = 0, (t, x) ∈ R×M,

u|t=0 = u0.
(1.1)

Above, ∆x denotes the Laplace-Beltrami operator corresponding to (M, g). Since
M is compact, the spectrum of −∆x consists of eigenvalues 0 = λ0 < λ1 ≤ λ2...
that tend to infinity. We shall denote by (ψλn

)n∈N an orthonormal basis of L2 (M)
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consisting of eigenfunctions −∆xψλn = λnψλn . One has u (t, ·) = eit∆xu0 and the
following representation holds:

eit∆xu0 =
∑
n∈N

e−iλntû0 (λn)ψλn
, provided u0 =

∑
n∈N

û0 (λn)ψλn
. (1.2)

Two direct consequences may be extracted from this formula. First, that the dy-
namics of the Schrödinger flow are almost-periodic; second, that the L2 (M)-norm
is conserved by eit∆x . Note that both these properties hold regardless of the specific
geometry of (M, g).

Another dynamical feature of eit∆x that is not so easily interpreted from
(1.2) is its dispersive character. The high-frequency modes of a solution to the
Schrödinger equation travel at a higher speed than is low-frequency counterparts.1

This result in a regularizing effect on the singularities of the initial datum which
is usually quantified through dispersive estimates (also known as Strichartz esti-
mates) of the type: ∥∥eit∆xu0

∥∥
Lp([0,1]×M)

≤ C ‖u0‖Hs(M) . (1.3)

Such an estimate is known to hold for M = Rd when p = p0 (d) := 2 (2 + d) /d
and s = 0. For a general d-dimensional compact manifold M , Burq, Gérard and
Tzvetkov [3] have shown that (1.3) also holds for p = p0 (d) but with s = 1/p
(which is half the exponent given by the Sobolev embedding theorem).

This value of s is not optimal in general; in fact, the infimum s (p,M) of the
values s for which (1.3) holds is a quantity that depends heavily on the specific
geometry of the manifold M considered. For instance, when M is the flat torus
Td, Bourgain has shown [2] that s

(
p0 (d) ,Td

)
= 0 for d = 1, 2 (although the

estimate is actually false for s = 0), and it holds for d = 1, p = 4, s = 0 as
shown by Zygmund [32]. When (M, g) has periodic geodesic flow, (1.3) holds for
p = 4, s > d/4−1/2 and d ≥ 3 (s > 1/8 if d = 2), which is again smaller than 1/p.
Moreover, these values are optimal on standard spheres Sd; these results are proved
in [3]. These considerations can be interpreted as the fact that the dispersive effect
for the Schrödinger flow is stronger on tori than on spheres.

The validity of dispersive estimates is closely related to the high-frequency
behavior of the solutions to (1.1). These behavior is tested on highly oscillating
sequences of initial data, i.e. sequences

(
uh

0

)
whose L2 (M)-norm is concentrated

on frequencies localized towards infinity as h → 0+. Typical examples of such
initial data are (strictly) h-oscillating sequences

(
uh

0

)
, which are of the form:

uh
0 =

∑
a/h≤

√
λn≤b/h

û0 (λn)ψλn
, for some b > a > 0, (1.4)

1However, this is readily seen when M is the Euclidean space equipped with the standard metric.

The solution issued from a plane-wave initial datum eiξ·x is precisely eiξ·(x−tξ), which travels at

velocity ξ.
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or those of W.K.B. type, uh
0 (x) := eiS0(x)/h for some S0 ∈ C∞ (M). For small h,

the behavior of eit∆xuh
0 turns out to be related to the dynamics of the geodesic

flow of (M, g). In particular, up to times t of the order of h, the classical W.K.B.
method gives a very precise description of the structure of these solutions in terms
of propagation along geodesics of M ; however, it fails to describe the global in time
evolution. A simpler, although more general, approach consists in understanding
the limiting behavior as h→ 0+ of the position densities:

nh (t) :=
∣∣eit∆xuh

0

∣∣2 .
This object is physically relevant, in the context of the quantum-classical corre-
spondence principle, as it describes the asymptotic behavior of the position prob-
ability density of a free quantum particle propagating in M . If

(
uh

0

)
is bounded in

L2 (M), the measures nh are bounded in L∞ (R;M+ (M)), where M+ (M) stands
for the set of positive Radon measures on M . Therefore it has at least a weak-∗
accumulation point ν ∈ L∞ (R;M+ (M)); these are sometimes called quantum
limits or defect measures.

It can be shown (see for instance [24]) that the support of ν is an union
of geodesics of M . The precise structure of the set of such accumulation points
depends heavily on the particular dynamical properties of the geodesic flow of M .
When it is completely integrable, some results have been obtained in [24, 25] by
identifying the structure of the set of semiclassical (or Wigner) measures corre-
sponding to

(
eit∆xuh

0

)
. These are obtained as limits of some microlocal lifts to

T ∗M of the densities nh (t), known as Wigner distributions (a systematic presen-
tation is given in [15, 23, 16, 17, 4], see also Section 2 for precise definitions).2

In Section 3 we shall present a new approach to the structure result of [25] for
semiclassical measures on the flat torus Td.

The knowledge of the structure of the set of quantum limits in M can be
used to show the failure of dispersive estimates (1.3) in the case s = 0. This is due
to the fact that whenever (1.3) holds one has nh ∈ Lp/2 ([0, 1]×M), and the same
holds for any quantum limit ν. In particular, since p/2 ≥ 1, (1.3) implies that
any quantum limit must be absolutely continuous with respect to the Riemannian
measure in M . If one is able to produce a sequence of initial data

(
uh

0

)
that gives

a quantum limit which has a nontrivial singular component then no dispersive
estimate may hold for eit∆x in M . We shall apply this strategy to prove, in Section
4, the following result.

Theorem 1.1. Let (M, g) be a manifold with periodic geodesic flow. Then the dis-
persive estimate ∥∥eit∆xu0

∥∥
Lp([0,1]×M)

≤ C ‖u0‖L2(M) (1.5)

fails for every p > 2.

2We refer the reader to [7, 31] for a comparison between the semiclassical measure and the

W.K.B. approaches.
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As was pointed out by the referee, the failure of the dispersive estimate in
this setting can also be obtained combining the optimality of the analogous of the
Strichartz estimates for spectral projectors proved by Sogge (see [30], Corollary
5.1.2) together with the precise spectral results for the Laplacian on manifolds
with periodic geodesic flow by Duistermaat-Guillemin [10] and Colin de Verdière
[8]. This strategy allows to show that estimate (1.5) fails even if the L2-norm is
replaced by a Sobolev norm Hs with s < δ(p), where

δ (p) :=


d−1
2

(
1
2 −

1
p

)
if 2 < p ≤ 2(d+1)

d−1 ,

d
(

1
2 −

1
p

)
− 1

2 if p ≥ 2(d+1)
d−1 ,

denotes Sogge’s exponent.
Note that the approach we used to prove Theorem 1.1 cannot be used to

disprove the dispersive estimate in the case of the flat torus T2 and 2 < p < 4 =
p0 (2) and s = 0, since every quantum limit is absolutely continuous with respect
to the Lebesgue measure in that case (see [25] for a proof). This suggests that an
eventual failure of the dispersive estimate in this case must be realised by a more
subtle mechanism.

The third and final aspect of the dynamics of the Schrödinger flow we want to
discuss here is related to a quantitative version of the unique continuation property
known as observability. Take T > 0 and an open set U ⊂M ; the Schrödinger flow
eit∆x is said to satisfy the observability property for T and U whenever a constant
C = CT,U > 0 exists such that

‖u0‖L2(M) ≤ C

∫ T

0

∫
U

∣∣eit∆xu0 (x)
∣∣2 dxdt (1.6)

for every initial datum u0 ∈ L2 (M). Note that the fact that an estimate like (1.6)
holds implies that whenever two solutions to the Schrödinger equation are close to
each other in L2 ((0, T )× U)-norm they must be globally close. In particular, two
solutions that coincide in (0, T )×U must be identical. The observability property
is relevant in Control Theory [22], and Inverse Problems [18].

A sufficient condition for (1.6) to hold was found by Lebeau [20] (see also
[9]). It is the following.

There exists L0 > 0 such that
every geodesic of (M, g) of length smaller than L0 intersects U.

(1.7)

However, this condition is not necessary in general, as follows from the works of
Jaffard [19] or Burq and Zworski [6]. Nevertheless, we shall show in Section 4 that
(1.7) is equivalent to (1.6) when (M, g) has periodic geodesic flow.

Theorem 1.2. Let (M, g) be a compact manifold with periodic geodesic flow. If the
observability estimate (1.6) holds for some T > 0 and some open set U ⊂M then
U must satisfy (1.7). As a consequence, (1.6) and (1.7) are equivalent.
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The proof of this result will be again based on the high-frequency properties
of the Schrödinger flow; and in particular on the analysis of the set of semiclassical
measures on M . Note that the role of semiclassical measures in the context of
observability estimates was first noticed by Lebeau [21]. As mentioned before,
condition (1.7) is not in general necessary for (1.6) to hold. For instance, when
M = T2, the two-dimensional standard torus equipped with the flat metric, Jaffard
[19] proved the following result (see also [5, 27] for related results for eigenfunctions
of the Laplacian).

Theorem 1.3. Let (M, g) =
(
T2,flat

)
. Given any T > 0 and any open set U ⊂ T2

there exist a constant C > 0 such that the observability estimate (1.6) holds.

The original proof of this result is based on results on pseudo-periodic func-
tions due to Kahane. In Section 4 we shall give a new proof of this result which is
completely microlocal and relies on the structure result for semiclassical measures
for the Schrödinger flow on the torus presented in [25].

2. Semiclassical measures and the Schrödinger flow

Semiclassical measures are a very convenient tool in the high-frequency analysis
of a sequence

(
uh

)
bounded in L2 (M). These objects are a microlocal version

of the well known defect measures, that describe the local concentration of the
L2 (M)-norm of

(
uh

)
. Assume that

(
uh

)
is bounded in L2 (M); then the sequence

of densities
nh :=

∣∣uh
∣∣2 dm

is bounded in L1 (M) (here dm stands for the measure on M induced by the
Riemannian metric g). Helly’s theorem then ensures that, up to the extraction of
a subsequence, that (nh) weakly converges, as h → 0+, towards a finite, positive
Radon measure ν ∈ M+ (M) which is usually called a defect measure for

(
uh

)
.

The support of ν describes the regions on which the “energy” of
(
uh

)
concentrates.

For instance, if uh is supported in some local chart and given by a concentration
profile:

1
hd/2

ρ

(
x− x0

h

)
(2.1)

then one has ν (x) = ‖ρ‖2L2(M) δ (x− x0). On the other hand, if uh is oscillating,
written in a coordinate chart as:

ρ (x) eiξ0/h·x, (2.2)

then ν (x) = |ρ (x)|2 dm, whatever the value of ξ0. The inability of defect measures
to distinguish between different directions of oscillation turns out to be a serious
difficulty when dealing with solutions to wave-type equations. For instance, sup-
pose M = Rd equipped with the standard metric, and take uh

0 to be of the form
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(2.2). A direct computation gives that the solution eiht∆xuh
0 of the semiclassical

Schrödinger equation issued from uh
0 satisfies:

nh (ht) (x) :=
∣∣eiht∆xuh

0 (x)
∣∣2 =

∣∣eiht∆xρ (x− t2ξ0)
∣∣2 .

Therefore the densities nh (ht) weakly converge, as h→ 0+, to the defect measure
νt (x) := |ρ (x− t2ξ0)|2 dx which does depend on ξ0. In particular, the defect mea-
sure of the initial data ν0 = |ρ|2 dx does not determine uniquely that corresponding
to the evolution, since the latter depends explicitly on ξ0.

This motivates the introduction of an object that takes into account the
nature of the oscillations. The Wigner distribution wh of the function uh achieves
this. Given a test function a ∈ C∞c (T ∗M) on the cotangent bundle of M , we
defined the action of wh against a as:

〈wh, a〉 := (oph (a)uh|uh)L2(M),

where oph (a) denotes the semiclassical pseudodifferential operator of symbol a
obtained by Weyl’s quantization rule.3 When M is the Euclidean space equipped
with the standard metric, oph(a) is defined by the formula:

oph (a)u (x) :=
∫

Rd

∫
Rd

a

(
x+ y

2
, hξ

)
u (y) ei(x−y)·ξdy

dξ

(2π)d
.

This definition extends to a manifold by applying it locally, in a coordinate chart,
and then assembling it by means of a partition of unity. This expression for wh

defines it as an element of D′ (T ∗M), the set of distributions on T ∗M . The Winger
distribution is actually a lift of the densities nh to phase-space T ∗M for, if ϕ ∈
C∞ (M) one has oph (ϕ) = ϕ, the operator defined by multiplication by ϕ, and
therefore,

〈wh, ϕ〉 = (ϕuh|uh)L2(M) =
∫

M

ϕnh.

When M = Rd, we may identify T ∗M ≡ Rd
x × Rd

ξ . If ϕ ∈ C∞c
(
Rd

)
only depends

of ξ then oph (ϕ) = ϕ (hDx) is the Fourier multiplier of symbol ϕ. Hence,

〈wh, ϕ〉 =
∫

Rd

ϕ (ξ)
∣∣∣∣ûh

(
ξ

h

)∣∣∣∣2 dξ

(2πh)d
;

this shows that the projection of wh on the variable ξ measures the concentration
of the L2

(
Rd

)
-norm of the h-rescaled Fourier transform of uh. The fact that the

limits of Wigner distributions are positive measures is non-trivial, and was proved
by Gérard [15] and Lions and Paul [23].

Theorem 2.1. Let
(
uh

)
be a bounded sequence in L2 (M). Then there exists a

subsequence (which we do not relabel) and a finite positive Radon measure µ ∈
M+ (T ∗M) such that

wh ⇀ µ, as h→ 0+ in D′ (T ∗M) .

3The books [11, 26] are clear and recent introductions to semiclassical microlocal analysis, we

refer the reader to them for background and precise definitions on pseudodifferential operators.
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In this situation we say that µ is the semiclassical measure of the sequence(
uh

)
. If in addition,

(
uh

)
is h-oscillating, that is:

lim sup
h→0+

∑
√

λn≥R/h

∣∣∣ûh (λn)
∣∣∣2 → 0, as R→∞,

then the defect measure ν of
(
uh

)
is obtained by projecting its semiclassical mea-

sure µ on the ξ-component: ∫
T∗

x M

µ (x, dξ) = ν (x) .

The additional variable allows to keep track of the directions of oscillation.
A direct computation gives that the semiclassical measure of the oscillating

sequence (2.2) is |ρ (x)|2 dxδ (ξ − ξ0), therefore keeping track of the direction of
oscillation ξ0. A particularly interesting example is that of a wave-packet or co-
herent state. It is defined as a sequence

(
uh

)
in L2 (M), supported in local chart

that is written in coordinates as:
1

hd/4
ρ

(
x− x0√

h

)
eiξ0/h·x (2.3)

for some ρ ∈ C∞ (M). The semiclassical measure of this sequence is

‖ρ‖2L2(M) δ (x− x0) δ (ξ − ξ0) .

For a more detailed account on these issues, we refer the reader to the survey
articles [4, 17], and the concise presentation of [16].

Let us now turn to the analysis of semiclassical measures for sequences of so-
lutions to the Schrödinger equation. Let

(
uh

0

)
be a bounded, h-oscillating sequence

in L2 (M). We define the time-dependent Wigner distributions:

〈wh (t) , a〉 := (oph (a) eit∆xuh
0 |eit∆xuh

0 )L2(M), a ∈ C∞c (T ∗M) . (2.4)

The following result was proved in [24].

Theorem 2.2. With the above notations and hypotheses, the following holds. There
exists a subsequence, which we do not relabel, and a positive measure µ ∈
L∞ (R;M+ (T ∗M)) such that:

lim
h→0+

∫
R
φ (t) 〈wh (t) , a〉 dt =

∫
R×T∗M

φ (t) a (x, ξ)µt (dx, dξ) dt, (2.5)

for every φ ∈ L1 (R), a ∈ C∞c (T ∗M). Moreover, for all ϕ ∈ C∞ (M),

lim
h→0+

∫
R×M

φ (t)ϕ (x)
∣∣eit∆xuh

0 (x)
∣∣2 dmdt =

∫
R×T∗M

φ (t)ϕ (x)µt (dx, dξ) dt,

(2.6)
and for almost every t ∈ R, the measure µt is invariant by the geodesic flow φg

s of
(M, g):∫

T∗M

a (φg
s (x, ξ))µt (dx, dξ) =

∫
T∗M

a (x, ξ)µt (dx, dξ) , for every s ∈ R. (2.7)
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Note that the convergence in (2.5) is precisely the convergence in the weak-∗
topology in L∞ (R;D′ (T ∗M)). One cannot expect pointwise convergence of the
distributions wh (t) for every t ∈ R, since as shown in (2.7) the limit measure
becomes instantaneously invariant by the geodesic flow. However, if one considers
instead the solutions to the semiclassical Schrödinger equation, which corresponds
to taking limits of (wh (ht)), convergence is locally uniform in t, and the limiting
measure µt is computed through µ0 by transport along the geodesic flow φg

t , see
[15, 23, 17].

3. Manifolds with completely integrable geodesic flow

In order to gain further insight on the structure of the set of semiclassical measures
obtained as a limit (2.5) we must make additional hypotheses on the dynamics of
the geodesic flow φg

t of the manifold under consideration. Here we shall deal with
manifolds with completely integrable geodesic flow; in particular, we shall focus on
two particular classes of geometries: manifolds with periodic geodesic flow (also
known as Zoll manifolds, see the book [1] for a comprehensive discussion on this
dynamical hypothesis) and the flat torus (which is a model case for completely
integrable geodesic flows).

In the first case we have an explicit formula for the semiclassical measure µt

in terms of that of the initial data µ0. In [24], the following is proved.

Theorem 3.1. Let (M, g) be a manifold with periodic geodesic flow. Let
(
uh

0

)
be as in

Theorem 2.2; suppose that (2.5) holds and that wh (0) converges to a semiclassical
measure µ0. If µ0 ({ξ = 0}) = 0 then, for a.e. t ∈ R and a ∈ C∞c (T ∗M) we have:∫

T∗M

a (x, ξ)µt (dx, dξ) =
∫

T∗M

〈a〉 (x, ξ)µ0 (dx, dξ) , (3.1)

where 〈a〉 denotes the average of a along the geodesic flow:

〈a〉 (x, ξ) := lim
T→∞

1
T

∫ T

0

a (φg
t (x, ξ)) dt.

Note that, in particular, µt is constant for a.e. t ∈ R. When (M, g) =
(
Td,flat

)
the situation is rather different, the structure of µt is rather more involved. In order
to get some insight on the form of the limits of wh (t) start noticing that Egorov’s
theorem (see [11, 26]) is an identity when dealing with the Weyl quantization rule
on the torus:

e−it∆x oph (a) eit∆x = oph

(
a ◦ φflat

t/h

)
.

Hence, in view of (2.4), for ϕ ∈ L1 (R) and a ∈ C∞c
(
T ∗Td

)
one has:∫

R
ϕ (t) 〈wh (t) , a〉 dt =

〈
wh (0) , 〈a〉hϕ

〉
,

where

〈a〉hϕ (x, ξ) :=
∫

R
ϕ (t) a

(
x+

t

h
ξ, ξ

)
dt. (3.2)
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Let us introduce some notation. Denote by W the set whose elements are straight
lines in Zd \ {0} passing through the origin. We have a disjoint union

Zd =
⊔

ω∈W
ω t {0} .

Given a ∈ C∞c
(
T ∗Td

)
we have a Fourier series decomposition:

a (x, ξ) =
∑
k∈Zd

â (k, ξ)ψk (x) , ψk (x) :=
eik·x

(2π)d/2
.

Now, denote by aω the orthogonal projection of a into the set of functions in
L2

(
Td

)
whose Fourier modes lie in ω, i.e.,

aω :=
∑
k∈ω

â (k, ·)ψk.

Taking now (3.2) into account we find that:

〈aω〉hϕ (x, ξ) = bωa,ϕ

(
x, ξ,

ξ · νω

h

)
,

with
bωa,ϕ (x, ξ, σ) :=

∫
R
ϕ (t) aω (x+ tσνω, ξ) dt,

where νω denotes a unit vector in the direction ω. Therefore, testing wh (0) against
〈aω〉hϕ amounts to perform a blow-up of wh (0) in the direction νω. This type of
object has been already studied in the literature (in the context of Euclidean space)
under the name of two-microlocal semiclassical measures. We refer the reader to
the works of Fermanian-Kammerer [13, 12], Fermanian-Kammerer and Gérard [14],
Miller [28], and Nier [29]. Following [25] one shows that, given ω ∈ W there exists
a positive measure µ0

R (ω, ·) on

Iω :=
{
ξ ∈ Rd : k · ξ = 0 for k ∈ ω

}
taking values in the set of trace-class operators L1

(
L2 (γω)

)
on the space of square-

summable functions defined on any geodesic γω in the direction ω such that:

lim
h→0+

〈
wh (0) , b

(
x, ξ,

ξ · νω

h

)〉
= tr

∫
Iω

b̃ (s, ξ,Ds)µ0
R (ω, dξ)

where b ∈ C∞c
(
T ∗Td × R

)
is a functions whose non-zero Fourier modes in x cor-

responds to frequencies in ω. Note that in this case,

b (x, ξ, σ) = b̃ (x · νω, ξ, σ)

where b̃ ∈ C∞c
(
γω × Rd × R

)
is the restriction of b (·, ξ, σ) to γω. For every ξ ∈ Iω,

the pseudodifferential operator b̃ (s, ξ,Ds) is a compact operator in L2 (γω). A
straightforward computation then gives:

lim
h→0+

〈
wh (0) , 〈aω〉hϕ

〉
=

∫
R
ϕ (t) tr

∫
Iω

ãω (·, ξ)µt
R (ω, dξ) dt, (3.3)
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where ãω (·, ξ) denotes the operator of multiplication in L2 (γω) by the restriction of
aω (·, ξ) to γω, and the trace-class operator valued measures µt

R (ω, ·) are defined as
the solutions to the initial-value problem for a density-matrix Schrödinger equation
on L2 (γω): {

i∂tµ
t
R (ω, ξ) =

[
−∂2

s , µ
t
R (ω, ξ)

]
,

µt
R (ω, ξ) |t=0 = µ0

R (ω, ξ) .
(3.4)

The right-hand side of (3.3) can be written as∫
R
ϕ (t)

∫
Td×Iω

aω (x, ξ) ρt
ω (dx, dξ) ,

where ρω is a signed measure on Iω whose projection on x is absolutely continuous
with respect to the Lebesgue measure and whose non-zero Fourier modes lie in ω.
The measure ρt

ω is obtained as the extension to Td × Iω of the density defined on
γω × Iω by formula (3.3), see [25] (the sum in ω of these two-microlocal measures
was called there the resonant semiclassical measure of

(
uh

0

)
). Therefore, we recover

the main result [25].

Theorem 3.2. Let (M, g) =
(
Td,flat

)
, suppose

(
uh

0

)
satisfies the hypotheses of

Theorem 2.2 and that wh (0) ⇀ µ0 as h→ 0+. Then, for a.e. t ∈ R we have:

µt =
∑
ω∈W

ρt
ω + dx⊗ µ0,

where

µ0 (ξ) := (2π)−d
∫

Td

µ0 (dy, ξ) ,

and the ρt
ω are defined by the above construction. In particular, they are signed

measures concentrated on Td × Iω, their non-zero Fourier modes in x are in the
line ω and its projection on the x-component is absolutely continuous with respect
to the Lebesgue measure. Moreover, each of the measures

ρt
ω + dx⊗ µ0eIω

is non-negative.

Let us stress that the measures ρt
ω are not determined by the semiclassical

measures of the initial data µ0. In [24, 25] examples of sequences
(
uh

0

)
and

(
vh
0

)
are given having the same semiclassical measure µ0 but such that their respective
time-dependent measures ρt

ω differ. In fact, a sufficient condition to have ρt
ω = 0

is that
lim

h→0+

∥∥χ (νω ·Dx)uh
0

∥∥
L2(Td)

= 0,

for every χ ∈ C∞c (R) (see [25]).
Note also that the term

∑
ω∈W ρt

ω is concentrated on the set

Ω :=
{
ξ ∈ Rd : ξ · k = 0 for some k ∈ Zd \ {0}

}
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of resonant frequencies. When the measure µ0 of the initial data does not charge
this set then the measure µt equals dx ⊗ µ0. This is the analogue in this context
of the averaging formula (3.1).

When µ0 ({ξ = 0}) = 0 and d = 2, it is proved in [25] that in fact the
whole measure

∫
Rd µt (·, dξ) is absolutely continuous with respect to the Lebesgue

measure. This is in great contrast with the situation on Zoll manifolds, where
the semiclassical measures µt may be singular with respect to the Riemannian
measure. This again can be interpreted as the fact that the dispersive effect is
much stronger on the torus than on manifolds with periodic geodesic flow.

4. Dispersion and observability for the Schrödinger flow

Let us now turn to the proof of the main results of this article.

Proof of Theorem 1.1. Take (x0, ξ0) ∈ T ∗M with ξ0 6= 0 and let
(
uh

0

)
be a wave-

packet type sequence of initial data, as defined in (2.3) with
∥∥uh

0

∥∥
L2(M)

= 1. Then
we have that wh (0) ⇀ δ (x− x0) δ (ξ,−ξ0) as h → 0+. The averaging formula
(3.1) in Theorem 3.1 then gives, for every a ∈ C∞c (T ∗M):

lim
h→0+

∫ 1

0

〈wh (t) , a〉 dt =
∫

T∗M

a (x, ξ) δγ (dx, dξ) ,

where δγ is the Dirac mass supported on γ, the geodesic in T ∗M issued from
(x0, ξ0). Identity (2.6) then gives:

lim
h→0+

∫ 1

0

∫
M

ϕ (x)
∣∣eit∆xuh

0

∣∣2 dtdx =
∫

M

ϕ (x) δγM
(dx) , (4.1)

where γM stands for the projection of γ onto M . Since δγM
is singular with respect

to the Riemannian measure, we conclude that no dispersive estimate may hold for
p > 2. �

Proof of Theorem 1.2. Suppose that the open set U ⊂ M does not satisfy the
geometric condition (1.7). Therefore, there exists a geodesic γM in M that does not
intersect U . Let γ denote the lift of γM to T ∗M . Let (x0, ξ0) ∈ γ and consider the
wave-packet sequence

(
uh

0

)
centered at that point and satisfying

∥∥uh
0

∥∥
L2(M)

= 1.
Reasoning as in the preceding proof, we find that (4.1) holds. In particular, if
ϕ ∈ C∞ (M) is supported in a neighborhood of U that does not intersect γM we
have:

lim
h→0+

∫ 1

0

∫
M

ϕ (x)
∣∣eit∆xuh

0

∣∣2 dtdx = 0.

Since
∥∥uh

0

∥∥
L2(M)

= 1 we conclude that no constant C > 0 exists such that estimate
(1.6) holds. �
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Proof of Theorem 1.3. Before proving Jaffard’s result Theorem 1.3, we recall that
the semiclassical reduction argument in [20] (which combines a Littlewood-Payley
decomposition with a unique continuation results for eigenfunctions of the Lapla-
cian) reduces the proof of an observability estimate (1.6) for any function in L2 (M)
to establishing it for strictly oscillating sequences of initial data. This, in turn, is
equivalent to establishing the following fact.

Let
(
uh

0

)
be a strictly h-oscillating sequence ( i.e. verifying (1.4)) such that

lim
h→0+

∫ T

0

∫
U

∣∣eit∆xuh
0 (x)

∣∣2 dxdt = 0. (4.2)

Then
lim

h→0+

∥∥uh
0

∥∥
L2(T2)

= 0.

This equivalence is a straightforward consequence of the closed graph theo-
rem. Let µ ∈ L∞

(
R;M+

(
T ∗T2

))
denote the semiclassical measure (in the sense of

(2.5)) associated to (possibly a subsequence of)
(
eit∆xuh

0

)
. Suppose moreover that(

uh
0

)
has a semiclassical measure µ0. Our goal is to show that, assuming (1.4)), we

can conclude that (4.2) implies that µ0 = 0. Start noticing that (4.2) implies that
for every ϕ ∈ C

(
T2

)
supported in U we have:∫ T

0

∫
U

ϕ (x)µt (dx, dξ) dt = 0.

As shown in Theorem 3.2 the measure µ can be written as:

µt =
∑
ω∈W

ρt
ω + dx⊗ µ0

and ρt
ω + dx⊗ µ0eIω ≥ 0. Moreover, the Fourier coefficients of ρt

ω lie in ω.
Since

(
uh

0

)
is strictly oscillating we have µ0 ({ξ = 0}) = 0. Therefore, setting

Ω :=
⋃

ω∈W Iω we have

µ0 :=
∑
ω∈W

µ0eIω
+ µ0eΩc .

Since all the measures µt
ω := ρt

ω + dx ⊗ µ0eIω
are positive, we can write, for a.e.

t ∈ R,
µt =

∑
ω∈W

µt
ω + dx⊗ µ0eΩc ,

in the sense of weak convergence of measures. Now, if ϕ ∈ C
(
T2

)
is supported in

U , the above remarks imply:

0 =
∑
ω∈W

∫ T

0

∫
U×Iω

ϕ (x)µt
ω (dx, dξ) dt+ Tµ0 (Ωc)

∫
U

ϕ (x) dx.

Since ϕ is arbitrary we conclude, since µ is positive:

µ0 (Ωc) =
1

(2π)2
µ0

(
T2 × Ωc

)
= 0, (4.3)
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and, for every t ∈ [0, T ],
µt

ω (U × Iω) = 0.
To conclude that µ0 = 0 it remains to show that µ0 does not charge the set Ω of
resonant frequencies. By construction,

∫
Iω
µt

ω is invariant by translations along di-
rections in Iω. Therefore, µt

ω (Uω × Iω) = 0, where Uω := {x+ sξ : x ∈ U, ξ ∈ Iω}.
Let µ0

R denote a resonant Wigner measure corresponding to
(
uh

0

)
as defined by

(3.3). Let γω be the geodesic in T2 through the origin in the direction ω. Define
mt

ω ∈ L1
(
L2 (γω)

)
as the Hermitian, positive operators that solve the density-

matrix Schrödinger equation:

i∂tm
t
ω =

[
−∂2

s ,m
t
ω

]
, mt

ω|t=0 = µ0
R (ω, Iω) . (4.4)

With our preceding notations, we have mt
ω = µt

R (ω, Iω). Let Jω := Uω∩γω, denote
by 1Jω the characteristic function of Jω in γω; note that 1Uω (x) = 1Jω (x · νω),
where νω is a unit vector in ω. Let λ1Jω

denote the operator on L2 (γω) acting by
multiplication by 1Jω

. Then, Theorem 3.2 shows that

tr
(
λ1Jω

mt
ω

)
=

∫
Uω×Iω

ρt
ω (dx, dξ) +

|Uω|
(2π)2

trµ0
R (Iω)

=
∫

Uω×Iω

µt
ω (dx, dξ)− |Uω|

[
µ0 (Iω)− (2π)−2 trµ0

R (Iω)
]
.

Therefore tr
(
λ1Jω

mt
ω

)
+ |Uω|

[
µ0 (Iω)− (2π)−2 trµ0

R (Iω)
]

= 0 for t ∈ [0, T ];
unique continuation for (4.4) then implies

trmt
ω + |Uω|

[
µ0 (Iω)− (2π)−2 trµ0

R (Iω)
]

= 0,

for every t ∈ R. Finally, notice that µ0 (Iω) ≥ (2π)−2 trµ0
R (Iω) ([25], Proposition

8). We conclude that trmt
ω = 0 and, consequently, µ0

ω

(
T2 × Iω

)
= trµ0

R (Iω) =
trm0

ω = 0 as well. Therefore, we have shown that µ0(T2 ×Ω) = 0, combining this
with (4.3) we conclude that µ0 = 0 as we wanted to prove. �
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