SEMICLASSICAL ANALYSIS Fabricio Macià Universidad Politécnica de Madrid fabricio.macia@upm.es

EXERCISES

1. Let $e^{i\frac{t}{\hbar}\hat{H}_h}$ denote the propagator for the semiclassical Schrödinger equation corresponding to $\hat{H}_h := -\frac{\hbar^2}{2}\Delta$. Show that for every $u \in \mathcal{S}(\mathbb{R}^d)$ the following holds:

$$\lim_{t \to \infty} \left\| e^{i\frac{t}{h}\widehat{H}_h} u - \frac{1}{(iht)^{d/2}} e^{i\frac{|x|^2}{2ht}} \widehat{u}\left(\frac{x}{ht}\right) \right\|_{L^2(\mathbb{R}^d)} = 0.$$

2. Let Q be a symmetric, nonsingular $d \times d$ matrix with real entries. Show that the Fourier transform of

$$e^{\frac{i}{2}Qx \cdot x}$$

is

$$\left(\frac{2\pi}{\left|\det Q\right|}\right)^{d/2}e^{i\frac{\pi}{4}\operatorname{sgn}Q}e^{-\frac{i}{2}Q^{-1}\xi\cdot\xi},$$

where $\operatorname{sgn} Q$ stands for the signature of Q.

3. Let $u(x) := \rho(x) e^{i\frac{\xi_0}{h} \cdot x}$ with $\rho \in L^2(\mathbb{R}^d)$ and $\xi_0 \in \mathbb{R}^d$. Show that:

$$e^{ith\Delta/2}u\left(x\right) = e^{i\frac{\xi_{0}}{h}\cdot x}e^{it\frac{|\xi_{0}|^{2}}{2h}}\left(e^{ith\Delta/2}\rho\right)\left(x-t\xi_{0}\right).$$

4. Let $u(x) := \left(\pi\sqrt{h}\right)^{-d/2} e^{-\frac{|x-x_0|^2}{2h}} e^{i\frac{\xi_0}{h}\cdot x}$ with $(x_0,\xi_0) \in \mathbb{R}^d \times \mathbb{R}^d$. Show that:

$$\left|e^{ith\Delta/2}u\right|^{2}(x) = \frac{1}{\left[\pi\sqrt{h\left(1+t^{2}\right)}\right]^{d}}\exp\left(-\frac{\left|x-x_{0}-t\xi_{0}\right|^{2}}{h\left(1+t^{2}\right)}\right)$$

- 5. Let $v \in L^2(\mathbb{R}^d)$ and set $\mathcal{F}_h v(\xi) := (2\pi h)^{d/2} \, \widehat{v}(\xi/h)$ for h > 0.
 - (a) Show that $|\mathcal{F}_h v|^2 d\xi$ is a probability measure whenevere $|v|^2 dx$ is.
 - (b) Let $u(x) := \frac{1}{h^{d/4}} \rho\left(\frac{x-x_0}{\sqrt{h}}\right) e^{i\frac{\xi_0}{h} \cdot x}$ for $(x_0, \xi_0) \in \mathbb{R}^d \times \mathbb{R}^d$ and $\rho \in L^2(\mathbb{R}^d)$. Show that $\left| \tau - \frac{1^2}{2} \left(\xi \right) - \frac{1}{2} \right|_{\mathcal{L}} \left(\xi - \xi_0 \right) \right|^2$

$$\mathcal{F}_{h}u|^{2}\left(\xi\right) = \frac{1}{\left(2\pi\sqrt{h}\right)^{d/2}}\left|\widehat{\rho}\left(\frac{\xi-\xi_{0}}{\sqrt{h}}\right)\right|^{2}.$$

(c) Show that for every $v \in L^2(\mathbb{R}^d)$,

$$\left|\mathcal{F}_{h}e^{ith\Delta/2}v\right|^{2} = \left|\mathcal{F}_{h}v\right|^{2}.$$

6. Let $\varphi \in \mathcal{S}(\mathbb{R}^d)$. Let $a(x,\xi) := \varphi(\xi)$ for $(x,\xi) \in \mathbb{R}^d \times \mathbb{R}^d$. Show that:

$$\operatorname{Op}_{h}(a) = \varphi(hD_{x}).$$

7. Suppose that $p \in C^{\infty}(\mathbb{R}^d \times \mathbb{R}^d)$ is a polynomial of degree at most two. Show that for every $a \in \mathcal{S}(\mathbb{R}^d \times \mathbb{R}^d)$ there exist $r \in \mathcal{S}(\mathbb{R}^d \times \mathbb{R}^d)$ such that:

$$Op_{h}(p) Op_{h}(a) = Op_{h}(pa) + \frac{h}{2i} Op_{h}(\{p, a\}) + h^{2} Op_{h}(r),$$

$$Op_{h}(a) Op_{h}(p) = Op_{h}(pa) - \frac{h}{2i} Op_{h}(\{p, a\}) + h^{2} Op_{h}(r),$$

conclude that:

$$\left[\operatorname{Op}_{h}(p), \operatorname{Op}_{h}(a)\right] = \frac{h}{i}\operatorname{Op}_{h}\left(\{p, a\}\right)$$

8. Compute the semiclassical measures with respect to the scale h of the following sequences (u_h) in $L^2(\mathbb{R}^d)$.

(a)
$$u_h(x) = \rho(x) e^{i\frac{\xi_0}{h} \cdot x}, \ \rho \in L^2(\mathbb{R}^d).$$

(b) $u_h(x) = \frac{1}{h^{d/2}}\rho\left(\frac{x-x_0}{h}\right), \ \rho \in L^2(\mathbb{R}^d).$

(c) $u_h(x) = \frac{1}{h^{d/4}} \rho\left(\frac{x-x_0}{\sqrt{h}}\right) e^{i\frac{\xi_0}{h}\cdot x}, \ \rho \in L^2\left(\mathbb{R}^d\right).$

(d)
$$u_h(x) = \rho(x) e^{i\frac{S(x)}{h}}, \rho \in L^2(\mathbb{R}^d), S \in C^1(\mathbb{R}^d).$$

- (e) (u_h) strongly convergent in $L^2(\mathbb{R}^d)$: $||u_h u||_{L^2(\mathbb{R}^d)} \to 0$ as $h \to 0^+$ for some $u \in L^2(\mathbb{R}^d)$.
- 9. Let (ε_n) be a sequence of positive reals such that $\lim_{n\to\infty} \varepsilon_n = 0$. Determine when the sequences defined in the previous exercise are ε_n -oscillating.
- 10. Let $a \in \mathcal{S}(\mathbb{R}^d \times \mathbb{R}^d)$. Let $Op_h^{WP}(a)$ be the operator defined from a by wave-packet quantization. Show:

$$\lim_{h \to 0^+} \left\| \operatorname{Op}_h^{WP}(a) - \operatorname{Op}_h(a) \right\|_{L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)} = 0.$$

11. Let (u_n) be a bounded, h_n -oscillating sequence in $L^2(\mathbb{R}^d)$ that is compact at infinity. Suppose $u_n \rightharpoonup u$ weakly in $L^2(\mathbb{R}^d)$ and let μ be the semiclassical measure of $(u_n - u)$. Show that $\mu = 0$ if and only if $u_n \rightarrow u$ strongly in $L^2(\mathbb{R}^d)$. Show that the conclusion may fail if (u_n) is not h_n -oscillating. 12. A bounded sequence (u_n) in $L^2(\mathbb{R}^d)$ is called strictly h_n -oscillating if it is h_n -oscillating and moreover, for every $\phi \in C_c^{\infty}(\mathbb{R}^d)$:

$$\limsup_{n \to \infty} \int_{|\xi| < \delta/h_n} \left| \widehat{\phi u_n} \left(\xi \right) \right|^2 d\xi \to 0, \quad \text{as } \delta \to 0^+.$$

- (a) Show that if (u_n) is strictly h_n -oscillating then every semiclassical measure μ of the sequence (u_n) (at the scale h_n) satisfies: $\mu(\{\xi = 0\}) = 0$.
- (b) Give an example of a sequence (u_n) such that there is no (h_n) such that (u_n) is strictly h_n -oscillating.
- (c) Show that given a sequence (u_n) that is bounded in $L^2(\mathbb{R}^d)$ it is possible to find (h_n) such that (u_n) is h_n -oscillating.
- 13. Suppose (u_n) and (v_n) are two sequences having as semiclassical measures: μ_1 and μ_2 respectively. Suppose that μ_1 and μ_2 are mutually singular (that is $\mu_1(\Omega) \mu_2(\Omega) = 0$ for every Borel set $\Omega \subset \mathbb{R}^{2d}$)
 - (a) Show that for every $a \in C_c^{\infty}(\mathbb{R}^d \times \mathbb{R}^d)$ one has:

$$\lim_{n \to \infty} (\operatorname{Op}_h(a) u_n | v_n)_{L^2(\mathbb{R}^d)} = 0.$$

- (b) Deduce from the statement above that the semiclassical measure of $(u_n + v_n)$ is $\mu_1 + \mu_2$.
- (c) Suppose moreover that $\widehat{u_n}$ and $\widehat{v_n}$ are supported on a ball of radius $1/h_n$ centered at the origin. Show that:

$$u_n \overline{v_n} \rightharpoonup 0 \quad \text{as } n \to \infty \text{ in } \mathcal{D}'(\mathbb{R}^d).$$

- 14. Consider the operator $\widehat{H}_h := -h^2 \Delta + |x|^2$ on $L^2(\mathbb{R}^d)$ corresponding to the Hamiltonian $H(x,\xi) = |\xi|^2 + |x|^2$. The spectrum of \widehat{H}_h consists only of the eigenvalues $E_k^h = (2k+d)h$ with $k = 0, 1, \dots$ Let $h_n \to 0$ and $k_n \to \infty$. Denote by ψ_n an eigenfuncton of \widehat{H}_h corresponding to the eigenvalue $E_{k_n}^{h_n}$ with $\|\psi_n\|_{L^2(\mathbb{R}^d)} = 1$. Suppose $E_{k_n}^{h_n} \to E$ when $n \to \infty$ and that μ is a semiclassical measure of the sequence (ψ_n) with respect to the scale h_n .
 - (a) Show that μ is supported on $H^{-1}(E)$.
 - (b) Show that μ is invariant by the classical Hamiltonian flow ϕ_t of H.
 - (c) Conclude that for d = 1

$$\int_{\mathbb{R}\times\mathbb{R}} a(x,\xi)\,\mu\left(dx,d\xi\right) = \frac{1}{2\pi\sqrt{E}}\int_0^\pi a\left(\sqrt{E}\left(\cos 2t, -\sin 2t\right)\right)dt.$$