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THESIS ADVISOR / DIRECTOR: LUIS GUIJARRO SANTAMARÍA
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Introducción y resultados
obtenidos

La Geometŕıa Riemanniana estudia cómo la presencia de una métrica Riemanniana en
una variedad diferenciable condiciona su topoloǵıa. Toda variedad diferenciable admite
métricas Riemannianas, por lo tanto es necesario imponer condiciones en la métrica para
obtener posibles restricciones para su existencia. Estas condiciones suelen ser restric-
ciones sobre alguna de las numerosas cantidades que pueden definirse a partir de una
métrica Riemanniana, tradicionalmente en la curvatura, el volumen o el diámetro (ver
[58]). La motivación y el objetivo de esta tesis es el estudio de posibles consecuencias
tanto topólogicas como geométricas de la existencia de métricas con curvatura seccional
positiva y no-negativa.

El primer resultado que conecta la curvatura con la topoloǵıa es el Teorema de Gauss-
Bonnet, que relaciona la integral de la curvatura Gaussiana de una superficie con su
caracteŕıstica de Euler. Para una variedad Riemanniana M de dimensión n se pueden
definir diferentes nociones de curvatura, y en esta tesis nos vamos a centrar en la curvatura
seccional, que tiene fuertes consecuencias cuando se imponen condiciones en ésta. Cuando
la curvatura seccional secM de M es constante e igual a K, el cubrimiento universal
Riemanniano de M es isométrico a Sn (si K = 1), Rn (si K = 0) ó Hn (si K = −1) con sus
métricas canónicas; y se dice que M es una forma espacial esférica (si K = 1), Eucĺıdea (si
K = 0) ó hiperbólica (si K = −1). Si asumimos que la curvatura seccional es no-positiva
(secM ≤ 0), el Teorema de Cartan-Hadamard establece que M es difeomorfa a Rn. Por el
contrario, en el caso de curvatura seccional no-negativa y positiva no se tiene un grado de
conocimiento tan elevado (ver [74]).

Se conocen algunas obstrucciones topológicas para la existencia de métricas de cur-
vatura seccional no-negativa en una variedad compacta M de dimensión n. El Teorema
de Gromov establece que existe una constante universal c(n) tal que los números de Betti
bi(M,F) están acotados superiormente por c(n), para cualquier cuerpo de coeficientes F.
Además, el grupo fundamental de M tiene un conjunto de generadores con c(n) elemen-
tos como máximo. Cheeger y Gromoll demostraron que existe un subgrupo abeliano de
π1(M) con ı́ndice finito. También ellos determinaron la estructura de variedades abiertas
(es decir, no compactas y sin frontera) con curvatura no-negativa en el Soul Theorem (ver
más adelante).
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Para la existencia de métricas con curvatura seccional positiva sólo se conocen dos
obstrucciones adicionales. Sea M una variedad Riemanniana de dimensión n con secM ≥ 1.
El Teorema de Bonnet-Myers establece que el diámetro de M es menor o igual que π,
y por lo tanto M es compacta. Su cubrimiento universal Riemanniano M̃ satisface la
misma cota secM̃ ≥ 1, por lo que M̃ también es compacta y de ah́ı se sigue que el
grupo fundamental de M es finito. El Teorema de Synge nos dice que π1(M) = 0 ó Z2

cuando n es par, y que M es orientable cuando n es impar. Una consecuencia directa
de estos resultados es que ni Sn × S1, ni RPn × RPm admiten métricas con curvatura
seccional positiva. La clásica conjetura de Hopf plantea si S2×S2 admite una métrica con
curvatura seccional positiva (recordemos que el producto Riemanniano de dos variedades
con curvatura positiva contiene planos tangentes de curvatura seccional cero).

Una gran dificultad presente a la hora de estudiar variedades con curvatura seccional
positiva es el escaso número de ejemplos conocidos. Aparte de los espacios simétricos de
rango uno compactos (llamados CROSSes), que son las esferas Sn, los espacios proyectivos
RPn,CPn,HPn y el plano de Cayley CaP2, que existen en las dimensiones correspon-
dientes, sólo se conocen ejemplos en dimensiones 6, 7, 12, 13 y 24. En el estado actual de
conocimiento, para la construcción de nuevos ejemplos son necesarias las submersiones
Riemannianas: a partir de una variedad con curvatura seccional no-negativa, la idea es
construir una submersión Riemanniana sobre otra variedad que pudiera tener curvatura
seccional positiva, gracias a la fórmula de O’Neill. En general esta idea es muy dif́ıcil de
llevar a cabo, lo que sugiere la posibilidad de que haya restricciones para la existencia
de submersiones Riemannianas desde una variedad arbitraria de curvatura seccional no-
negativa.

El primer caṕıtulo de esta tesis lo dedicaremos a estudiar submersiones Riemannianas
π : Mn+k → Bn desde una variedad M cerrada (compacta y sin frontera) con curvatura
seccional positiva, y examinaremos los posibles valores que puede tomar k, la dimensión
de la fibra F k. Nuestras estimaciones involucran al radio de conjugación de B, denotado
por conj(B); y a la longitud de la geodésica cerrada más corta en B, denotada por `0(B).
Recordemos que el radio de conjugación de una variedad Riemanniana es el mı́nimo sobre
las distancias entre puntos conjugados a lo largo de geodésicas; y que en toda variedad
compacta (no importa la curvatura) existe al menos una gedésica cerrada. Nuestro primer
resultado es el siguiente:

Teorema A. Sea π : Mn+k → Bn una submersión Riemanniana. Si secM ≥ 1, entonces

k ≤
(

π

conj(B)
− 1

)
(n− 1), y k ≤

(
2π

`0(B)
− 1

)
(n− 1).

Obsérvese que, a cambio, el Teorema A nos da una cota superior para `0(B) en términos
de n y k. Este hecho sugiere estudiar si alguno de los posibles levantamientos a M
de la geodésica cerrada más corta en B (que es geodésica en M) se cierra. En caso
afirmativo, tendŕıamos la desigualdad `0(M) ≤ `0(B), y entonces podŕıamos usar las
clásicas cotas inferiores de Heintze-Karcher y Klingenberg para `0(M) dadas en términos
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de determinados invariantes de M . De esta manera obtendŕıamos una cota superior para
k en términos de invariantes sólo de M . Usaremos Teoŕıa del Punto Fijo de Lefschetz
para probar que si la caracteŕıstica de Euler de la fibra no se anula, entonces al menos un
levantamiento de una curva diferenciable cerrada en B se cierra en M . De esta manera
obtenemos los siguientes resultados:

Teorema B. Sea π : Mn+k → Bn una submersión Riemanniana con fibra F k, y supon-
gamos que secM ≥ 1.

1. Si χ(F ) 6= 0, entonces

k ≤
(

Vol(Sn+k)

Vol (M)
− 1

)
(n− 1).

2. Si además χ(M) 6= 0, entonces

k ≤ (
√

max secM − 1) (n− 1).

El método principal para construir submersiones Riemannianas desde una variedad
consiste en tomar el cociente bajo una cierta acción por isometŕıas de un grupo de Lie.
De manera más general, se han encontrado numerosas restricciones para la existencia de
métricas con curvatura seccional positiva que admitan una cierta acción por isometŕıas
de un grupo de Lie compacto (ver [29]). Por ejemplo, Hsiang y Kleiner demostraron en
[41] que S2 × S2 no admite una métrica de curvatura seccional positiva de manera que el
ćırculo S1 actúe por isometŕıas.

La geometŕıa de espacios topológicos X arbitrarios con una acción de un grupo de Lie
G que preserva cierta estructura dada tiene interés por śı misma. Vamos a suponer que
X y G son compactos y conexos. El caso más restrictivo ocurre cuando X es homogéneo,
es decir, la acción del grupo G es transitiva y por lo tanto su espacio de órbitas consta de
un solo punto. Si X es una variedad topológica homogénea (respectivamente un orbifold
diferenciable homogéneo), entonces es equivariantemente homeomorfa (resp. difeomorfo)
a una variedad diferenciable homogénea G/H, donde H denota el grupo de isotroṕıa de
la acción. Si X es un espacio de Alexandrov homogéneo (ó en particular un orbifold
Riemanniano homogéneo), entonces es equivariantemente isométrico a una variedad Rie-
manniana homogénea G/H. Recordemos que si la métrica homogénea viene inducida por
una métrica bi-invariante en G, entonces G/H tiene curvatura seccional no-negativa y
decimos que es una variedad Riemanniana homogénea normal.

La condición de que una acción sea transitiva puede relajarse de diferentes maneras.
En este sentido, recordemos que la cohomogeneidad de una acción se define como la di-
mensión del espacio de órbitas. En el segundo caṕıtulo de esta tesis consideramos acciones
diferenciables de cohomogeneidad uno en orbifolds diferenciables cerrados. Los orbifolds
son espacios topológicos con una estructura que generaliza la noción de variedad, en el
sentido de que son localmente homeomorfos a cocientes de variedades bajo la acción de
grupos finitos. Igual que para variedades, un orbifold es cerrado si el espacio topológico
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subyacente es compacto y no tiene frontera. Recordemos que el cono C(X) sobre un es-
pacio topológico X se define como el espacio cociente C(X) = (X × [0, 1]) / (X × {0}).
Obtenemos el siguiente resultado:

Teorema C. Sea O un orbifold diferenciable conexo y cerrado con una acción diferenciable
y efectiva de un grupo de Lie compacto y conexo G, con grupo de isotroṕıa principal H. Si
la acción es de cohomogeneidad uno, entonces el espacio de órbitas O/G es homeomorfo
a un ćırculo o a un intervalo cerrado y en cada caso se cumple lo siguiente.

1. Si el espacio de órbitas es un ćırculo, entonces O es equivariantemente difeomorfo
a un G/H-fibrado sobre un ćırculo con grupo de estructura N(H)/H, donde N(H)
denota el normalizador de H en G. En particular, O es variedad diferenciable y su
grupo fundamental es infinito.

2. Si el espacio de órbitas es un intervalo, que podemos suponer que es [−1,+1], en-
tonces:

(a) Hay dos órbitas no-principales, π−1(±1) = G/K±, donde π : O → O/G denota
la proyección natural y K± es el grupo de isotroṕıa de la acción en cualquier
punto de la órbita π−1(±1).

(b) El conjunto singular del orbifold O es ó bien vaćıo, ó bien una de las órbitas
no-principales, ó bien ambas órbitas no-principales.

(c) El orbifold O es equivariantemente difeomorfo al orbifold construido como la
unión de dos orbi-fibrados sobre las dos órbitas no-principales y cuyas fibras
son conos sobre formas espaciales esféricas, es decir,

O ≈ G×K− C (S−/Γ−) ∪G/H G×K+ C (S+/Γ+) ,

donde S± denota la esfera de dimensión dimO − dimG/K± − 1 y Γ± es un
grupo finito actuando de manera libre y por isometŕıas en S±. La acción queda
determinada por el diagrama (G,H,K−,K+), donde tenemos las inclusiones
de subgrupos H ≤ K± ≤ G, y donde K±/H son formas espaciales esféricas
S±/Γ±.

(d) Rećıprocamente, un diagrama (G,H,K−,K+) con H ≤ K± ≤ G y donde K±/H
son formas espaciales esféricas, determina un orbifold de cohomogeneidad uno
como en el apartado (c).

Para poner el Teorema C en perspectiva, recordemos que existen teoremas análogos que
determinan la estructura de variedades diferenciables, variedades topológicas y espacios de
Alexandrov de cohomogeneidad uno (ver [54, 39, 23, 22]). En tales casos, la única diferencia
con el Teorema C es que las fibras sobre las dos órbitas no-principales son, respectivamente,
conos sobre esferas (es decir, discos), conos sobre esferas o sobre la esfera homológica
de Poincaré, y conos sobre variedades Riemannianas homogéneas con curvatura seccional
positiva. Como la esfera homológica de Poincaré es una forma espacial esférica, obtenemos
el siguiente corolario al Teorema C.



5

Corolario. Toda variedad topológica cerrada de cohomogeneidad uno es equivariante-
mente homeomorfa a un orbifold diferenciable de cohomogeneidad uno.

En vista del corolario anterior, es natural preguntarse cuándo una variedad topológica
cerrada de cohomogeneidad k ≥ 2 es equivariantemente homeomorfa a un orbifold dife-
renciable.

El siguiente corolario al Teorema C se sigue del hecho de que la menor dimensión en
la que una variedad Riemanniana homogénea con curvatura seccional positiva no es una
forma espacial es 4.

Corolario. Sea X un espacio de Alexandrov cerrado de cohomogeneidad uno. Si la codi-
mensión de ambas órbitas no-principales es como máximo 4, entonces X es equivariante-
mente homeomorfo a un orbifold diferenciable de cohomogeneidad uno.

La parte final de esta tesis se centra en variedades abiertas con curvatura seccional no-
negativa. Recordemos que el Soul Theorem de Cheeger y Gromoll determina la estructura
de dichas variedades: dadaM , existe una subvariedad S compacta, sin frontera, totalmente
geodésica y totalmente convexa (denominada el “soul” de M) tal que M es difeomorfa al
fibrado normal de S.

Una pregunta natural es hasta qué punto se cumple el rećıproco del Soul Theorem:
dado un fibrado vectorial E sobre una variedad compacta S con curvatura seccional no-
negativa, ¿admite E una métrica Riemanniana con curvatura seccional no-negativa con
soul S? La respuesta es claramente afirmativa cuando S es una variedad Riemanniana
homogénea G/H y E es un fibrado vectorial homogéneo; es decir, un fibrado de la forma
G×H Rm, donde H actúa en Rm a través de una representación lineal. Obsérvese que la
métrica con curvatura no-negativa en G ×H Rm proviene de la submersión Riemanniana
G × Rm → G ×H Rm, gracias a la fórmula de O’Neill. Por el contrario, existen ejemplos
de fibrados vectoriales que no admiten métricas con curvatura seccional no-negativa sobre
variedades compactas con grupo fundamental no trivial y curvatura seccional no-negativa
(ver [57]). La pregunta anterior tiene una respuesta afirmativa para todo fibrado vectorial
sobre la esfera Sn cuando n ≤ 5 (ver [30]).

Aparte de lo expuesto, sólo se conocen resultados parciales, por lo que se ha considerado
una versión más débil de la pregunta inicial: en las mismas condiciones, ¿admite E × Rk
una métrica Riemanniana con curvatura seccional no-negativa con soul S para algún k? La
respuesta en este caso es afirmativa para todo fibrado vectorial sobre todas las esferas Sn
(Rigas, [62]), y sobre las variedades CP2, S2×S2 y CP2#−CP2 (Grove y Ziller, [31]). En el
tercer caṕıtulo probamos que la respuesta a esta última pregunta es afirmativa para todo
fibrado vectorial sobre cualquier CROSS. Usaremos resultados previos sobre la K-teoŕıa
de dichos espacios para construir un fibrado vectorial homogéneo en cada clase estable de
fibrados vectoriales. Recordemos que dos fibrados vectoriales E,F pertenecen a la misma
clase estable si existen fibrados triviales k1, k2 de manera que E⊕k1 es isomorfo a F ⊕k2.
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Teorema D. Sea E un fibrado vectorial real arbitrario sobre un espacio simétrico de rango
uno compacto S. Denotemos por k el fibrado vectorial trivial de rango k. Entonces, para
algún k, la suma de Whitney E⊕ k = E×Rk admite una métrica con curvatura seccional
no-negativa y soul S.

Nuestros métodos ofrecen, en el caso de las esferas, una prueba alternativa al Teorema
de Rigas, y de hecho, nos permiten acotar superiormente el mı́nimo entero k que satisface el
Teorema D. Para establecer dicho resultado recordemos que el Teorema de Integrabilidad
de Bott tiene como consecuencia lo siguiente: si E es un fibrado vectorial real sobre una
esfera Sn de dimensión n ≡ 0 (mod 4), entonces su (n/4)-clase de Pontryagin pn/4(E) es
de la forma

pn/4(E) = ((n/2)− 1)!(±pE)a

para algún numero natural pE , donde a es un generador de Hn(Sn,Z).

Teorema E. Sea E un fibrado vectorial real arbitrario sobre Sn. Sea k0 el menor entero
tal que la suma de Whitney E⊕k0 admite una métrica con curvatura seccional no-negativa.
Entonces se tienen las siguientes desigualdades:

• k0 ≤ n+ 1, si n ≡ 3, 5, 6, 7 (mod 8).

• k0 ≤ 2n, si n ≡ 1, 2 (mod 8).

• k0 ≤ max{n+ 1, 2n−1pE}, si n ≡ 0, 4 (mod 8).

Por último también obtenemos resultados para fibrados vectoriales complejos sobre
otras variedades:

Teorema F. Sea E un fibrado vectorial complejo arbitrario sobre una variedad S en
alguna de las dos clases de variedades Ci siguientes:

• C1 es la clase de variedades compactas S con curvatura no-negativa tales que sus
números de Betti pares b2i(S) se anulan para i ≥ 1, y el anillo H∗(S,Z) es libre de
torsión.

• C2 es la clase de variedades Riemannianas homogéneas compactas G/H tales que G
es un grupo de Lie compacto y conexo, π1(G) es libre de torsión y H es un subgrupo
cerrado y conexo de rango máximo.

Denotemos por k el fibrado vectorial complejo trivial de rango k. Entonces, para algún
k, la suma de Whitney E ⊕ k = E × Ck admite una métrica con curvatura seccional
no-negativa y soul S.

La clase C1 incluye todas las esferas homológicas de dimensión impar que admitan
curvatura seccional no-negativa, por ejemplo la esfera exótica de dimensión 7 de Gromoll
y Meyer. La clase C2 incluye variedades como las esferas de dimensión par, variedades
Grassmannianas complejas y cuaterniónicas, las variedades de Wallach W 6, W 12 y W 24

o el plano de Cayley.



Introduction and statement of
results

Every smooth manifold M can be endowed with a Riemannian metric. The question is
then whether M admits a metric with certain geometric conditions. The conditions that
have been classically studied are lower or upper bounds for the curvature, the volume or
the diameter, although many other concepts can be defined from a Riemannian metric
(see [58] for a survey by Petersen). The motivation and the goal of this thesis is the study
of geometric and topological consequences of positive and nonnegative sectional curvature.

The first result in the study of the topological implications of curvature is the Gauss-
Bonnet Theorem, which relates the integral of the Gaussian curvature of a surface with
its Euler characteristic. For a Riemannian manifold M of arbitrary dimension n, several
notions of curvature can be defined from its curvature tensor. Sectional curvature turns
out to be very restrictive and has strong implications. When the sectional curvature secM
of M is constant and equal to K, then the Riemannian universal covering of M is isometric
to Sn (if K = 1), Rn (if K = 0) or Hn (if K = −1) with their canonical metrics; M is
called a spherical (if K = 1), Euclidean (if K = 0) or hyperbolic (if K = −1) space form.
If we allow the sectional curvature to be nonpositive (secM ≤ 0), then Cartan-Hadamard’s
Theorem states that the universal cover of M is diffeomorphic to Rn via the exponential
map at any point. However, the case of nonnegative and, in particular, positive sectional
curvature is not so well understood (see [74] for a survey by Ziller).

For a compact manifold M of dimension n admitting a metric of nonnegative sectional
curvature (secM ≥ 0) one has topological obstructions. Gromov’s Theorem states that
there exists a universal constant c(n) such that the Betti numbers bi(M,F) are bounded
above by c(n), for any field of coefficients F. Furthermore, the fundamental group of M
has a generating set with at most c(n) elements. Cheeger and Gromoll proved that there
exists an abelian subgroup of π1(M) with finite index. They also determined the structure
of open manifolds (i.e., non-compact and without boundary) with nonnegative sectional
curvature in the so-called Soul Theorem (see below).

7
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For the existence of positively curved metrics one has in addition only the two clas-
sical obstructions. Let M be a Riemannian manifold of dimension n with secM ≥ 1.
Bonnet-Myers’s Theorem states that the diameter of M is at most π, hence M is com-
pact. The Riemannian universal covering M̃ of M satisfies the same curvature bound,
so M̃ is compact and therefore the fundamental group of M is finite. Synge’s Theorem
states that π1(M) = 0 or Z2 if n is even, and that M is orientable if n is odd. A direct
consequence of these results is that neither Sn × S1 nor RPn × RPm admit a metric with
positive curvature. A long-standing conjecture by Hopf asks if S2×S2 admits a positively
curved metric (observe that the Riemannian product of two positively curved manifolds
contains tangent 2-planes of vanishing sectional curvature).

The main difficulty when studying positively curved manifolds is the small number of
known examples. Besides the compact rank one symmetric spaces (CROSSes), namely
the spheres Sn, the projective spaces RPn,CPn,HPn and the Cayley plane CaP2, which
appear in the corresponding dimensions, there exist examples only in dimensions 6, 7, 12, 13
and 24. New examples appear in increasing periods of time, and at the present state of
knowledge, Riemannian submersions are necessary in their construction: starting with
the correct manifold with nonnegative sectional curvature as total space, one searches
for some submersion that would guarantee a positively curved base thanks to the well-
known O’Neill’s formula. However, this is not so easily done, pointing out to the possible
presence of restrictions on the existence of such Riemannian submersions from an arbitrary
nonnegatively curved manifold.

In the first chapter of this thesis we consider Riemannian submersions π : Mn+k → Bn

from closed (i.e., compact and without boundary) positively curved manifolds M , and we
study the possible values for k, the dimension of the fiber F k. Our estimates involve the
conjugate radius of B, denoted by conj(B); and the length of the shortest closed geodesic
in B, denoted by `0(B). Recall that the conjugate radius of a manifold is the minimum
over the distances between conjugate points along geodesics; and that in every compact
manifold (without curvature assumptions) there exist at least one closed geodesic. Our
first result is:

Theorem A. Let π : Mn+k → Bn be a Riemannian submersion. If secM ≥ 1, then:

k ≤
(

π

conj(B)
− 1

)
(n− 1), and k ≤

(
2π

`0(B)
− 1

)
(n− 1).

Note that in turn Theorem A gives an upper bound for `0(B) in terms of n and k. This
suggest to study if any of the possible horizontal lifts of the shortest closed geodesic in B to
M (which is a geodesic in M) is closed. This would give us the inequality `0(M) ≤ `0(B),
and then one could use the classical lower bounds for `0(M) given in terms of suitable
invariants of M by Heintze-Karcher and Klingenberg. That way we would get an upper
bound for k in terms of invariants of the total space M . Using Lefschetz Fixed-Point
Theory we prove that if the fiber has nonzero Euler characteristic then for a given smooth
closed curve in B there is a lift which is closed in M . We get the following results:
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Theorem B. Let π : Mn+k → Bn be a Riemannian submersion with fiber F k. Suppose
that secM ≥ 1.

1. If χ(F ) 6= 0, then

k ≤
(

Vol(Sn+k)

Vol (M)
− 1

)
(n− 1).

2. If in addition χ(M) 6= 0, then

k ≤ (
√

max secM − 1) (n− 1).

The main source to construct Riemannian submersions from a manifold is taking the
quotient under certain isometric actions of a Lie group. More generally, many obstructions
to the existence of a positively curved metric in a manifold have been developed under
the assumption of the presence of an isometric action on the manifold (see the survey
[29] by Grove). For example, Hsiang and Kleiner showed in [41] that S2 × S2 does not
admit a Riemannian metric of positive sectional curvature such that the circle S1 acts by
isometries on it.

The geometry of arbitrary topological spaces X with a certain action of a Lie group G
preserving a given structure is of particular interest. We assume that X and G are compact
and connected. The most restrictive case occurs when X is homogeneous, i.e., the G-action
preserving the given structure is transitive and hence its orbit space is just a point. If X is
a homogeneous topological manifold (respectively smooth orbifold), then it is equivariantly
homeomorphic (resp. diffeomorphic) to a homogeneous smooth manifold G/H, where H
denotes the isotropy group of the action. If X is a homogeneous Alexandrov space (or
in particular a Riemannian orbifold), then it is equivariantly isometric to a homogeneous
Riemannian manifold G/H. Recall that if the homogeneous metric descends from a bi-
invariant metric on G, then G/H has nonnegative sectional curvature and it is called a
normal homogeneous Riemannian manifold.

The transitivity condition of the action can be relaxed in different ways. Recall that the
cohomogeneity of the action is defined to be the dimension of its orbit space. In the second
chapter of this thesis we study cohomogeneity one smooth actions of compact Lie groups
on closed, smooth orbifolds. Orbifolds are topological spaces that generalize the notion of
manifold in the sense that they are locally homeomorphic to quotients of manifolds under
the action of finite groups. Orbifolds were introduced by Satake in the 1950s under the
name of V -manifolds, and then Thurston studied these spaces extensively in [66], where he
used the terminology orbifold. As for manifolds, a smooth orbifold is closed if its underlying
topological space is compact and has no boundary. Recall that the cone C(X) over a
topological space X is defined as the quotient space C(X) = (X × [0, 1]) / (X × {0}). We
obtain the following result:
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Theorem C. Let O be a closed, connected, smooth orbifold with an (almost) effective
smooth action of a compact, connected Lie group G with principal isotropy group H. If
the action is of cohomogeneity one, then the orbit space O/G is homeomorphic to a circle
or to a closed interval and the following statements hold.

1. If the orbit space is a circle, then O is equivariantly diffeomorphic to a G/H-bundle
over a circle with structure group N(H)/H, where N(H) is the normalizer of H in
G. In particular, O is a manifold and its fundamental group is infinite.

2. If the orbit space is homeomorphic to an interval, say [−1,+1], then:

(a) There are two non-principal orbits, π−1(±1) = G/K±, where π : O → O/G is
the natural projection and K± is the isotropy group of the G-action at a point
in π−1(±1).

(b) The orbifold singular set of O is either empty, a non-principal orbit or both
non-principal orbits.

(c) The orbifold O is equivariantly diffeomorphic (as orbifolds) to the union of two
orbifiber bundles over the two non-principal orbits whose fibers are cones over
spherical space forms, that is,

O ≈ G×K− C (S−/Γ−) ∪G/H G×K+ C (S+/Γ+) ,

where S± denotes the round sphere of dimension dimO−dimG/K±−1 and Γ±
is a finite group acting freely and by isometries on S±. The action is determined
by a group diagram (G,H,K−,K+) with group inclusions H ≤ K± ≤ G and
where K±/H are spherical space forms S±/Γ±.

(d) Conversely, a group diagram (G,H,K−,K+) with H ≤ K± ≤ G and where
K±/H are spherical space forms, determines a cohomogeneity one orbifold as
in part (c).

To put Theorem C into perspective, recall that there exist analogous structure results
for cohomogeneity one actions on closed smooth manifolds, on closed topological manifolds
and on closed Alexandrov spaces (cf. [54, 39, 23, 22]). In these cases, the only difference
with Theorem C is that the fibers over the non-principal orbits are, respectively, cones
over a round sphere (i.e. balls), cones over a round sphere or the Poincaré homology
sphere (i.e. homology balls), and cones over a homogeneous positively curved Riemannian
manifold. Since the Poincaré homology sphere is a spherical space form, the following
corollary follows from Theorem C.

Corollary. Every closed cohomogeneity one topological manifold is equivariantly homeo-
morphic to a smooth cohomogeneity one orbifold.

It is thus natural to ask when is a cohomogeneity k ≥ 2 closed topological manifold
equivariantly homeomorphic to a smooth orbifold.

The following corollary to Theorem C follows from the fact that the lowest dimension
where a homogeneous positively curved manifold is not a space form is 4.
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Corollary. Let X be a closed Alexandrov space of cohomogeneity one. If the codimension
of both non-principal orbits is at most 4, then X is equivariantly homeomorphic to a smooth
cohomogeneity one orbifold.

The last part of this thesis focuses on open manifolds with nonnegative sectional cur-
vature. Recall that the Soul Theorem by Cheeger and Gromoll determines the structure
of such a manifold M : there exists a compact, totally geodesic and totally convex sub-
manifold S (called the soul of M) without boundary such that M is diffeomorphic to the
normal bundle of S.

A natural question is then to what extent a converse to the Soul Theorem holds: given
a vector bundle E over a compact manifold S with nonnegative sectional curvature, does
E admit a complete metric of nonnegative curvature with soul S? The answer is clearly
affirmative when S is a homogeneous manifold G/H and E is a homogeneous vector
bundle; that is, a bundle of the form G×H Rm, where H acts on Rm by means of a linear
representation. Observe that the nonnegatively curved metric on G ×H Rm comes from
the Riemannian submersion G×Rm → G×H Rm, thanks to O’Neill’s formula. A negative
answer was found for certain bundles over compact nonsimply connected manifolds (see
[57]). The question above also has a positive answer for every vector bundle over the round
spheres Sn, with n ≤ 5 (Grove and Ziller, [30]).

Besides that, there are only partial results, and a weaker question has been studied:
in the conditions above, does E×Rk admit a metric of nonnegative curvature with soul S
for some k? The answer in this case is affirmative for every vector bundle over all round
spheres Sn (Rigas, [62]), and over the manifolds CP2, S2 × S2 and CP2# − CP2 (Grove
and Ziller, [31]). In Chapter 3 we give an affirmative answer for every vector bundle over
any CROSS. We use previous results on the K-theory of these spaces in order to find a
homogeneous vector bundle in every stable class of vector bundles. Recall that two vector
bundles E,F are stably equivalent if there exist trivial bundles k1, k2 such that E ⊕ k1 is
isomorphic to F ⊕ k2.

Theorem D. Let E be an arbitrary real vector bundle over a compact rank one symmetric
space S. Denote by k the trivial vector bundle of rank k. Then, for some k the Whitney
sum E ⊕ k = E × Rk admits a metric with nonnegative sectional curvature and soul S.

In the case of the sphere our methods yield an alternative proof of Rigas’ Theorem.
Moreover, our approach allows us to give an upper bound for the least integer k satisfying
Theorem D. In order to state our result we need to recall that, as a consequence of the
Bott Integrability Theorem, if E is a real vector bundle over a sphere Sn of dimension
n ≡ 0 (mod 4), then its (n/4)-th Pontryagin class pn/4(E) is of the form

pn/4(E) = ((n/2)− 1)!(±pE)a

for some natural number pE , where a is a generator of Hn(Sn,Z). We obtain the following
bounds:
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Theorem E. Let E be an arbitrary real vector bundle over Sn. Let k0 be the least integer
such that the Whitney sum E ⊕ k0 admits a metric with nonnegative sectional curvature.
The following inequalities hold:

• k0 ≤ n+ 1, if n ≡ 3, 5, 6, 7 (mod 8).

• k0 ≤ 2n, if n ≡ 1, 2 (mod 8).

• k0 ≤ max{n+ 1, 2n−1pE}, if n ≡ 0, 4 (mod 8).

We also obtain results for complex vector bundles over other manifolds:

Theorem F. Let E be an arbitrary complex vector bundle over a manifold S in one of
the two following classes Ci:

• C1 is the class of compact nonnegatively curved manifolds S whose even dimensional
Betti numbers b2i(S) vanish for i ≥ 1, and such that H∗(S,Z) is torsion-free.

• C2 is the class of compact homogeneous spaces G/H such that G is a compact,
connected Lie group with π1(G) torsion-free and H a closed, connected subgroup of
maximal rank.

Denote by k the trivial complex vector bundle of rank k. Then, for some k the Whitney
sum E ⊕ k = E × Ck admits a metric with nonnegative sectional curvature and soul S.

Odd-dimensional homology spheres admiting nonnegatively curved metrics belong to
class C1, in particular the 7-dimensional Gromoll-Meyer exotic sphere. The class C2 in-
cludes such manifolds as even-dimensional spheres, complex and quaternionic Grassman-
nian manifolds, the Wallach flag manifolds W 6, W 12 and W 24 or the Cayley plane.



13

Notation and conventions

In this thesis we assume that the reader is familiar with some background on Differential
and Riemannian geometry, see the references [12, 17, 47, 63, 69] for a detailed discussion.
By smooth we will always mean infinitely differentiable. We will denote a Riemannian
metric on a smooth manifold M by 〈, 〉. The norm of a vector v ∈ TpM in the tangent

space of M at p will be denoted by ‖v‖ = 〈v, v〉
1
2 . Denote by ∇ the Levi-Civita connection

associated to the Riemannian manifold (M, 〈, 〉). Let α : I → M be a curve in M and
let X(t) be a vector field along α. We will denote by α′(t) the velocity vector of α, and
by X ′(t) the covariant derivative ∇α′(t)X(t). Recall that geodesics are curves α : I → M
such that α′′(t) ≡ 0.

Let X,Y, Z be vector fields on M . For the definition of the curvature tensor we adopt
the following convention as in [69]:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

where [X,Y ] denotes the Lie bracket of X and Y .
For a given point p in M , let Π ⊂ TpM be a 2-plane with orthonomal basis X,Y . The

sectional curvature secM Π of Π is defined as:

secM Π = 〈R(X,Y )Y,X〉.

Recall that the sectional curvature of a 2-plane Π has the following geometric interpreta-
tion. Let SΠ be the 2-dimensional submanifold of M consisting of geodesics whose initial
tangent vectors lie in Π. Then secM (Π) equals the Gaussian curvature of the surface SΠ

at the point p.
Given K ∈ R, we say that secM ≥ K (resp. secM ≤ K) if for every point p ∈ M and

every 2-plane Π ⊂ TpM , the sectional curvature satisfies secM Π ≥ K (resp. secM Π ≤ K).
Note that if secM ≥ K > 0, we can rescale the metric so that secM ≥ 1. If secM ≡ 0, we
say that M is flat.

When dealing with groups ∗ such as the fundamental group or the group of stable
classes of vector bundles over a compact manifold, we will write ∗ = 0 to denote that it
only consists of the identity element.

LIST OF SYMBOLS

N Natural numbers
Z Integer numbers
R Real numbers
C Complex numbers
H Quaternionic numbers
Fk Cartesian product F× · · · × F of the set F with itself k-times
Zk The cyclic subgroup of k elements Z/kZ
Sn n-dimensional sphere





Chapter 1

Soft restrictions on positively
curved Riemannian submersions

In this chapter we study Riemannian submersions from positively curved manifolds. We
assume that all Riemannian manifolds are complete. We will write Mn to denote that the
dimension of the manifold M is n. Our motivation is the following conjecture (attributed
to F. Wilhelm).

Conjecture. Let π : Mn+k → Bn be a Riemannian submersion between compact positively
curved Riemannian manifolds. Then k ≤ n− 1.

In the very rigid case where the fibers are totally geodesic the conjecture holds by
O’Neill’s formula (see Section 1.2.2). In the general case, partial progress towards the
conjecture appears in the thesis of W. Jiménez [43] where he used results of Kim and
Tondeur [44] to obtain that if secM ≥ 1, then

(1.0.1) k ≤ 1

3
(max secB −1) (n− 1) ,

where max secB denotes the maximum of the sectional curvatures in B. It is worth noticing
that O’Neill’s formula together with [68] guarantees that max secB > 1, and therefore the
right hand side in (1.0.1) is positive.

For a different type of restrictions using rational homotopy theory methods, see [4].

In this chapter, we examine the index of Lagrangian subspaces of Jacobi fields (see
Section 1.1.1 for the definitions) along horizontal geodesics to prove:

Theorem 1.1. Let Mn+k, Bn be compact Riemannian manifolds with sec ≥ 1, and let
π : Mn+k → Bn be a Riemannian submersion with fiber F k. Then

k ≤
(

π

conj(B)
− 1

)
(n− 1),

where conj(B) denotes the conjugate radius of B.

15
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Since the conjugate radius of a positively curved manifold B is at least π/
√

max secB,
Theorem 1.1 gives the following improvement of Jimenez’s result:

Corollary 1.2. Under the conditions of Theorem 1.1,

k ≤ (
√

max secB − 1) (n− 1) .

This bound is better than Jimenez’s when max secB > 4.

The arguments in the proof of Theorem 1.1 extend to Riemannian foliations, giving
the following bound in terms of the focal radius of the foliation (the definition is included
at the end of Section 1.2).

Corollary 1.3. Let F be a Riemannian foliation with leaves of dimension k in an n+ k-
dimensional compact manifold M with secM ≥ 1. Then

k ≤
(

π

foc(F)
− 1

)
(n− 1),

where foc(F) denotes the focal radius of the foliation.

It is also possible to give bounds on the fiber dimension related to the length of
the shortest nontrivial closed geodesic in the base (that exists by a theorem of Fet and
Lyusternik [19]).

Theorem 1.4. Let Mn+k, Bn be compact Riemannian manifolds with sec ≥ 1, and let
π : Mn+k → Bn be a Riemannian submersion with fiber F k. Denote by `0(B) the length
of the shortest closed geodesic in B. Then

k ≤
(

2π

`0(B)
− 1

)
(n− 1).

Observe that in turn Theorem 1.4 gives an upper bound for the length of the shortest
closed geodesic in the base manifold Bn of a Riemannian submersion from a manifold
Mn+k with secM ≥ 1. Specifically:

`0(B) ≤ 2π(n− 1)

n+ k − 1
.

Motivated by this inequality we study if any of the lifts to M of a closed geodesic (and
more generally a picewise smooth curve) c in B closes in the first lap. To do this we apply
Lefschetz Fixed-Point Theory to the associated holonomy diffeomorphism hc : F → F of
the fiber F of the submersion. Denote by χ(F ) the Euler characteristic of the manifold
F . We obtain the following result:

Theorem 1.5. Let π : M → B be a Riemannian submersion with fiber F , and let c be a
picewise smooth closed curve in B. If B is simply connected and χ(F ) 6= 0, then there is
a horizontal lift of c to M that closes in the first lap.
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In the conditions of Theorem 1.5 clearly `0(M) ≤ `0(B), where `0(M) denotes the
length of the shortest closed geodesic in M . Using this result together with a lower bound
for the length of closed geodesics in positively curved manifolds given by Heintze and
Karcher, we are able to give an upper bound for the dimension of the fiber in terms of the
volume and the dimension of the total space M .

Theorem 1.6. Let Mn+k, Bn be compact Riemannian manifolds with sec ≥ 1, and let
π : Mn+k → Bn be a Riemannian submersion with fiber F k. If χ(F ) 6= 0, then

k ≤
(

Vol(Sn+k)

Vol (M)
− 1

)
(n− 1),

where Sn+k denotes the n+ k-dimensional sphere of constant curvature equal to 1.

If we require the stronger assumption χ(M) 6= 0, then M is even-dimensional and we
can use a result by Klingenberg on a lower bound for the length of closed geodesics in
even-dimensional positively curved manifolds to get the following result.

Theorem 1.7. Let Mn+k, Bn be compact Riemannian manifolds with sec ≥ 1, and let
π : Mn+k → Bn be a Riemannian submersion. If χ(M) 6= 0, then

k ≤ (
√

max secM − 1) (n− 1),

where max secM denotes the maximum of secM .

The chapter is organized as follows: Sections 1.1 and 1.2 give some preliminaries on the
Jacobi equation and on the theory of Riemannian submersions respectively. In Section
1.3 we obtain bounds for the index of Lagrangian subspaces of Jacobi fields in several
situations needed for the proofs of Theorems 1.1 and 1.4. Section 1.4 studies the existence
of closed lifts of a closed curve and contains the proof of Theorem 1.5. The proofs of the
remaining Theorems are contained in Section 1.5.

The results in this chapter are joint work with my thesis advisor, Luis Guijarro. Most of
the results are contained in [25]. Theorem 1.4 above is an improved version of Theorem B
in [25].

1.1 The Jacobi equation

Given a geodesic α in a Riemannian manifold M , a Jacobi field is defined as a vector field
J(t) along α(t) satisfying the equation:

J ′′(t) +R(J(t), α′(t))α′(t) = 0.

Jacobi fields arise naturally from geodesic variations of the geodesic α. We only consider
normal Jacobi fields, i.e., those J(t) which remain orthogonal to the velocity vector α′(t).
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Two points α(t0) and α(t1) are conjugate points along α if there exist a nonvanishing
Jacobi field J along α such that J(t0) = J(t1) = 0. The conjugate radius conjp(M) at
p ∈M is defined as

conjp(M) = inf
α is a geodesic
with α(0)=p

sup {t : α(t) is not a conjugate point to p} .

It is natural to define the conjugate radius of a Riemannian manifold as:

Definition 1.8. The conjugate radius conj(M) of a Riemannian manifold M is

conj(M) = inf
{

conjp(M) : p ∈M
}
.

Jacobi fields play an important role in the study of Riemannian manifolds with pre-
scribed sectional curvature. This is due to Rauch’s comparison Theorem:

Theorem 1.9 (Rauch). Let M,M̃ be Riemannian manifolds, let α : [0, T ] → M and
α̃ : [0, T ] → M̃ be unit speed geodesics such that α̃(t) is not a conjugate point to α̃(0)
along α̃ for any (0, T ], and let J, J̃ be Jacobi fields along α and α̃ respectively such that
J(0) = 0 = J̃(0) and ‖J ′(0)‖ = ‖J̃ ′(0)‖. Suppose that the sectional curvatures of 2-planes
Π and Π̃ containing α′(t) and α̃′(t) respectively satisfy secM (Π) ≤ secM̃ (Π̃). Then

‖J(t)‖ ≥ ‖J̃(t)‖, for all t ∈ (0, T ].

Observe that Rauch’s Comparison Theorem implies that conj(M) = ∞ if secM ≤ 0,
and conj(M) ≥ π/√max secM otherwise.

The notion of conjugate point is a special case of the following concept. Consider a
submanifold N ⊂M and a geodesic α in M with α(t0) ∈ N such that α′(t0) is orthogonal
to the tangent space Tα(t0)N . A Jacobi field J along α is said to be a N -Jacobi field if it
satisfies the initial conditions:

J(0) ∈ Tα(t0)N, and J ′(0) + Sα′(t0)J(0) ⊥ Tα(t0)N.

where Sα′(t0) denotes the second fundamental form of N in the orthogonal direction α′(t0).
We say that α(t1) is a focal point of N along α if there exists a nonvanishing N -Jacobi
field J along α such that J(t1) = 0.

The focal radius of N at p ∈ N is defined as

focp(N) = inf
α is a geodesic
with α(0)=p

and α′(t0)⊥Tα(t0)N

sup {t : α(t) is not a focal point of N} .

It is natural to define the focal radius of N :

Definition 1.10. The focal radius of a submanifold N ⊂ M in a Riemannian manifold
M is

foc(N) = inf {focp(N) : p ∈ N} .

Jacobi fields can be treated in a more general way as the following subsection shows.



1.1. THE JACOBI EQUATION 19

1.1.1 Jacobi fields in an abstract setting

This section collects a few facts on the Jacobi equation from [48]. Let E be a Euclidean
vector space of dimension m with positive definite inner product 〈 , 〉. For a smooth one-
parameter family of self adjoint linear maps R : R → Sym(E), we consider the equation
J ′′(t) +R(t)J(t) = 0 whose solutions we refer to as R-Jacobi fields (or just Jacobi fields if
it is clear from the context to what R we refer). We denote by JacR the space of Jacobi
fields, a vector space of dimension 2m; JacR is a symplectic vector space with form

ω : JacR× JacR → R, ω(J1, J2) = 〈J1, J
′
2〉 − 〈J ′1, J2〉

where the right hand side of ω is independent of the t chosen.
A subspace W is called isotropic when ω vanishes in W ; a maximal isotropic subspace

is called a Lagrangian subspace, or simply, a Lagrangian. Since ω is nondegenerate, it
is clear that Lagrangian subspaces are just isotropic subspaces of dimension m; in the
literature, Lagrangian spaces have often been called maximal self-adjoint spaces for the
Jacobi operator (see for instance [67] and [71]).

Since the inner product of E is positive definite, zeros of Jacobi fields are isolated; we
should mention that this is not true in the case of nonzero signature, as was noticed in
[37] and further studied in [60]. Therefore, if I ⊂ R is an interval, we can define the index
of an isotropic subspace W ⊂ JacR in I as the number of times (with multiplicity) that
fields in W vanish in I; we will denote this index as indW I. More precisely,

indW I =
∑
t∈I

dim {J ∈W : J(t) = 0} .

As an example, define L0 to be the subspace of Jacobi fields J along a geodesic α
in a Riemannian manifold such that J(0) = 0. A direct computation shows that L0 is
a Lagrangian subspace. Observe that indL0(0, b] equals the number of conjugate points
(with multiplicities) to α(0) along α in the interval (0, b].

Similarly, given a geodesic α in a Riemannian manifold which is orthogonal to a sub-
manifold N ⊂M , define LN to be the subspace of N -Jacobi fields along α. Then LN is a
Lagrangian subspace and indL0(0, b] equals the number of focal points (with multiplicities)
to N along α in the interval (0, b].

The indexes of different Lagrangians along the same interval are related by the following
inequality in [48].

Proposition 1.11. Let E, R, JacR be as previously described. Then for any Lagrangians
L1, L2 ⊂ JacR and any interval I ⊂ R, we have

(1.1.1) |indL1I − indL2I| ≤ dimE− dim (L1 ∩ L2).

1.1.2 The transverse Jacobi equation

Let W be an isotropic subspace of Jacobi fields of (E, R). For a fixed t ∈ R, we define

W (t) = {J(t) : J ∈W} , W t = {J ∈W : J(t) = 0} .
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For each t ∈ R, the subspace

W (t) = W (t)⊕
{
J ′(t) : J ∈W t

}
varies smoothly on t as was shown in [71]; denote by H(t) its orthogonal complement, and
by e = eh + ev the splitting of a vector under the sum E = H(t) ⊕W (t). We use H to
denote the vector bundle over R formed by the H(t). There is a covariant derivative on
H induced from E as follows. If X : R→ E is a section of H, we define

DhX

dt
(t) = X ′(t)h.

The covariant derivative Dh/dt defines parallel sections, and preserves the inner product
induced on H from E. Let E1 be an inner vector space of dimension the rank of H; using
a parallel trivialization of H, we can identify sections of H with maps X : R → E1, and
the covariant derivative Dh/dt with standard derivation.

Modulo these identifications, Wilking’s transverse equation reads as

X ′′(t) +RW (t)X(t) = 0, RW (t)X(t) = [R(t)X(t)]h + 3AtA
∗
tX(t),

where At : W (t)→ H(t) denotes the linear map defined as follows. For a vector u ∈W (t),
choose a Jacobi field Ju ∈ W with Ju(t) = u, then At(u) = J ′u(t)h. By A∗t : H(t)→ W (t)
we denote the adjoint of At.

Thus we obtain a new Jacobi setting (E1, R
W ) with RW as the new curvature operator

used to construct the transverse Jacobi equation; Wilking proved that the projection of
any R-Jacobi field onto H is a solution of the transverse equation, i.e. an RW -Jacobi field.
Moreover, as Lytchak observed, any Lagrangian for (E1, R

W ) is obtained projecting some
Lagrangian that contains W and vice versa.

1.2 Review of Riemannian submersions

In this section we recall briefly some of the main facts about Riemannian submersions.
The reader can find more information about this topic in [10, 28, 56]; in particular we will
use the notation from [28]. First we recall the definition of (smooth) submersion.

Definition 1.12. Let Mn+k and Bn be n + k and n-dimensional manifolds respectively
and π : M → B a surjective smooth map. We say that π is a submersion if its differential
π∗p at any point p ∈M has maximal rank n.

The premiage π−1(b) of a point b ∈ B is a k-dimensional submanifold of M , which we
call the fiber of π over b (even though π need not be a fibration, i.e., a surjective map with
the homotopy lifting property; on the other hand a fibration is necessarily a submersion).
We will denote a generic fiber by F when there is no danger of confusion. We define the
vertical distribution V of π to be the kernel of the differential π∗. At a given point p ∈M ,
the subspace Vp equals the tangent space TpF to the corresponding fiber. If in addition M
is a Riemannian manifold, it makes sense to define the horizontal distribution H of π as
the orthogonal complement H = V⊥ of V. The orthogonal splitting of the tangent bundle
of M induces a decomposition e = eh + ev ∈ H ⊕ V of any vector e ∈ TM .
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Definition 1.13. Let π : M → B be a submersion, where M and B are Riemannian
manifolds. We say that π is a Riemannian submersion if π∗ is a linear isometry when
restricted to H, i.e., if for every p ∈M and x, y ∈ Hp ⊂ TpM ,

〈x, y〉M = 〈π∗p(x), π∗p(y)〉B,

where 〈, 〉M and 〈, 〉B denote the metrics of M and B respectively.

Let us give some examples of Riemannian submersions:

1. The projection from a product Riemannian manifold B × F → B is clearly a Rie-
mannian submersion with fiber F .

2. Let G be a Lie group acting by isometries on a Riemannian manifold M (see Section
2.1.3 for definitions and further details on group actions). Suppose that all orbits
have the same type (meaning that any two are equivariantly diffeomorphic). Then
there exists a smooth structure and a unique metric on the space of orbits M/G for
which the natural projection π : M →M/G is a Riemannian submersion, which we
call homogeneous. This is the case of the Hopf fibrations. As an example, consider
the 3-dimensional unit sphere:

S3 =
{

(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1
}
,

then the circle S1 = {z ∈ C : |z| = 1} acts on S3 by the rule

z(z1, z2) = (zz1, zz2).

The natural projection onto the orbit space gives us the Riemannian submersion

π : S3(1)→ S2(4),

where S3(1) and S2(4) denote the spheres of constant sectional curvature equal to 1
and 4 respectively. The growth of the sectional curvature when descending to the
base space is a general fact as O’Neill’s formula shows (see Section 1.2.2).

1.2.1 Lifts and holonomy

Let π : M → B be a Riemannian submersion. A horizontal lift of a curve c : [0, l] → B
at a point p ∈ π−1(c(0)) is a curve cp : [0, l] → M such that π ◦ cp = c, cp(0) = p and
c′p(t) ∈ H for all t ∈ [0, l]. A basic lift of a vector field X on B is a horizontal vector
field on M projecting to X through π∗; they exist around any point in M . The following
properties hold (see [28] and [38] for the proofs):

Proposition 1.14. Let π : M → B be a Riemannian submersion.

1. The basic lift of a smooth vector field on B is smooth.

2. The horizontal lift of a curve c : [0, l] → B at a point p ∈ π−1(c(0)) exists and it is
unique.
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3. If α : I → M is a geodesic with α′(t0) ∈ H for some t0 ∈ I, then α′(t) ∈ H for all
t ∈ I, and π ◦α is a geodesic in B. Such an α will be called a horizontal geodesic.

4. If M is complete, then

(a) B is complete

(b) the fibers of π are equidistant, i.e., for any two fibers F0, F1 and any p ∈ F0,
the distance between p and F1 equals that between F0 and F1;

(c) π is a locally trivial fiber bundle, i.e., any point b in B has a neighborhood U
such that π−1(U) is diffeomorphic to U × F , where F = π−1(b). In particular,
all the fibers are pairwise diffeomorphic.

Given a continuous curve c : [0, l]→ B, the holonomy map hc : π−1(c(0))→ π−1(c(l))
is defined as follows: hc maps a point p in the fiber over the initial point of c to the
endpoint of the horizontal lift cp of c that starts at p. The uniqueness of horizontal lifts
of curves implies that hc is bijective if M is complete.

Proposition 1.15. Let π : M → B be a Riemannian submersion with M complete. If
c : [0, l] → B is a picewise smooth curve in B, then the holonomy map hc is smooth and
hence a diffeomorphism.

Proof. It suffices to suppose that

c : [0, l] −→ B
t 7−→ c(t)

is smooth, since the holonomy map associated to a concatenation of smooth curves is the
composition of the holonomy maps associated to each smooth segment of the curve.

The submersion π : M → B is a locally trivial fiber bundle, hence we can consider
the pull-back bundle π′ : c∗M → [0, l], which is itself a Riemannian submersion with the
induced metrics. Since c is smooth, the velocity vector ∂t ∈ T [0, l] and hence its basic lift
X ∈ Tc∗M are smooth vector fields. It follows that the flow φX : [0, l]× (π′)−1(0)→ c∗M
of X is smooth. Finally, observe that hc : π−1(c(0))→ π−1(c(l)) equals the restriction of
φX to {l} × (π′)−1(0).

1.2.2 Tensors and curvature relations

There are two tensor fields that measure the complexity of a Riemannian submersion
π : M → B:

1. The A-tensor A : H×H → V

AXY = (∇XY )v =
1

2
[X,Y ]v.

Note that by Frobenius’ Theorem, A ≡ 0 iff the distribution H is integrable. Given
horizontal vectors x, y and a vertical vector u, denote by A∗x : V → H the adjoint of
Ax : H → V:

〈A∗xu, y〉 = 〈u,Axy〉.
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2. The S-tensor S : H× V → V

SXU = −(∇UX)v.

Observe that SX is just the second fundamental form of a fiber in the horizontal
direction X. The Riemannian submersion π has totally geodesic fibers if and only
if S ≡ 0; in this case all the fibers are pairwise isometric. Moreover, if S ≡ 0, then
π is a locally trivial fiber bundle where the structure group is a Lie group. Note
that the converse of the latter fact does not hold since any homogeneous Riemannian
submersion has a Lie group as structure group (see [33]), but it does not have totally
geodesic fibers in general.

If both A and S are identically zero then π locally splits, i.e., every point b ∈ B has
a neighborhood U such that π−1(U) is isometric to the metric product U × F . However,
as we pointed out at the beginning of this chapter, A cannot be identically zero if M is a
compact manifold with positive sectional curvature (see [68]).

The A and S-tensors also appear in the classical formulas by O’Neill relating the
sectional curvature of M with that of B. For a given point p ∈ M , let x, y ∈ TpM be
orthonormal horizontal vectors. Denote by (x, y) the 2-plane spanned by x and y. Then:

secB(π∗x, π∗y) = secM (x, y) + 3‖Axy‖2,

where ‖ · ‖ denotes the norm of a vector in TM .
For a vertical unit vector u ∈ TpM ,

secM (x, u) = 〈(∇vxS)xu, u〉M + ‖A∗xu‖2 − ‖Sxu‖2.

1.2.3 Projectable Jacobi fields

Here we describe certain Jacobi fields which occur along horizontal geodesics in the total
space of a Riemannian submersion.

Definition 1.16. Let α : I → M be a horizontal geodesic for the submersion. A Jacobi
field J along α is projectable if it satisfies

J ′v = −Sα′Jv −Aα′Jh.

The interest of projectable Jacobi fields is that they arise from variations by horizontal
geodesics. As such, if J is a projectable Jacobi field, π∗J is a Jacobi field along the geodesic
ᾱ = π ◦ α in the base. Conversely, we have the following

Lemma 1.17. Let J̄ be a Jacobi field of B along ᾱ, and v a vertical vector at α(0); then
there is a unique projectable Jacobi field J along α such that π∗J = J̄ and J(0)v = v.

A particular case of projectable Jacobi fields arises from taking geodesic variations
obtained from lifting a given geodesic in the base; such fields are called holonomy Jacobi
fields, and they satisfy the stronger condition

J ′ = −A∗α′J − Sα′J.

It is clear that holonomy fields remain always vertical, i.e., they agree with those pro-
jectable Jacobi fields mapping to the zero field under π∗.
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1.2.4 Singular Riemannian foliations

Here we recall some basic facts about singular Riemannian foliations. We refer the reader
to [53] for further details.

Denote by (M,F), or just F , a partition of a complete smooth manifold M into
smooth, complete, connected, injectively immersed submanifolds (called the leaves of F).
The leaves are allowed to have different dimensions and given a point p ∈M , we will denote
by Lp the leaf through p. Define the vertical distribution TF = {TpLp : p ∈ L,L ∈ F} and
consider the set XF of smooth vector fields X on M such that X(p) ∈ TFp for all p ∈M .
We say that (M,F) is a singular foliation if there exits a family {Xi}i ⊂ XF such that TpL
is spanned by {Xi(p)}i for every p ∈ M . As an example, a smooth submersion M → B
determines a singular foliation on M where the leaves are the fibers of the submersion.
When M is a Riemannian manifold it is natural to define a special kind of foliations.

Definition 1.18. A singular foliation on a complete Riemannian manifold is said to be a
singular Riemannian foliation if each geodesic that is perpendicular at one point to a leaf
remains perpendicular to every leaf it meets.

Clearly the fibers of a Riemannian submersion M → B determine a singular Rie-
mannian foliation on M . Moreover, the leaves of an arbitrary Riemannian foliation are
locally given by fibers of Riemannian submersions for adequately defined metrics on the
local quotients. Therefore, locally we can define the same concepts as in a Riemannian
submersion.

As a second example, if a connected Lie group G acts on a Riemannian manifold M by
isometries, then the partition consisting of the G-orbits determines a singular Riemannian
foliation on M , which we call homogeneous.

Definition 1.19. We define the focal radius of a Riemannian foliation (M,F), as the
infimum over all the leaves of F of the focal radius of each leaf. It will be denoted by
foc(F).

Theorem 1.25 will imply that the focal radius of a singular Riemannian foliation (M,F)
with secM ≥ 1 is less than π.

1.3 Bounds on the index

As in Section 1.1.1, let E be an m-dimensional Euclidean vector space, and consider a
one-parameter family of self adjoint linear maps R : R → Sym(E). Recall that given an
interval I ⊂ R and a Lagrangian L ⊂ JacR, we denote by indL I the index of L in I and
by indL(t0) the dimension of the vector subspace of L formed by those Jacobi fields in L
that vanish at t0.

The definition of the Lagrangian L0 given in Section 1.1.1 can be generalized in an
obvious way. Given a ∈ R, denote by La the Lagrangian subspace of JacR defined as

(1.3.1) La :=
{
Y ∈ JacR : Y (a) = 0

}
.
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1.3.1 Upper bounds

All along this subsection we will assume that there is some positive number C > 0 such
that for any a ∈ R and any Jacobi field with Y (a) = 0, Y does not vanish again in
(a, a+ C]. Clearly

indLa(a, a+ C) = indLa(a, a+ C] = 0, indLa [a, a+ C) = m.

Inequality (1.1.1) shows that for an arbitrary Lagrangian L,

(1.3.2) indL(a, a+ C] ≤ m.

Our next aim is to extend this to larger intervals:

Proposition 1.20. For any Lagrangian L and any positive integer r we have

indL[a, a+ rC] ≤ (r + 1)m.

Proof. Breaking the interval [a, a + rC] into subintervals of length C and using (1.3.2)
repeatedly, we get that

indL[a, a+ rC] = indL(a) +
r−1∑
i=0

indL(a+ iC, a+ (i+ 1)C] ≤ m+ rm.

In the same way we consider the case where there is some positive number ` such that
for any a ∈ R,

indLa(a, a+ `) ≤ m, i.e., indLa [a, a+ `) ≤ 2m.

Again we extend this to larger intervals:

Proposition 1.21. For any Lagrangian L and any positive integer r we have

indL[a, a+ r`] ≤ 2m(r + 1).

Proof. Breaking the interval [a, a+r`] into subintervals of length ` and applying inequality
(1.1.1) to each subinterval we get

indL[a, a+ r`] =

r−1∑
i=0

indL[a+ i`, a+ (i+ 1)`) + indL(a+ r`) ≤ 2mr + 2m.
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1.3.2 Curvature-related lower bounds

To get a lower bound on the index of a Lagrangian L, we need to establish the existence of
conjugate points for the fields in L; Rauch’s Theorem (for the statement of the theorem in
an abstract setting see [70]) gives precisely that for a Lagrangian of the form La as defined
in (1.3.1). We will then use Proposition 1.11 to relate this to the index of an arbitrary
Lagrangian.

We will say that the curvature R satisfies R(t) ≥ δ for all t ∈ R if 〈R(t)v, v〉 ≥ δ‖v‖2
for any vector v ∈ E. Our first result is a quantitative refinement of Corollary 10 in [71].

Proposition 1.22. Assume that there is some δ > 0 such that the curvature R satisfies
R(t) ≥ δ for all t ∈ R. Then for any a ∈ R, the set

A =
{
Y ∈ La : Y (t) = 0 for some t ∈

(
a, a+ π/

√
δ
]}

generates La.

Proof. The proof consists on using of Wilking’s transversal equation repeatedly. We de-
scribe how to proceed:

1. We compare R(t) to the constant curvature case R̄(t) = δI; Rauch’s Theorem gives
us that there is some nonzero Y1 in A vanishing for some t1 ∈ (a, a+ π/

√
δ].

2. Let W1 ⊂ La be the vector subspace generated by Y1; we consider the transverse
Jacobi equation induced by W1 in La. In La/W1 there is a Jacobi equation of the
form

Y ′′ +R1Y = 0, R1(t) = R(t)h + 3AtA
∗
t ,

and therefore 〈R1(t)v, v〉 ≥ 〈R(t)v, v〉 ≥ δ‖v‖2 for any v ∈ W1(t)⊥ ⊂ E. Moreover,
after taking the W1-orthogonal component, the fields in La give an R1-Lagrangian
L1. It is clear that every vector field in L1 vanishes at t = a.

3. Once again, we compare R1(t) to δI to obtain some nonzero X2 ∈ La such that X⊥2
vanishes at some time t2 in (a, a+ π/

√
δ]; this merely means that X2(t2) = λY1(t2)

for some λ ∈ R. It follows that the field Y2 = X2 − λY1 vanishes at t = t2, hence Y2

lies in A and it is linearly independent with respect to Y1.

4. Clearly, the process can be iterated as needed until we obtain a basis of La.

Proposition 1.22 allows us to obtain good lower bounds for the index of a Lagrangian
over long intervals. They can also be obtained using the Morse-Schoenberg lemma [63]
and Proposition 1.11.

Proposition 1.23. Let a ∈ R; when R ≥ δ, the index of any Lagrangian subspace L of
Jacobi fields satisfies

indL

[
a, a+ rπ/

√
δ
]
≥ rm+ indL(a)

for any positive integer r.
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Proof. Without loss of generality we can assume that a = 0 and write the proof for this
case. Consider the closed intervals

Ij = [jπ/
√
δ, (j + 1)π/

√
δ].

Proposition 1.22 says that

indLjπ/√δ Ij ≥ 2m;

while Proposition 1.11 gives us

indL Ij ≥ indLjπ/√δ Ij −m+ dim(L ∩ Ljπ/√δ) ≥ m+ indL(jπ/
√
δ).

Breaking the interval [0, rπ/
√
δ] into the Ij ’s, we conclude that

(1.3.3) indL

[
0, r

π√
δ

]
=

r−1∑
j=0

indL Ij −
r−1∑
j=1

indL

(
j
π√
δ

)
≥

≥
r−1∑
j=0

(
m+ indL

(
j
π√
δ

))
−

r−1∑
j=1

indL

(
j
π√
δ

)
= rm+ indL(0).

A consequence of the last results is the following extension of Proposition 1.22 to
arbitrary Lagrangians:

Proposition 1.24. Let a ∈ R; when R ≥ δ, for every Lagrangian subspace L of JacR the
set {

Y ∈ L : Y (t) = 0 for some t ∈
(
a, a+ π/

√
δ
]}

spans L.

Proof. Proposition 1.23 for r = 1 gives

indL[a, a+ π/
√
δ] ≥ m+ indL(a).

Therefore there exists a Y1 ∈ L such that Y1(t1) = 0 for some t1 ∈ (a, a + π/
√
δ]. The

proof is then identical to that of Proposition 1.22.

Applying Proposition 1.24 to the Lagrangian subspace LN of N -Jacobi fields along α
defined in Section 1.1 we get the following geometric application:

Theorem 1.25. Let M be an n-dimensional manifold with sec ≥ 1 and α : R → M a
geodesic orthogonal to a submanifold N at α(0). Then there are at least n− 1 focal points
of N along α in the interval (0, π].
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1.3.3 Index bounds for periodic Jacobi fields

In this section we examine the index of Lagrangians when the solutions of the Jacobi equa-
tion are periodic with common period. We will show that such index is always bounded
above by some linear function related to multiples of the period.

Proposition 1.26. Suppose there is some l > 0 such that for every Jacobi field J , the
field t → X(t) = J(t + l) is also a Jacobi field. Then for any Lagrangian L in JacR we
have

indL[a, a+ rl] ≤ r (m+ indL[a, a+ l)) +m

for any positive integer r.

Proof. As usual, we will write the proof for a = 0. We start by choosing some basis of L,
given by X1, . . . , Xm; for any positive integer r, consider the Jacobi fields defined as

Xr
i (t) = Xi(t+ rl), i = 1, . . . ,m.

Let Lr the subspace generated by Xr
1 , . . . , X

r
m; it is Lagrangian, with L0 = L. Clearly

indL [jl, (j + 1)l) = indLj [0, l).

Using (1.1.1), we have that

indL[0, rl] =

r−1∑
j=0

indLj [0, l) + indLr(0) ≤
r−1∑
j=0

(indL [0, l) +m) +m,

as claimed.

1.4 Horizontal closed curves and geodesics

Let π : M → B be a Riemannian submersion (no curvature conditions are assumed in this
section) with fiber F and c : [0, l] → B a picewise smooth closed curve, i.e., c(0) = c(l)
but not necessarily c′(0) = c′(l). In this section we study the existence of fixed points for
the associated holonomy diffeomorphism hc : F → F using Lefschetz Fixed-Point Theory.
Note that hc having a fixed point p means that the horizontal lift cp : [0, l] → M of c
satisfying cp(0) = p closes in the first lap, i.e., cp(0) = cp(l) = p.

Some preliminaries on Lefschetz Fixed-Point Theory are given in Subsection 1.4.1;
then we apply these results to different situations in Subsections 1.4.2 and 1.4.3. We finish
the section by giving an example of a Riemannian submersion with no horizontal closed
geodesics in Subsection 1.4.4.
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1.4.1 Lefschetz Fixed-Point Theory

Here we collect some basic facts on Lefschetz Fixed-Point Theory (see [12, 34] for proofs
and further details). Let f : M → M be a smooth map on a compact oriented manifold.
The Lefschetz number L(f) of f is an integer which measures somehow the cardinality of
the fixed-point set of f .

Definition 1.27. Let f : M → M be a smooth map on a compact orientable manifold.
The Lefschetz number L(f) of f is

L(f) =
∑
i

(−1)i traceH i(f)

where H i(f) denotes the linear map induced by f on the cohomology group H i(M).

As an immediate consequence, we have the following:

Corollary 1.28. The Lefschetz number L(Id) of the identity map Id : M → M equals
the Euler characteristic χ(M) of M .

Observe that The Lefschetz number L(f) of a smooth map f : M →M is a topological
invariant, i.e., L(f) = L(f̄) for any smooth map f̄ : M →M homotopic to f . Recall that f
is homotopic to f̄ if there exists a smooth map H : M×[0, 1]→M such that H(p, 0) = f(p)
and H(p, 1) = f̄(p) for all p ∈M . The main result is the following:

Theorem 1.29 (Lefschetz Fixed-Point Theorem). Let f : M → M be a smooth map on
a compact orientable manifold. If L(f) 6= 0, then f has a fixed point.

1.4.2 π1(B) = 0 and χ(F ) 6= 0

The simply-connectedness of the base space B in a Riemannian submersion M → B allows
us to characterize the holonomy diffeomorphisms topologically.

Proposition 1.30. Let π : M → B be a Riemannian submersion with fiber F , and let
c : [0, l] → B be a picewise smooth closed curve. If B is simply connected, then hc is
homotopic to the identity map Id : F → F .

Proof. Since B is simply connected, there exists a smooth homotopy of curves

H : [0, l]× [0, 1] −→ B
( t , s ) 7−→ H(t, s) =: cs(t)

with c1 ≡ c, ct(0) = ct(1) = c(0) for all t and c0 ≡ c(0). As in the proof of Propo-
sition 1.15, consider the pull-back bundle π′ : H∗M → [0, l] × [0, 1], which is itself a
Riemannian submersion with the induced metrics. Since H is smooth, the velocity vector
∂t ∈ T ([0, l]× [0, 1]) and hence its basic lift X to H∗M are smooth vector fields. It follows
that the flow φX : R ×H∗M → H∗M of X is smooth. Observe that H∗(t,s) (∂t) = c′s(t),
and that for each s ∈ [0, 1], the restriction of φX to {l}× (π′)−1(0, s) equals the holonomy
map hcs : π−1(c(0)) → π−1(c(0)). Therefore hcs is a smooth homotopy between hc1 ≡ hc
and hc0 ≡ Id.
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Proof of Theorem 1.5. Proposition 1.30 tells us that hc is homotopic to the identity map
and therefore by Corollary 1.28 its Lefschetz number equals the Euler characteristic of the
fiber χ(F ). By hypothesis χ(F ) 6= 0, thus Theorem 1.29 implies that the map hc has a
fixed point.

1.4.3 F is a homology sphere

Next we examine the case when the fiber of the Riemannian submersion is a homology
sphere, which we denote by Sk. In this case, the Lefschetz number of the holonomy
diffeomorphism hc : Sk → Sk associated to a closed curve c in the base space is:

L(hc) = traceH0(hc) + (−1)k traceHk(hc) = 1 + (−1)k traceHk(hc)

where

traceHk(hc) =

{
1 if hc preserves orientation

−1 otherwise

The following table shows the Lefschetz number of L(hc) in all the possible cases:

k is even k is odd
hc preserves orientation 2 0
hc reverses orientation 0 2

Table 1.1: Lefschetz number L(hc).

Observe that even if hc reverses the orientation, h2
c = hc ◦hc preserves the orientation.

Thus, if k is even, L(h2
c) = 2.

Proposition 1.31. Let π : M → B be a Riemannian submersion with fiber a homology
sphere of dimension k, and c : [0, l]→ B a picewise smooth closed curve. Then,

1. If k is even and hc preserves orientation, then there is a horizontal lift of c that
closes in the first lap.

2. If k is even and hc reverses orientation, then there is a horizontal lift of c that closes
in the second lap.

3. If k is odd and hc reverses orientation, then there is a horizontal lift of c that closes
in the first lap.

Note that in contrast to Theorem 1.5, in Proposition 1.31 we do not require simply-
connectedness of the base space.

Observe that in the Hopf fibration S3 → S2 with fiber the circle S1, every geodesic
in S2 is closed of length π, and every geodesic in S3 is closed of length 2π. This implies
that any lift of a closed geodesic always closes in the second lap but never in the first one.
By part (3) of Proposition 1.31, it follows that the holonomy map associated to a closed
geodesic in S2 preserves orientation.
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One can obtain similar results to Proposition 1.31 considering other spaces as fibers
of the Riemannian submersion. Natural spaces to examine are orientable manifolds with
simple cohomology rings, such as (homology) odd-dimensional real or complex projective
spaces.

1.4.4 An example with no horizontal closed geodesics

Here we show how to produce examples of Riemannian submersions where the horizontal
lifts of a closed curve never closes. In these examples, the fibers are circles and hence the
associated holonomy diffeomorphisms preserve orientation.

For each α ∈ R, we have the following action of Z× Z on R2:

(Z× Z)× R2 −→ R2

(a, b), (x, y) 7−→ (x+ a, y + b+ aα)

This action is smooth, free and properly discontinuous (see the definition in Section 2.1.1)
for every α ∈ R. It follows that the quotient space is a manifold, which will be denoted
by Tα. Clearly, T0 is the standard 2-dimensional torus, and Tα is diffeomorphic to T0 for
every α as the following well-defined map shows:

Tα −→ T0

[x, y] 7−→ [x, y − αx]

The action of Z×Z on R2 is clearly by isometries, so the Euclidean metric on R2 descends
to a flat metric on Tα. Now we define the following Riemannian submersion

πα : Tα −→ R/Z = S1

[x, y] 7−→ [x]

where the circle has the obvious metric of length 1. The curve c(t) = [t] in the circle is
a geodesic, which is closed as c(j) = c(0) for every integer j. A horizontal lift of c to the
point [0, y] in the fiber over c(0) is of the form cy(t) = [t, y]. At integer times,

cy(j) = [j, y] = [0, y − jα],

so cy(j) = cy(0) if and only if jα is an integer.

Proposition 1.32. For the Riemannian submersion Tα → S1 the following holds:

1. If α = 1/m with m ∈ N, the lift of a closed geodesic closes exactly in the mth lap.

2. If α ∈ R \Q, there are no closed horizontal geodesics.

Observe that the horizontal distribution of the submersion is integrable for all α ∈ R.
Moreover, if α ∈ R \ Q, each of the integral submanifolds is dense and it is called a
irrational winding of the torus.
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1.5 Proofs

Let π : M → B be such a submersion where M and B have dimensions n + k and n
respectively, with fiber F k. We will usually overline the notation for objects in the base,
to distinguish them from those in M .

1.5.1 Proof of Theorem 1.1

Let α : R → M be a horizontal geodesic and ᾱ = π ◦ α its projection by the submersion.
The Lagrangian subspace L̄o can be lifted to α by considering the subspace spanned by
projectable Jacobi fields Y that vanish at t = 0 (and will therefore have horizontal Y ′(0)),
and by holonomy Jacobi fields along α. We use L to denote such Lagrangian, and W to
denote the subspace generated by the holonomy fields. It is interesting to observe that L
agrees with the LN from the proof of Theorem 1.25 when N is the fiber through α(0). By
Lemma 3.1 in [48],

(1.5.1) indL/W + indW = indL

along any interval, where in L/W we are using the transverse Jacobi equation induced
by W ⊂ L. Observe that since holonomy Jacobi fields never vanish, indW = 0 over any
interval. We claim that indL/W = indL̄0

. To prove it, we use that, as stated in [48, Section
3.2], the transverse Jacobi equation corresponding to W along α agrees with the usual
Jacobi equation along ᾱ. Since Lagrangians for the Jacobi equation project to Lagrangians
for the transverse Jacobi equation, and every field Y in L satisfies Y (0) ∈W (0), we have
the mentioned equivalence of indices. Thus we have indL̄0

= indL.

We will estimate this common value over the intervals [0, rπ] using some of the previous
inequalities on the index; choose an arbitrary C < conj(B):

indL̄0
[0, rπ] = indL̄0

[
0,
rπ

C
· C
]
≤
([rπ

C

]
+ 1
)

(n− 1)(1.5.2)

by Proposition 1.20, and

indL[0, rπ] ≥ r(n− 1 + k) + indL(0) = r(n− 1 + k) + (n− 1)(1.5.3)

by Proposition 1.23.

To finish the proof, divide both inequalities by r and make it tend to infinity to conclude
that

k ≤
( π
C
− 1
)

(n− 1).

Letting C tend to conj(B) gives us Theorem 1.1.

The above proof can be easily extended to metric foliations:

Proof of Corollary 1.3. Let F be a leaf of F and α : R → M a geodesic orthogonal to
F with α(0) ∈ F . Denote by W the set of holonomy Jacobi fields along α, and by
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L the Lagrangian spanned by W and those Jacobi fields along α with J(0) = 0 and
J ′(0) ⊥ Tα(0)F ,i.e., the F -Jacobi fields. Since indW I = 0, equation 1.5.1 gives

indL I = indL/W I

for any interval I. Observe that L/W corresponds to the Lagrangian L̄0 = {J : J(0) = 0 }
of Jacobi fields for Wilking’s transverse equation for the isotropic W .

From the definition of the focal radius of F (Definition 1.19) it follows that for every
C < foc(F),

indL̄0
(0, C] = 0,

and therefore we are in the situation of Proposition 1.24, thus

r(n− 1 + k) ≤ indL[0, rπ] = indL̄0
[0, rπ] ≤

([rπ
C

]
+ 1
)

(n− 1)

for any integer r > 0. As before, divide both sides by r and let it tend to zero to obtain
the inequality claimed in the corollary.

1.5.2 Proof of Theorem 1.4

Let m be the smallest positive integer such that πiB = 0 when i = 1, . . . ,m − 1 and
πmB 6= 0. Hurewicz’s Theorem implies that m ≤ n. If ΛB denotes the free loop space
of B, then πm−1ΛB = πmB, and Lyusternik-Schnirelmann theory implies that there is a
closed geodesic ᾱ : [0, `] → B such that the number of conjugate points to ᾱ(0) along ᾱ
in the interval (0, `) does not exceed m − 1 (see [7, Theorem 1.3]). If we iterate ᾱ and
consider it as a geodesic ᾱ : R→ B, we have that indL̄a(a, a+ `) ≤ m− 1 ≤ n− 1 for all
a ∈ R.

Denote by α : R→M some horizontal lift of ᾱ to M . Choose along α the Lagrangian
L of Jacobi fields spanned by the vertical holonomy Jacobi fields and projectable Jacobi
fields that vanish at t = 0. As in the proof of Theorem 1.1, we have

(1.5.4) indL I = indL̄0
I.

We are going to use this equality in intervals of the form [0, rπ] for r a positive integer;
the left hand side in (1.5.4) can be bound with the help of Proposition 1.23, giving

r(n− 1 + k) + indL(0) ≤ indL[0, rπ];

on the other hand the right hand side can be bound with Proposition 1.21 to get

indL̄0
[0, rπ] ≤ indL̄0

[
0,
([rπ

`

]
+ 1
)
`
]
≤ 2

([rπ
`

]
+ 2
)

(n− 1).

Dividing by r and letting it tend to infinity gives

n− 1 + k ≤ 2π

`
(n− 1) ≤ 2π

`0(B)
(n− 1).
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1.5.3 Proof of Theorems 1.6 and 1.7

Denote by M̃ and B̃ the Riemannian universal coverings of M and B respectively. Observe
that M̃ and B̃ satisfy the same curvature bounds of M and B respectively and hence are
compact. The composition of the covering map M̃ →M with π : M → B is a Riemannian
submersion M̃ → B, which can be lifted to a Riemannian submersion π̃ : M̃n+k → B̃n

using basic covering space theory. The fiber of π̃ is a manifold F ′ which is a covering space
of F by construction (note that F ′ need not be simply connected).

Applying Theorem 1.4 to the Riemannian submersion π̃ : M̃n+k → B̃n we get

(1.5.5) `0(B̃) ≤ 2π(n− 1)

n+ k − 1
,

where `0(B̃) denotes the length of the shortest closed geodesic in B̃.

The coverings M̃ and B̃ are compact and simply connected, hence orientable. We
claim that the fiber F ′ is also orientable. To prove the this fact, observe that by part
(4)-(c) of Proposition 1.14, any point in B̃ has a neighborhood U such that π̃−1(U) is
diffeomorphic to U × F ′. On the other hand, π̃−1(U) is an open submanifold N of the
same dimension as M̃ , and hence orientable. It follows that U × F ′ and therefore F ′ are
orientable.

For the proof of Theorem 1.6 observe that since F ′ is a covering space of F , it follows
that χ(F ′) = dχ(F ), where d denotes the degree of the covering map F ′ → F . Then
χ(F ′) 6= 0, and therefore the Riemannian submersion π̃ : M̃n+k → B̃n satisfies the condi-
tions of Theorem 1.5. It follows that a lift to M̃ of the shortest closed geodesic in B̃ closes
in the first lap, and hence `0(M̃) ≤ `0(B̃).

Recall that from the work of Heintze and Karcher in [36] on the length of a closed
geodesic in a positively curved manifold we have that:

(1.5.6) `0(M̃) ≥ 2πVol (M̃)

Vol(Sn+k)
,

where Vol(Sn+k) denotes the volume of the n+k-dimensional sphere of constant sectional
curvature equal to 1. Put together (1.5.5) with (1.5.6) to get

k ≤
(

Vol(Sn+k)

Vol (M̃)
− 1

)
(n− 1).

Now the obvious inequality Vol (M̃) ≥ Vol (M) gives Theorem 1.6.

For the proof of Theorem 1.7 observe that since M̃ is a covering space of M , it follows
that χ(M̃) = dχ(M), where d denotes the degree of the covering map M̃ → M . Thus
χ(M̃) 6= 0. In particular, Poincaré duality implies that M̃ is even-dimensional.

The submersion M̃ → B̃ is a fibration with fiber F ′ and then χ(M̃) = χ(B̃)χ(F ′).
It follows that χ(F ′) 6= 0, so we can apply Theorem 1.5 to the Riemannian submersion
π̃ : M̃n+k → B̃n. We get the inequality `0(M̃) ≤ `0(B̃).
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Now, by work of Klingenberg in [46], we have that the length `0(M̃) of the shortest
closed geodesic in a simply connected even-dimensional positively curved manifold M̃
satisfies:

(1.5.7) `0(M̃) ≥ 2π
√

max secM̃
.

Put together the inequalities (1.5.5) and (1.5.7) to obtain:

k ≤
(√

max secM̃ − 1
)

(n− 1).

Clearly
√

max secM̃ =
√

max secM , and we get Theorem 1.7.





Chapter 2

Cohomogeneity one orbifolds

Let G be a compact Lie group acting on a topological space X. The cohomogeneity
of the action is, by definition, the dimension of the orbit space X/G. In this chapter
we study cohomogeneity one smooth actions of compact Lie groups on closed, smooth
orbifolds. As for manifolds, a smooth orbifold is closed if its underlying topological space
is compact and has no boundary. Throughout this chapter, we will work in the category
of orbifolds. Therefore, smooth maps, diffeomorphisms, bundles, etc. will be understood
to be morphisms and objects in this category.

We generalize the well-known structure theorem for closed cohomogeneity one smooth
manifolds. Recall that the cone C(X) over a topological space X is defined as the quotient
space C(X) = (X × [0, 1]) / (X × {0}); as an example, observe that the cone over the unit
sphere Sn ⊂ Rn+1 is the unit ball in Rn+1.

Theorem 2.1. Let O be a closed, connected, smooth orbifold with an (almost) effective
smooth action of a compact, connected Lie group G with principal isotropy group H. If
the action is of cohomogeneity one, then the orbit space O/G is homeomorphic to a circle
or to a closed interval and the following statements hold.

1. If the orbit space is a circle, then O is equivariantly diffeomorphic to a G/H-bundle
over a circle with structure group N(H)/H, where N(H) is the normalizer of H in
G. In particular, O is a manifold and its fundamental group is infinite.

2. If the orbit space is homeomorphic to an interval, say [−1,+1], then:

(a) There are two non-principal orbits, π−1(±1) = G/K±, where π : O → O/G is
the natural projection and K± is the isotropy group of the G-action at a point
in π−1(±1).

(b) The orbifold singular set of O is either empty, a non-principal orbit or both
non-principal orbits.

(c) The orbifold O is equivariantly diffeomorphic to the union of two orbifiber bun-
dles over the two non-principal orbits whose fibers are cones over spherical space

37
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forms, that is,

O ≈ G×K− C (S−/Γ−) ∪G/H G×K+ C (S+/Γ+) ,

where S± denotes the round sphere of dimension dimO−dimG/K±−1 and Γ±
is a finite group acting freely and by isometries on S±. The action is determined
by a group diagram (G,H,K−,K+) with group inclusions H ≤ K± ≤ G and
where K±/H are spherical space forms S±/Γ±.

(d) Conversely, a group diagram (G,H,K−,K+) with H ≤ K± ≤ G and where
K±/H are spherical space forms, determines a cohomogeneity one orbifold as
in part (c).

Note that, although not explicitly contained in the group diagram (G,H,K−,K+), the
inclusions H ↪→ K± ↪→ G are an important part of the group action information. Indeed,
the same 4-tuple (G,H,K−,K+) may give raise to different cohomogeneity one manifolds,
depending on the inclusion maps. For example, both S3 and S2×S1 admit cohomogeneity
one actions of the torus T 2 with associated group diagram (T 2, 1,S1, S1), where 1 denotes
the trivial group, but different inclusion maps (see, for example, [55]).

Observe that the free and isometric actions of the finite groups Γ± on the round
spheres S± are important as well to obtain the orbifold structure of the points in the non-
principal orbits. This is particularly important when dimS± = 1, since S±/Γ± is again
diffeomorphic to S±. For example, consider the standard S1-action on the topological
2-sphere X. Endow X with the usual smooth structure, the tear drop structure, and
the rugby ball structure respectively. Since the topological action is the same, the group
diagram is (S1, 1,S1, S1) in all cases, and hence K±/H = S1. In order to distinguish their
orbifold structures, it is important to explicitly consider the Zn-action on the singular
point (resp. the two singular points) of the tear drop (resp. rugby ball).

Remark. In the context of the present chapter, the word “singular” may refer to two
different properties. It may refer to the singular orbits of a compact Lie group action (i.e.
orbits whose dimension is less than the dimension of a principal orbit) or to the singular
set of an orbifold. A priori these are not related. We will be careful in making clear the
conditions in which we use the term. In the cohomogeneity one literature, the non-principal
orbits corresponding to the endpoints of the orbit space of a closed cohomogeneity one
manifold are sometimes referred to as “singular orbits” (although in principle they could
be exceptional orbits). To avoid confusion, we will always refer to these orbits as the
non-principal orbits of the action.

To put Theorem 2.1 into perspective, recall that there exist analogous structure results
for cohomogeneity one actions on closed smooth manifolds, on closed topological manifolds
and on closed Alexandrov spaces (cf. [54, 39, 23, 22]). In all these cases, the only differ-
ences with Theorem C appear when the orbit space is homeomorphic to an interval. If X
is a such a cohomogeneity one smooth manifold (respectively smooth orbifold, topological
manifold, Alexandrov space), then X is equivariantly diffeomorphic (resp. diffeomorphic,
homeomorphic, homeomorphic) to the smooth manifold (resp. smooth orbifold, topolog-
ical manifold, Alexandrov space) constructed as the union of two fiber bundles over the
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non-principal orbits whose fibers are cones over certain spaces K±/H specified in the
following table:

X K±/H
Smooth manifold A round sphere
Topological manifold A round sphere or the Poincaré homology sphere
Riemannian orbifold A spherical space form
Alexandrov space A homogeneous positively curved Riemannian manifold

The Poincaré homology sphere is a 4-dimensional spherical space form, thus the following
corollary follows from Theorem 2.1.

Corollary 2.2. Let X be a closed cohomogeneity one topological manifold with a coho-
mogeneity one action by a Lie group G. Then X admits a smooth orbifold structure OX
such that the G-action is smooth.

Clearly, every topological manifold with a transitive action of a compact Lie group is
homeomorphic to a smooth manifold. In view of Corollary 2.2, it is thus natural to ask
the following

Question 2.3. Given k ≥ 2, when is a cohomogeneity k closed topological manifold equiv-
ariantly homeomorphic to a smooth orbifold?

Recall that Alexandrov spaces are inner metric spaces with a lower curvature bound (in
the triangle comparison sense); they are synthetic generalizations of Riemannian manifolds
with (sectional) curvature bounded below and, more generally, of Riemannian orbifolds
with a lower curvature bound (see [15, 16]). The following corollary to Theorem 2.1 follows
from the fact that the lowest dimension where a homogeneous positively curved manifold
is not a space form is 4.

Corollary 2.4. Let (X, d) be a closed cohomogeneity one Alexandrov space with a coho-
mogeneity one action by a Lie group G such that the codimension of both non-principal
orbits is at most 4. Then X admits a smooth orbifold structure OX such that the G-action
is smooth.

Since Riemannian orbifolds are Alexandrov spaces, results for cohomogeneity-one Alexan-
drov spaces hold for cohomogeneity-one orbifolds. This is the case, for example, for results
relating to the group diagram (see [22, Section 2]).

The chapter is organized as follows. In Section 2.1, we fix notation and review some
basic facts about orbifolds and smooth actions. We prove Theorem 2.1 in Section 2.2.

The results in this chapter are joint work with Fernando Galaz-Garćıa (KIT) and they
will be contained in the forthcoming paper [20].
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2.1 Preliminaries

In this section we collect the basic definitions and facts about orbifolds that we will use
in the proof of Theorem 2.1. We have based our discussion on [13, 21, 45].

2.1.1 Smooth orbifolds

Definition 2.5. An n-dimensional (differentiable) orbifold atlas on a second-countable,
Hausdorff topological space Q is given by the following data:

1. An open cover {Vi}i∈I of Q indexed by a set I.

2. For each i ∈ I, a finite subgroup Γi of the group of diffeomorphisms of a simply
connected n-manifold Xi and a continuous map qi : Xi → Vi such that qi induces a
homeomorphism from Xi/Γi onto Vi. The collection (Vi, Xi,Γi, qi) is called a local
(uniformizing) chart.

3. For all zi ∈ Xi and zj ∈ Xj such that qi(zi) = qj(zj), there is a diffeomorphism h
from an open connected neighborhood W of zi to a neighborhood of zj such that
qj ◦ h = qi|W . Such a map h is called a change of chart ; it is well defined up to
composition with an element of Γj . In particular, if i = j, then h is the restriction
of an element of Γi.

The family {(Vi, Xi,Γi, qi)}i∈I is called an orbifold atlas on Q.

The sources Xi can be thought to be open balls in Rn.

Definition 2.6. Let {(Vi, Xi,Γi, qi)}i∈I1 and {(Vi, Xi,Γi, qi)}i∈I2 be orbifold atlases over
a given topological space Q. We say that they define the same orbifold structure on
Q if the union atlas {(Vi, Xi,Γi, qi)}i∈I1∪I2 satisfies the compatibility condition (3) in
Definition 2.5.

Definition 2.6 determines a equivalence relation on the set of orbifold atlases over a
given topological space Q.

Definition 2.7. An n-dimensional smooth orbifold, denoted by O, is a second-countable,
Hausdorff topological space |O|, called the underlying topological space of O, together with
an equivalence class of orbifold atlases on O.

Let (Vp, Xp,Γp, qp) be a uniformizing chart with p ∈ Vp. If q−1
p (p) consists only of one

point, then (Vp, Xp,Γp, qp) is called a good local chart around p ∈ Vp. In particular, q−1
p (p)

is fixed by the action of Γp on Xp.

We will write p ∈ O to denote a point p in the topological space |O|. Given p ∈ O, one
can always find a good local chart (Vp, Xp,Γp, qp) around p. Moreover, the corresponding
group Γp does not depend on the choice of good local chart around p and it is referred to
as the local (orbifold) group at p. From now on we will consider only good local charts.
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Definition 2.8. The singular set ΣO of an orbifold O consists of those points p ∈ O
whose local group Γp is non-trivial. The regular part O \ ΣO will be denoted by O0 and
it is a (possibly non-complete) manifold.

Proposition 2.9 (Newmann, Thurston). The singular set ΣO of an orbifold O is a closed
set with empty interior.

Let us give some examples:

1. A manifold is a particular case of orbifold whose singular set is empty.

2. A manifold M with boundary can be given an orbifold structure in which its bound-
ary becomes a “mirror”. Any point on the boundary has a neighborhood modelled
on Rn/Z2, where Z2 acts by reflection in a hyperplane.

3. Let M be a manifold equipped with a properly discontinuous action of a discrete
group Γ. Recall that the action of Γ is said to be properly discontinuous if for every
compact set K ⊂ M , there are only finitely many γ ∈ Γ such that γ(K) ∩K 6= ∅.
The quotient space M/Γ inherits an orbifold structure (see [66, Proposition 13.2.1]),
which we will denote simply by M/Γ. An orbifold that arise in this way is called good
orbifold. Observe that if in addition the Γ-action is free then M/Γ is a manifold.

4. The topological 2-dimensional sphere can be endowed with different orbifold struc-
tures.

(a) If the singular set consists of one point, modelled on R2/Zk, where Zk acts by
rotations on R2, the orbifold structure is known as the tear drop and provides
an example of an orbifold which is not good.

(b) If the singular set consists of two points, modelled on R2/Zk1 and R2/Zk2
respectively, the orbifold structure is not good unless k1 = k2. In the latter
case, the orbifold structure is known as the rugby ball.

Definition 2.10. A smooth map ϕ : O1 → O2 between orbifolds is given by a continuous
map |ϕ| : |O1| → |O2| such that, if (Vp, Xp,Γp, qp) and (V|ϕ|(p), X|ϕ|(p),Γ|ϕ|(p), q|ϕ|(p)) are
good local charts around p ∈ O1 and |ϕ|(p) ∈ O2 respectively, then there is a (possibly
non-unique) smooth map ϕ̃p : Xp → X|ϕ|(p) so that the diagram

Xp
ϕ̃p //

qp

��

X|ϕ|(p)

q|ϕ|(p)

��
Vp |ϕ|

// V|ϕ|(p)

commutes. The map ϕ̃p is called a lift of ϕ around p. Given two such lifts ϕ̃1 and ϕ̃2

around p, there exists γ ∈ Γ|ϕ|(p) such that ϕ̃1 = γϕ̃2.

Definition 2.11. A smooth map ϕ : O1 → O2 is a diffeomorphism if it is bijective and
has a smooth inverse.
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We say that a map ϕ : O1 → O2 between orbifolds satisfies certain topological condition
(e.g. surjectivity, continuity, etc.) if the map |ϕ| : |O1| → |O2| between the underlying
topological spaces does.

Definition 2.12. An orbifiber bundle ϕ : O1 → O2 is a surjective smooth map together
with a third orbifold O3 such that

1. for each p ∈ |O2|, there is a uniformizing chart (Vp, Xp,Γp, qp) around p, along with
an action of Γp on O3 and a diffeomorphism

(O3 ×Xp) /Γp −→ O1||ϕ|−1(Vp),

where O1||ϕ|−1(Vp) denotes the induced orbifold structure on the topological space

|ϕ|−1(Vp) ⊂ |O1| and

2. the following diagram commutes:

(O3 ×Xp) /Γp //

��

O1

��
Xp/Γp // O2

Definition 2.13. 1. An orbivector space is a triple (E,Γ, ρ) where E is a vector space,
Γ is a finite group and ρ is a linear representation of Γ in E.

2. A linear map between orbivector spaces (E,Γ, ρ) and (E′,Γ′, ρ′) consists of a linear
map T : E → E′ in the usual sense and a homomorphism H : Γ → Γ′ such that
T ◦ (ρ(γ)) = ρ′(H(γ)) ◦ T for all γ ∈ Γ.

3. An orbivector bundle is an orbifiber bundle E → O which is locally isomorphic to
(E×Xp)/Γp, where (E,Γ, ρ) is an orbivector space on which Γp acts linearly.

The tangent bundle TO of an orbifold O is an orbivector bundle which is locally iso-
morphic to TXp/Γp. We call the orbivector space TXp/Γp the tangent space to O at p and
denote it by TpO. A smooth map ϕ : O1 → O2 induces a smooth map ϕ∗ : TO1 → TO2 in
terms of the differential of local lifts ϕ̃p of ϕ around points p ∈ O1. The map ϕ∗ is called
the differential of ϕ.

We now recall the definitions of orbifold covering space and universal covering space
(see [66, Chapter 13]).

Definition 2.14. Let O1,O2 be smooth orbifolds. An orbifold covering map is a con-
tinuous map |ϕ| : |O1| → |O2| such that each point p ∈ |O2| has a good local chart
(Vp, Xp,Γp, qp) for which each connected component Ui of |ϕ|−1(Vp) is homeomorphic to
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Xp/Γi, where Γi is a subgroup of Γp. These homeomorphisms Ui → Xp/Γi give rise to the
following commutative diagram:

Ui //

|ϕ| %%

Xp/Γi

��
Xp/Γp = Vp

where the map Xp/Γi → Xp/Γp is the obvious quotient map.

Observe that, in general, the map |ϕ| : |O1| → |O2| is not a covering map in the
topological sense. Note that an orbifiber bundle with a zero-dimensional fiber is an orbifold
covering map.

Definition 2.15. Let |ϕ| : |Õ| → |O| be an orbifold covering map and choose a point
p̃ ∈ Õ in the regular part of Õ. We say that Õ is the universal orbifold covering space of
O if for any other orbifold covering map |ϕ′| : |O′| → |O| and any election of a regular
point p′ ∈ O′ such that |ϕ|(p̃) = |ϕ′|(p′), there exists a lift |φ| : |Õ| → |O′| of |ϕ|. In other
words, the diagram

|Õ|
|φ|

!!
|ϕ|

��

|O′|

|ϕ′|}}
|O|

commutes and |φ| is an orbifold covering map.

Proposition 2.16 ([66, Proposition 13.2.4]). A smooth orbifold has a universal orbifold
covering space.

2.1.2 Riemannian orbifolds

Definition 2.17. Let {(Vi, Xi,Γi, qi)}i∈I be an orbifold atlas defining a smooth orbifold
structure O on a given topological space. A Riemannian metric on O is a family of Γi-
invariant Riemannian metrics 〈, 〉i on the manifolds Xi such that each change of charts is
an isometry.

We say that a Riemannian orbifold O has sectional curvature bounded below by K ∈ R
if the Riemannian metric on each good local chart has sectional curvature bounded below
by K. The underlying topological space |O| of a Riemannian orbifold O inherits a metric
space structure as follows. A smooth curve in an orbifold O is a smooth map β : [0, l]→ O
from an interval [0, l] to O; its length is defined as L(β) =

∫ l
0 ‖β

′(t)‖dt, where ‖β′(t)‖
denotes the norm of the vector β′(t) given by a local lifting of β to a good local chart. This
induces a length structure on |O| with corresponding metric d. If O has sectional curvature
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bounded below by K, then (|O|, d) is an Alexandrov space with curvature bounded below
by K (see [15, Proposition 10.2.4]). This follows from the fact that the curvature bound
descends to quotients by a finite isometric group action. Observe that the tangent space
TpO corresponds to the tangent cone of the Alexandrov space (|O|, d) at p. We say that
O is complete if (|O|, d) is a complete metric space. As pointed out in [45, Section 2.5],
one can think of Riemannian orbifolds as Alexandrov spaces equipped with an additional
structure that allows one to make sense of smooth functions. A minimal geodesic is a
curve β : [0, l]→ |O| that realizes the distance between its endpoints. The lifts of minimal
geodesic to local charts satisfy the geodesic equation.

Definition 2.18. A local isometry ϕ : O1 → O2 between n-dimensional Riemannian
orbifolds is a smooth map such that each lift is a local isometry. A (Riemannian) isometry
ϕ : O1 → O2 between orbifolds is a diffeomorphism which is a local isometry.

More generally, one can also define isometries of metric spaces.

Definition 2.19. Let (Y1, d1) and (Y2, d2) be two metric spaces and let f : Y1 → Y2 be a
bijective map.

1. The map f is a local radial isometry if for every point p ∈ Y1 there exists a neigh-
borhood Up ⊂ Y1 such that d1(p, p′) = d2(f(p), f(p′)) for all p′ ∈ Up.

2. The map f is a (metric) isometry if for any p, p′ ∈ Y1,

d1(p, p′) = d2(f(p), f(p′)).

Lemma 2.20. Let Y1 and Y2 be convex Riemannian manifolds (i.e., any two points can
be joined by a minimal geodesic) with distance functions d1 and d2, respectively. Let
f : Y1 → Y2 be a bijective map that is a local radial isometry. Then f is a metric
isometry.

Proof. Let p, p′ ∈ Y1 be arbitrary points and let α : [0, l] → Y1 be a minimal geodesic
joining p to p′. By definition, for each t ∈ [0, l] there exists a neighborhood Uα(t) of the
point α(t) such that d1(α(t), p) = d2(f(α(t)), f(p)) for all p ∈ Uα(t).

The collection of the sets Uα(t) for t ∈ [0, l] clearly covers the image of the curve α. Since
α([0, l]) is compact, there exists a finite subcovering that covers α([0, l]). In other words,
there exists a sequence of points pi = α(ti) for 0 ≤ i ≤ k, with t0 < t1 < . . . tk−1 < tk,
such that the finite collection of the sets Upi covers α([0, l]). We may suppose that the
intersections Upi ∩Upi+1 are non-empty and that p ∈ U1 and p′ ∈ Uk. Let qi be a point in
Upi ∩ Upi+1 for 1 ≤ i ≤ k − 1.

Using that α is a minimal geodesic and that f is a local radial isometry we get

d1(p, p′) = d1(p, p1) + d1(p1, q1) + d1(q1, p2) + . . . d1(qk−1, pk) + d1(pk, p
′)

= d2(f(p), f(p1)) + d2(f(p1), f(q1)) + d2(f(q1), f(p2)) + . . .

+ d2(f(qk−1), f(pk)) + d2(f(pk), f(p′)).
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On the other hand observe that f maps minimal geodesics to minimal geodesics, so

d2(f(p), f(p′)) = d2(f(p), f(p1)) + d2(f(p1), f(q1)) + . . . d2(f(pk), f(p′)),

it then follows that d1(p, p′) = d2(f(p), f(p′)).

It is well-known that for Riemannian manifolds metric and Riemannian isometries are
the same [59, Theorem 18, p. 147]. Therefore, we can simply speak of isometries of a
Riemannian manifold. For Riemannian orbifolds, since all the local lifts of a Riemannian
isometry preserve the norm of tangent vectors, it is clear that a Riemannian isometry
must be a metric isometry. As in the manifold case, the converse is true for Riemannian
orbifolds.

Proposition 2.21. Let O1,O2 be Riemannian orbifolds with induced distances d1 and d2.
Then a metric isometry |ϕ| : (|O1|, d1)→ (|O2|, d2) is a Riemannian isometry.

Proof. For each p ∈ O1, let (Vp, Xp,Γp, qp) and (V|ϕ|(p), X|ϕ|(p),Γ|ϕ|(p), q|ϕ|(p)) be good local
charts around p and |ϕ|(p) respectively such that V|ϕ|(p) = |ϕ|(Vp). The first step is to
construct continuous local lifts ϕ̃p : Xp → X|ϕ|(p) of |ϕ|.

Note that |ϕ| restricted to Vp is a homeomorphism onto its image V|ϕ|(p). It follows that
(V|ϕ|(p), Xp,Γp, |ϕ| ◦qp) is a good local chart. Observe that the maps |ϕ| ◦qp : Xp → V|ϕ|(p)
and q|ϕ|(p) : X|ϕ|(p) → V|ϕ|(p) are orbifold covering maps. We may assume that both Xp

and X|ϕ|(p) are universal orbifold covering spaces of V|ϕ|(p). By Proposition 2.16, there
exist a lift ϕ̃p of |ϕ| ◦ qp, i.e., a continuous map ϕ̃p : Xp → X|ϕ|(p) such that the following
diagram commutes:

Xp
ϕ̃p //

qp

��

X|ϕ|(p)

q|ϕ|(p)

��
Vp |ϕ|

// V|ϕ|(p)

Observe that ϕ̃p is in particular a lift of |ϕ| : Vp → V|ϕ|(p). The second step is to prove
that ϕ̃p is a local radial isometry.

Let d̃1 and d̃2 be the induced distance functions on the Riemannian manifolds Xp and
X|ϕ|(p) respectively. Denote by p̃ ∈ Xp the preimage of p ∈ Vp by qp. We claim that

(2.1.1) d̃1(p̃, z) = d̃2(ϕ̃p(p̃), ϕ̃p(z)), for all z ∈ Xp.

To prove the latter, suppose that

d̃1(p̃, z) 6= d̃2(ϕ̃p(p̃), ϕ̃p(z)), for some z ∈ Xp.

Since Γp and Γ|ϕ|(p) act by isometries on Xp and X|ϕ|(p) respectively, it follows that

d̃1(γ1(p̃), γ1(z)) 6= d̃2(γ2(ϕ̃p(p̃)), γ2(ϕ̃p(z))), for all γ1 ∈ Γp, γ2 ∈ Γ|ϕ|(p).
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Now observe that ϕ̃p(p̃) ∈ X|ϕ|(p) is the preimage of |ϕ|(p) by q|ϕ|(p), so the elements in Γp
and Γ|ϕ|(p) fix p̃ and ϕ̃p(p̃) respectively. Therefore

d̃1(p̃, γ1(z)) 6= d̃2(ϕ̃p(p̃), γ2(ϕ̃p(z))), for all γ1 ∈ Γp, γ2 ∈ Γ|ϕ|(p),

From the definition of the distance functions d1, d2, d̃1, d̃2, it follows that:

d̃1(p̃, γ1(z)) = d1(p, qp(z)), for all γ1 ∈ Γp,

d̃2(ϕ̃p(p̃), γ2(ϕ̃p(z))) = d2(|ϕ|(p), q|ϕ|(p)(ϕ̃p(z)), for all γ2 ∈ Γ|ϕ|(p).

Denote the point qp(z) ∈ Vp by p′, and note that q|ϕ|(p)(ϕ̃p(z)) = |ϕ|(p′), thus we get that

d1(p, p′) 6= d2(|ϕ|(p), |ϕ|(p′)),

which is a contradiction to the fact that |ϕ| is a metric isometry.

Now let p′ be a point in Vp different than p. Choose good local charts (Vp′ , Xp′ ,Γp′ , qp′)
and (V|ϕ|(p′), X|ϕ|(p′),Γ|ϕ|(p′), q|ϕ|(p′)) around p′ and |ϕ|(p′) respectively such that V|ϕ|(p′) =
|ϕ|(Vp′). We can repeat the same argument to show that there exist a lift ϕ̃p′ : Xp′ →
X|ϕ|(p′) such that

d̃1(p̃′, z) = d̃2(ϕ̃p′(p̃′), ϕ̃p′(z)), for all z ∈ Xp′ ,

where d̃1 and d̃2 denote the distance functions in the Riemannian manifolds Xp′ and

X|ϕ|(p′) respectively, and p̃′ ∈ Xp′ the preimage of p′ ∈ Vp′ by qp′ .
The intersections Vp ∩Vp′ and V|ϕ|(p) ∩V|ϕ|(p′) are non-empty by construction. Since O

is a Riemannian orbifold, the associated changes of charts Xp → Xp′ and X|ϕ|(p) → X|ϕ|(p′)
are Riemannian isometries and hence preserve distances. Denote p̃′ by y and Vp ∩ Vp′ by
Uy. We have proved that for each y ∈ Xp there exists a neighborhood Uy such that

d̃1(y, z) = d̃2(ϕ̃p(y), ϕ̃p(z)), for all z ∈ Uy ⊂ Xp,

i.e., ϕ̃p is a local radial isometry.

We may assume that both Xp and X|ϕ|(p) are convex, so Lemma 2.20 implies that
ϕ̃p is a metric isometry, and hence a Riemannian isometry. This fact holds for every
point p ∈ O, thus the metric isometry |ϕ| : (|O1|, d1) → (|O2|, d2) induces a Riemannian
isometry ϕ : O1 → O2.

2.1.3 Smooth and isometric actions on orbifolds

A smooth action of a Lie group G on an orbifold O is a smooth map

ϕ : G×O → O
(g, p) 7→ gp := |ϕ|(g, p)

such that
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1. g1(g2p) = g1g2p for any g1, g2 ∈ G and p ∈ O,

2. ep = p, where e denotes the neutral element of G.

The orbit of p ∈ O is defined as the set G(p) = {gp | g ∈ G}. The isotropy group Gp
at p ∈ O is the subgroup of G consisting of those elements that fix p. The orbit space will
be denoted by O/G. The ineffective kernel of the action is the subgroup Ker = ∩p∈OGp.
The action is (almost) effective if the ineffective kernel is (discrete) trivial. Observe that
the group G′ = G/Ker always acts effectively on O. Therefore we focus out attention on
effective actions.

By definition, an orbifold diffeomorphism induces an isomorphism between the local
groups of the corresponding points. Then every point in an orbit has the same local group.
It follows that G also acts on both its regular part O0 and singular part ΣO.

Let G be a compact Lie group acting continuously on a topological space X. Then
G(p) is a principal orbit if there exists a neighborhood V of p ∈ X such that for each
q ∈ V , we have that Gp < Ggq for some g ∈ G. The set of principal orbits is open and
dense in X. Let k be the dimension of a principal orbit. Non-principal orbits are classified
in exceptional orbits (if the dimension equals k) or singular orbits (if the dimension is less
than k).

Definition 2.22. Let O1,O2 be orbifolds with a smooth action of a Lie group G. A
smooth map ϕ : O1 → O2 is equivariant if |ϕ|(g(p)) = g(|ϕ|(p)) for all p ∈ O1 and g ∈ G.

Let us give some examples of group actions:

1. Suppose that the action of a compact Lie group G on an orbifold O is transitive, i.e.,
for every p, p′ ∈ O, there exists g ∈ G such that gp = p′. It follows that the singular
set is empty and hence O is a manifold, which is said to be homogeneous.

2. Consider the tear drop orbifold structure on the unit 2-sphere, and let the north
pole be the singular point. Consider the S1-rotation of the sphere around the axis
joining the north and south poles. The north pole is both a singular orbit for the
action and a singular point of the tear drop, while the south pole is a singular orbit
for the action but a regular point of the orbifold structure.

Lemma 2.23 (Kleiner’s Isotropy Lemma, cf. [21]). Let O be a complete Riemannian
orbifold with an isometric and effective action of a compact Lie group. Let c : [0, l] → O
be a minimal geodesic between the orbits G(c(0)) and G(c(l)). Then the isotropy group
Gc(t) is constant for t ∈ (0, l); and it is a subgroup of the isotropy groups Gc(0) and Gc(l).

Proposition 2.24. [21, Proposition 2.12] Let O be an orbifold with a smooth effective
action by a Lie group G. Let p ∈ O have isotropy subgroup Gp ≤ G and let (Vp, Xp,Γp, qp)
be a Gp-invariant good local chart around p. Then there exists a Lie group G̃p such that:

1. G̃p acts on Xp and Xp/G̃p = Vp/Gp;
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2. G̃p is an extension of Gp by Γp, i.e. there exists a short exact sequence

{e} // Γp // G̃p
ρ // Gp // {e}

where e denotes the identity element in Γp and ρ denotes the obvious projection map.

Theorem 2.25 (Slice Theorem, cf. [72, Proposition 2.3.7]). Suppose that a compact Lie
group G acts on an orbifold O equipped with a G-invariant metric. Let (Vp, Xp,Γp, qp) be
a good local chart around p, let p̃ = q−1

p (p), and let T̃pG(p) ⊂ Tp̃Xp be the tangent space
of q−1

p (G(p) ∩ Vp) at p̃. Then a G-invariant neighborhood of the orbit is equivariantly
diffeomorphic to

G×Gp
(
T̃pG(p)

⊥
/Γp

)
;

and by Proposition 2.24 this is equivariantly diffeomorphic to

G×G̃p T̃pG(p)
⊥
,

where G̃p acts on G via the projection ρ.

Lemma 2.26. If a compact Lie group G acts smoothly on a smooth orbifold O, then O
admits a Riemannian metric such that the action of G is by isometries.

Proof. The proof of this lemma goes as in the manifold setting: given a Riemannian metric
on O, use the Haar measure dµ on G to average it and obtain a new metric constructed as
follows. For a point p in O, a good local chart (Vp, Xp,Γp, qp) around p with a Riemannian
metric 〈, 〉p on Xp, and vectors x, y ∈ TpXp, define the new metric 〈, 〉′p on Xp as

〈x, y〉′p =

∫
G
〈g̃p∗x, g̃p∗y〉gpdµg,

where g̃p∗ denotes the differential of g̃p, which is the lift of the smooth map given by the
element g ∈ G around p. The new Riemannian metric on O is G-invariant by construction.

2.2 Proof of Theorem 2.1

By Lemma 2.26 we may assume that the smooth G-action is isometric with respect to
some invariant Riemannian metric on O.

To prove part (1), it suffices to show that O is a smooth manifold, then the conclusion
follows from the structure theorem for cohomogeneity one smooth manifolds (cf. [39]).
Assume that O/G is a circle. Then Kleiner’s Isotropy Lemma implies that every orbit is
principal. Since the local orbifold group in points of the same orbits must be constant,
there cannot be points in O with non-trivial local group. Otherwise, the orbifold singular
set would have non-empty interior, which is a contradiction.

Suppose now that the orbit space is homeomorphic to a closed interval. We may
assume, after rescaling the metric in O, that the orbit space is isometric to the closed
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interval [−1,+1]. Denote by π : O → O/G the projection map. Let c : [−1, 1] → O be a
minimal geodesic between the orbits π−1(±1). From Kleiner’s Isotropy Lemma it follows
that Gc(t) = Gc(0) for all t ∈ (−1, 1) and Gc(t) is a subgroup of Gc(±1). We let H := Gc(0)

and K± := Gc(±1). By the Slice Theorem, a principal orbit must be in the interior of
O/G = [−1,+1] and hence H must be a proper subgroup of K±. This yields part (a).

Denote by ΣO the orbifold singular set of O. By [11, Theorem 3], one of the following
occurs:

• c ⊂ ΣO or

• c ∩ ΣO = ∅, c(−1), c(+1) or c(±1).

The first case can not happen: since every point in an orbit has the same orbifold isotropy
(local) group, ΣO would be the whole orbifold, contradicting Proposition 2.9. The second
case yields part (b).

Denote by p± the point c(±1). Let (V±, X±,Γ±, q±) be a good local chart around p±.
Let T̃p±G(p±) ⊂ Tp̃±X± be the tangent space of (q±)−1 (G(p±)∩V±) at p̃± = (q±)−1 (p±).

Let D± be the unit disk in the orthogonal subspace T̃p±G(p±)
⊥

.
Since the isotropy group K± fixes p±, we may suppose that the neighborhood V± is

K±-invariant, so that K± acts on V± by isometries. Let K̃± be the extension of K± given
by Proposition 2.24 acting on X±. The induced action of K̃± on Tp̃±X± leaves T̃p±G(p±)

invariant, therefore K̃± acts on D±.
Since every vector in D± descends to the one-dimensional space O/G, it follows that

K̃± acts transitively on the boundary of D± with isotropy H. Observe that the boundary
of the unit disk D± is the unit sphere of the corresponding dimension, which we denote
by S±, and that S± = K̃±/H.

The actions of Γ± and K̃± on X± commute, hence Γ± acts on S± as well. It follows
that K± acts transitively on (the a priori orbifold) S±/Γ± with isotropy H, therefore
S±/Γ± = K±/H is a homogeneous manifold, and in particular a spherical space form.

By the Slice Theorem for orbifolds, the following G-equivariant tubular neighborhoods
of the non-principal orbits are equivariantly diffeomorphic to orbifiber bundles of the form:

(2.2.1) π−1[−1, 0] = G×K− (D−/Γ−) π−1[0, 1] = G×K+ (D+/Γ+) .

Then we have the following decomposition of our cohomogeneity one orbifold into two
orbifiber bundles G×K± (D±/Γ±) glued along their common boundary π−1(0) ≈ G/H:

O ≈ G×K− (D−/Γ−) ∪G/H G×K+ (D+/Γ+) .

The action of Γ± on D± is by isometries so Γ± acts on S±. It follows that D±/Γ±
is isometric to the cone C (S±/Γ±) over S± equipped with the so-called spherical cone
metric (see [15]). This proves part (c).

To prove part (d), suppose we have group inclusions H ≤ K± ≤ G such that K±/H
are spherical space forms S±/Γ±. As in the manifold case (cf. [39, Section 1.1]), one
can construct smooth orbifiber bundles as in (2.2.1) and glue them via an equivariant
diffeomorphism. �





Chapter 3

Nonnegative curvature on stable
bundles over compact rank one
symmetric spaces

In 1972, Cheeger and Gromoll proved the fundamental structure theorem for open (i.e.,
noncompact and without boundary) nonnegatively curved Riemannian manifolds:

Theorem 3.1 (The Soul Theorem [18]). Let M be an open Riemannian manifold with
nonnegative sectional curvature. There exists a compact, totally geodesic and totally convex
submanifold S without boundary such that M is diffeomorphic to the normal bundle of S.

Such a submanifold is called a soul of M . As an example, every point of R2 with the
canonical flat metric is a soul. In contrast, if we endow R2 with the paraboloid metric,
only the focal point is a soul. In the cylinder S1×R, every circle S1×{a} is a soul. More
generally, any compact manifold S with nonnegative sectional curvature can be realized as
the soul of some open nonnegatively curved manifold, the simplest one being S ×Rk with
the product metric. It is natural to ask to what extent a converse to the Soul Theorem
holds.

Question 3.2. Let E be a vector bundle over a compact manifold S with nonnegative
sectional curvature. Does E admit a complete metric of nonnegative sectional curvature
with soul S?

The answer is clearly affirmative when S is a homogeneous Riemannian manifold G/H
of a compact Lie group G and E is a homogeneous vector bundle; that is, a vector bundle
of the form (G × Fm)/H, where F stands for R or C and H acts on Fm by means of a
linear representation. The quotient (G× Fm)/H is usually denoted by G×H Fm, and its
nonnegatively curved metric comes from the Riemannian submersion G×Rm → G×HRm,
thanks to O’Neill’s formula.

The first obstructions to the above question were found by Özaydin and Walschap
in [57]: a plane bundle over a torus admits a nonnegatively curved metric if and only if

51
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its rational Euler class vanishes. Later, Guijarro in his thesis [32] and Belegradek and
Kapovitch in the series of papers [8] and [9], extended these results to a larger class of
bundles over some other nonsimply connected souls.

However, in all these examples the obstructions are always due to the existence of a
nontrivial fundamental group. So it is still important to see whether nonnegatively curved
metrics exist when the base of the bundle is simply connected.

Even the case of the sphere Sn is still open, except for dimensions n ≤ 5; see the
article [30] by Grove and Ziller. So it is rather welcome to see that for any sphere there is
a positive answer after passing to the stable realm.

Theorem 3.3 (Rigas [62]). Let E be a real vector bundle over a sphere Sn. Denote by k
the trivial real vector bundle of rank k. Then, for some k the Whitney sum E⊕k = E×Rk
admits a metric with nonnegative sectional curvature.

The starting point in Rigas’ proof is the isomorphism between stable classes of real
vector bundles over Sn and the homotopy group πn(BO), where BO is the classifying space
of the infinite orthogonal group O. He shows that the generators of πn(BO) can be realized
by isometric embeddings of standard Euclidean spheres as totally geodesic submanifolds of
Grassmannian manifolds. Using this fact he is able to prove the existence of homogeneous
bundles in every stable class. Recall that two vector bundles E,F over a compact space
are stably equivalent if there exist trivial bundles k1, k2 such that E ⊕ k1 is isomorphic to
F ⊕ k2.

The statement of Rigas’ Theorem was shown over CP2, S2×S2 and CP2#−CP2 using
cohomogeneity one methods (see [31]). Our goal is to extend these results to some other
nonnegatively curved compact spaces. Natural candidates are the remaining compact rank
one symmetric spaces (CROSSes).

Recall that a symmetric space is a homogeneous Riemannian manifold G/H such that
for each point p ∈ M there exist an isometry ϕ : G/H → G/H fixing p and such that its
differential ϕ∗p equals the antipodal map −Id. On the other hand, the rank of a geodesic
α in an arbitrary Riemannian manifold M is simply the dimension of the subspace of
parallel fields X(t) along α such that R(X(t), α′(t))α′(t) = 0 for all t. This subspace
always includes the vector α′(t) (therefore the rank of a geodesic is always ≥ 1) and the
subspace of parallel normal Jacobi fields along α. The rank of M is now defined as the
minimum rank over all of the geodesics in M . For a symmetric space, the rank can be
computed in terms of the Lie algebras of G and H. The only existing compact rank one
symmetric spaces are the spheres Sn, the projective spaces RPn, CPn, HPn and the Cayley
plane CaP2.

In order to obtain Rigas’ Theorem for all the CROSSes, the main tool will be the
isomorphism between stable classes and reduced K-theory. K-theory of complex vector
bundles over a topological space X was introduced around 1960 by Grothendieck, Atiyah
and Hirzebruch (see [5]); in [6] the last two studied more closely the particular case when
X is a compact homogeneous space. K-theory concerning real vector bundles has been
also studied (see for example [40], [64]), although it is not so well understood as in the
complex case. The following is the main result in this chapter.
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Theorem 3.4. Let E be an arbitrary real (resp. complex) vector bundle over a compact
rank one symmetric space S. Denote by k the trivial real (resp. complex) vector bundle of
rank k. Then, for some k the Whitney sum E⊕k = E×Rk (resp. E×Ck) is a homogeneous
real (resp. complex) vector bundle and hence it admits a metric with nonnegative sectional
curvature and soul S.

In the case of the sphere our methods yield an alternative proof of Rigas’ Theorem.
Moreover, our approach allows us to give an upper bound for the least integer k satisfying
Theorem 3.4. In order to state our result we need to recall that, as a consequence of
the Bott Integrability Theorem (see [42], Chapter 20), if E is a real vector bundle over a
sphere Sn of dimension n ≡ 0 (mod 4), then its (n/4)-th Pontryagin class pn/4(E) is of
the form

pn/4(E) = ((n/2)− 1)!(±pE)a

for some natural number pE , where a is a generator of Hn(Sn,Z).

Theorem 3.5. Let E be an arbitrary real vector bundle over Sn. Let k0 be the least integer
such that the Whitney sum E ⊕ k0 admits a metric with nonnegative sectional curvature.
The following inequalities hold:

• k0 ≤ n+ 1, if n ≡ 3, 5, 6, 7 (mod 8).

• k0 ≤ 2n, if n ≡ 1, 2 (mod 8).

• k0 ≤ max{n+ 1, 2n−1pE}, if n ≡ 0, 4 (mod 8).

The results by Atiyah and Hirzebruch on K-theory of complex vector bundles over
homogeneous spaces were extended by several authors (see for example [1], [35], [51], [52],
[61]). The following theorem will be a consequence of some of these results.

Theorem 3.6. Let E be an arbitrary complex vector bundle over a manifold S in one of
the two following classes Ci:

• C1 is the class of compact nonnegatively curved manifolds S whose even dimensional
Betti numbers b2i(S) vanish for i ≥ 1, and such that H∗(S,Z) is torsion-free.

• C2 is the class of compact normal homogeneous Riemannian manifolds G/H such
that G is a compact, connected Lie group with π1(G) torsion-free and H a closed,
connected subgroup of maximal rank.

Denote by k the trivial complex vector bundle of rank k. Then, for some k the Whitney
sum E ⊕ k = E × Ck admits a metric with nonnegative sectional curvature and soul S.

Odd-dimensional homology spheres admiting nonnegatively curved metrics belong to
class C1, in particular the 7-dimensional exotic sphere which was shown to admit nonneg-
ative curvature by Gromoll and Meyer in [27]. The class C2 includes such manifolds as
even-dimensional spheres, complex and quaternionic Grassmannian manifolds, the Wal-
lach flag manifolds W 6, W 12 and W 24 or the Cayley plane. Recall that manifolds in the
class C2 inherit a nonnegatively curved metric from a biinvariant metric on G.
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Remark. In the context of this chapter, the word “rank” may refer to three different
notions. The rank of a Riemannian manifold is defined above. The rank of a vector
bundle is just the dimension of its fibers. Finally, the rank of a Lie group G is defined
as the dimension of the maximal torus in G, meaning the maximal compact, connected,
abelian Lie subgroup of G (and therefore isomorphic to the standard torus). We say that
a subgroup H < G is of maximal rank if the rank of H equals the rank of G.

The chapter is organized as follows. Section 3.1 recalls basic definitions and facts about
K-theory, stable classes and characteristic classes of vector bundles, and relates them in
the homogeneous setting. Section 3.2 contains the proof of Theorem 3.6. Section 3.3
contains the proofs of Theorem 3.4 for the spheres and of Theorem 3.5. The proofs of
Theorem 3.4 for projective spaces and the Cayley plane are given in Sections 3.4 and 3.5
respectively.

The contents of this chapter are in the article [24].

3.1 Stable classes and homogeneous bundles

Throughout this section F will denote either one of the fields R or C.

3.1.1 Stable classes of vector bundles and KF-theory

We will denote by VectF(M) the set of isomorphism classes of F-vector bundles over a
manifold M . The Whitney sum ⊕ and the tensor product of bundles ⊗F endow VectF(M)
with a semiring structure. Let

c : VectR(M)→ VectC(M) and r : VectC(M)→ VectR(M)

be the complexification and the real restriction maps of vector bundles respectively. We
will write mF or just m (when there is no danger of confusion) for the trivial F-vector
bundle of rank m, which is isomorphic to M × Fm; and mE for the Whitney sum of E
with itself m times.

If the manifold M is compact we have the following well-known result (see e.g. Lemma
9.3.5 in [3]).

Lemma 3.7. Let E ∈ VectF(M) with M compact. Then there exists F ∈ VectF(M) such
that E ⊕ F is isomorphic to a trivial bundle.

From now on we assume that M is compact. We say that E,F ∈ VectF(M) are stably
equivalent if there exist trivial bundles m1,m2 such that E⊕m1 is isomorphic to F ⊕m2.
We will denote by SF(M) the set of stable classes of bundles over M and by {E}F the
stable class of E. The Whitney sum gives SF(M) the structure of an abelian semigroup.
Furthermore, by Lemma 3.7, every element {E}F has an inverse, so SF(M) is an abelian
group. Later on we will use the following theorem (see e.g. [42], Chapter 9).

Theorem 3.8. Let E and F be real vector bundles of the same rank k over a compact
n-dimensional manifold M such that E ⊕m is isomorphic to F ⊕m for some integer m.
If k ≥ n+ 1, then E and F are isomorphic.
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We write KF(M) for the K-theory ring of F-vector bundles over M . This is the ring
completion of the semiring VectF(M). Its elements, called virtual bundles, are usually
written in the form [E] − [F ], where [E1] − [F1] equals [E2] − [F2] if there exists another
bundle E3 such that E1⊕F2⊕E3 and E2⊕F1⊕E3 are isomorphic. Observe that KF(M)
is a commutative ring with unity.

When M is compact, every element in KF(M) can be written in the form [E] − [m].
To prove this, choose a virtual bundle [E1] − [F1]. By Lemma 3.7 there exists a vector
bundle F⊥1 such that F1 ⊕ F⊥1 = m. Then clearly [E1]− [F1] equals [E1 ⊕ F⊥1 ]− [m].

Consider the ring homomorphism d : KF(M)→ Z given by d([E]− [F ]) = rank(E)−
rank(F ). The kernel of d is called the reduced K-theory ring and we will denote it by
K̃F(M). It is an ideal of KF(M) and thus a ring without unity. There is a natural
splitting KF(M) = K̃F(M)⊕ Z. We recall the following well-known theorem that relates
the two latter constructions (see e.g. Theorem 9.3.8 in [3]).

Theorem 3.9. Let M be a compact manifold. Then K̃F(M) ≈ SF(M) as abelian groups.
An isomorphism is given by:

ΦF : K̃F(M) → SF(M)
[E]− [m] 7→ {E}F

To simplify notation, from now on E−F will denote the virtual bundle [E]− [F ]. More
details about these concepts can be found in [3], [5] and [42]. In the literature, the rings
KR(M),KC(M), K̃R(M) and K̃C(M) are frequently denoted by K(M),KO(M), K̃(M)

and K̃O(M) respectively.

3.1.2 Characteristic classes

Roughly speaking, a characteristic class is a way of assigning to each E ∈ VectF(M) a
cohomology class of M which measures somehow the complexity of the bundle E → M .
We refer the reader to the classical reference [49] for all the definitions and details. In this
chapter we use certain characteristic classes; let us recall some basic facts.

Let E be a complex vector bundle over M . The k-th Chern class of E, denoted by
ck(E), is an element in the 2k-th integral cohomology group H2k(M,Z). Here we list some
of their properties:

• For any complex vector bundle E we have that c0(E) = 1, and that ck(E) = 0 for
k > rankC(E). If in addition M is compact, then clearly ck(E) = 0 for k > n/2,
where n is the dimension of M , since the corresponding cohomology groups vanish.

• The Chern classes ck(E) of a trivial bundle E = M × Cm are zero for all k ≥ 1.

• The top Chern class of E (meaning crankC(E)(E)) is always equal to the Euler class
of its real restriction r(E).
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• One can define the total Chern class of E as

cT (E) = c0(E) + c1(E) + · · ·+ crankC(E)(E) ∈ H∗(M,Z),

where H∗(M,Z) denotes the graded integral cohomology ring of M .

• For E,F ∈ VectC(M), we have the so-called Whitney Product Formula:

cT (E ⊕ F ) = cT (E)cT (F ),

where cT (E)cT (F ) denotes the product of cT (E) with cT (F ) in H∗(M,Z). It follows
that the total Chern class is stable in the sense that CT (E ⊕mC) = cT (E).

• The Chern character of E, denoted by ch(E), is defined as

ch(E) = rankC(E) + c1(E) +
1

2

(
c2

1(E)− 2c2(E)
)

+
1

6

(
c3

1(E)− 3c1(E)c2(E) + 3c3(E)
)

+ . . .

and it induces a ring homomorphism ch : KC(M) → H∗(M,Q) from the complex
K-theory of M to its rational cohomology ring.

Finally, let E be a real vector bundle over a manifold M . The k-th Pontryagin class,
denoted by pk(E), is defined as

pk(E) = (−1)kc2k(c(E)) ∈ H4k(M,Z).

3.1.3 Homogeneous vector bundles

For a Lie group G, denote by RepF(G) the set of isomorphism classes of F-representations
of G. The direct sum ⊕ and the tensor product ⊗F of representations endow RepF(G)
with a semiring structure. Let

c : RepR(G)→ RepC(G) and r : RepC(G)→ RepR(G)

stand for complexification and real restriction of representations. We will write mF or
simply m for the trivial representation of G on Fm; and mρ for the sum of ρ ∈ RepF(G)
with itself m times.

Let ρ be a representation of G in the vector space Fm. Recall that the k-th exterior
product of ρ, denoted by Λk(ρ), is the representation in Λk(Fm) induced in the obvious

way. As a vector space, Λk(Fm) is isomorphic to F(mk ). We set Λ0(ρ) = 1 and Λ1(ρ) = ρ.
Observe that Λk(ρ) = 0 for k > m.

If i : H → G is the inclusion of a closed subgroup H, we denote by

i∗F : RepF(G)→ RepF(H)
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the semiring homomorphism defined by restricting representations of G to H.

For each ρ ∈ RepF(H) we have the diagonal action of H on G × Fm from the right
given by

(G× Fm)×H −→ G× Fm
((g, v), h) 7−→ (gh, ρ(h)−1v)

where m is the dimension of the representation ρ. The quotient space Eρ := (G× Fm)/H
is the total space of an associated F-vector bundle πρ : Eρ → G/H over the homogeneous
manifold G/H, where πρ is the obvious projection map. Vector bundles arising in this
way are called homogeneous.

We have an analogue result to Lemma 3.7 in the homogeneous setting. More precisely
(see [65]), we have the following:

Lemma 3.10. Let G be a compact Lie group, H a closed subgroup and Eρ ∈ VectF(G/H) a
homogeneous bundle. Then there exists a representation ρ⊥ ∈ RepF(H) such that Eρ⊕Eρ⊥
is isomorphic to a trivial bundle.

Recall that Eρ is isomorphic to a trivial bundle if and only if ρ is the restriction to H
of a representation of G (see [26], page 131), i.e., if ρ = i∗F(τ) for some τ ∈ RepF(G).

It is straightforward to check that the following map is a morphism of semirings

αF : RepF(H) → VectF(G/H)
ρ 7→ Eρ

Composing αF with the map {}F : VectF(G/H)→ SF(G/H) that assigns stable classes
to vector bundles we get the induced morphism of semigroups

{α}F : RepF(H) → SF(G/H)
ρ 7→ {Eρ}F

The ring completion RF(G) of the semiring RepF(G) is defined in the same manner
as the ring completion KF(M) of the semiring VectF(M). The semiring morphisms r, c, i∗F
and αF extend to ring morphisms of the corresponding ring completions, which we denote
in the same way. We will write ρ1ρ2 and ρ1 + ρ2 (resp. E1E2 and E1 +E2) to denote the
multiplication and the sum laws in RF(G) (resp. KF(M)) induced from tensor product and
direct sum of representations (resp. vector bundles). The following diagrams commute:

RR(G)

c

��

i∗R // RR(H)

c

��

RR(H)

c

��
c

��

αR // KR(G/H)

c

��
RC(G)

i∗C // RC(H) RC(H)
αC // KC(G/H)

The maps {α}F : RepF(H) → SF(G/H) and αF : RF(H) → KF(G/H) are related,
as shown in the lemma below. Denote by R̃F(H) the kernel of the map d : RF(H) → Z
defined by d(ρ1 − ρ2) = dim ρ1 − dim ρ2. It is an ideal of RF(H).
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Lemma 3.11. Let G be a compact Lie group and H a closed subgroup. Then, with the
notations above,

1. αF(R̃F(H)) ⊂ K̃F(G/H), and if the map αF : RF(H)→ KF(G/H) is surjective, then
the restriction αF : R̃F(H)→ K̃F(G/H) is also surjective.

2. The following equality holds:

ΦF ◦ αF(R̃F(H)) = {α}F(RepF(H)),

where ΦF is the map from Theorem 3.9. In particular, if αF is surjective, then {α}F
is also surjective.

Proof. The first statement follows immediately from the definition of αF.

As for the second part, the inclusion {α}F(RepF(H)) ⊂ ΦF ◦ αF(R̃F(H)) is obvious.

Now, every element in αF(R̃F(H)) is of the form Eρ1 −Eρ2 , for some ρ1, ρ2 ∈ RepF(H)
satisfying dim ρ1 = dim ρ2. By Lemma 3.10 there exists ρ⊥2 ∈ RepF(H) such that Eρ2 ⊕
Eρ⊥2

= m. Thus

Eρ1 − Eρ2 = Eρ1 − Eρ2 + Eρ⊥2
− Eρ⊥2 = Eρ1⊕ρ⊥2

−m,

hence we have

ΦF (Eρ1 − Eρ2) = ΦF

(
Eρ1⊕ρ⊥2

−m
)

=
{
Eρ1⊕ρ⊥2

}
F

We recall the following theorem by Pittie which relates the complex representation and
K-theory rings of a certain class of homogeneous spaces.

Theorem 3.12 (Pittie, [61]). Let G be a compact, connected Lie group such that π1(G)
is torsion free. Let H be a closed, connected subgroup of maximal rank. Then the homo-
morphism

αC : RC(H)→ KC(G/H)

is surjective.

3.1.4 Nonnegative sectional curvature

Let G/H be a homogeneous manifold. If H is compact, then for every ρ ∈ RepF(H) we can
assume that r(ρ(H)) lies in some orthogonal group O(n). Suppose that G admits a metric
〈, 〉G of nonnegative sectional curvature which is invariant under the action of H from
the right (for instance a biinvariant metric in the case of compact G), hence inducing a
nonnegatively metric on the quotient manifold G/H by O’Neill’s Theorem on Riemannian
submersions (see Section 1.2.2). Endow G × Fn with the product metric of 〈, 〉G and the
flat Euclidean metric. Then, again by O’Neill’s Theorem on Riemannian submersions, Eρ
inherits a quotient metric of nonnegative curvature of which G×H {0} = G/H is a soul.
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Now suppose that there is a homogeneous bundle in every stable class SF(G/H). Then,
for an arbitrary F-vector bundle E over G/H there exist ρ ∈ RepF(H) and n,m ∈ N such
that

E ⊕ n = Eρ ⊕m = Eρ⊕m

Therefore E⊕n is a homogeneous vector bundle and it admits a metric with nonnegative
sectional curvature. We have proved:

Lemma 3.13. Let G be a compact Lie group and H a closed subgroup. Suppose that there
is a homogeneous F-vector bundle in every stable class SF(G/H). Then for every F-vector
bundle E there exists k ∈ N such that E ⊕ kF = E × Fk admits a metric with nonnegative
sectional curvature.

3.2 Proof of Theorem 3.6

The Chern character induces a ring homomorphism ch : KC(M)→ H∗(M,Q). Atiyah and
Hirzebruch studied extensively this homomorphism in [6]. A consequence of their results
is the following

Theorem 3.14 ([6]). Let M be a compact manifold. Then KC(M) is additively a finitely
generated abelian group, and its rank equals the sum of the even-dimensional Betti numbers
of M . Moreover, if H∗(M,Z) is torsion-free, then KC(M) is free abelian, i.e.,

KC(M) = Z⊕ · · · ⊕ Z︸ ︷︷ ︸
n times

,

where n is the sum of the even-dimensional Betti numbers.

Theorem 3.14 implies that manifolds M in the class C1 satisfy that KC(M) = Z, and
therefore K̃C(M) = 0. Thus every complex vector bundle E is stably trivial, i.e., for some
integer k the Whitney sum E ⊕ kC is isomorphic to a trivial bundle M × Ck′ , and hence
the product metric has nonnegative sectional curvature.

Theorem 3.12 applies directly to manifolds in the class C2, and then Lemma 3.11
together with Lemma 3.13 completes the proof.

3.3 The spheres

As a homogeneous space, the sphere can be viewed as

Sn = SO(n+ 1)/SO(n) = Spin(n+ 1)/ Spin(n).

Recall that the spin group Spin(n) is the double cover of the special orthogonal group
SO(n). For n > 2, the group Spin(n) is simply connected and so coincides with the
universal cover of SO(n).
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3.3.1 Representation rings of Spin(n)

Denote by Λ the canonical representation of SO(n) in Rn and by Λk the k-th exterior
product of Λ. As usual, we set Λ0 = 1 and Λ1 = Λ. Abusing notation, denote also by
Λk its complexification c(Λk). These representations induce representations of Spin(n) via
the double covering map Spin(n)→ SO(n) which are usually denoted in the same way.

The representation rings of Spin(n) are known (see [2] and [14], chapter VI). In the
odd case, RC(Spin(2n+ 1)) equals the polynomial ring:

RC(Spin(2n+ 1)) = Z[Λ1, . . . ,Λn−1,∆].

The special 2n-dimensional representation ∆ satisfies:

∆∆ = 1 + Λ1 + · · ·+ Λn−1 + Λn.

In the even case, RC(Spin(2n)) is also a polynomial ring, namely

RC(Spin(2n)) = Z[Λ1, . . . ,Λn−2,∆+,∆−].

The special 2n−1-dimensional representations ∆+, ∆− satisfy:

∆+∆+ = Λn+ + Λn−2 + Λn−4 + . . .(3.3.1)

∆+∆− = Λn−1 + Λn−3 + Λn−5 + . . .(3.3.2)

∆−∆− = Λn− + Λn−2 + Λn−4 + . . .(3.3.3)

where Λn+ and Λn− are irreducible representations such that Λn+ + Λn− = Λn. The sums end
in Λ2 + 1 or Λ3 + Λ1 depending on the parity of n.

The irreducible representations Λk with k ≤ n−1 (resp. k ≤ n−2) of Spin(2n+1) (resp.
Spin(2n)) are real, meaning that they are the complexification of a real representation.
Moreover (see [14], chapter VI), we have the following:

Proposition 3.15. For n ≡ m (mod 8), the special representations ∆, ∆+ and ∆− of
Spin(n) have the following type:

m 0 1 2 3 4 5 6 7

Type R R C H H H C R

In the case when ∆+, ∆− or ∆ are of real type we denote both the underlying real
representation (not to be mistaken for the real restriction) and its complexification in the
same way.

Consider the standard inclusion

SO(n) → SO(n+ 1)

A 7→
(
A 0
0 1

)
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and its covering group homomorphism in : Spin(n)→ Spin(n+1). The following relations
hold (see [14], chapter VI):

i∗2n,C(Λk) = Λk + Λk−1 for 1 ≤ k ≤ n(3.3.4)

i∗2n,C(∆) = ∆+ + ∆−(3.3.5)

i∗2n−1,C(Λk) = Λk + Λk−1 for 1 ≤ k ≤ n− 1(3.3.6)

i∗2n−1,C(Λn±) = Λn−1(3.3.7)

i∗2n−1,C(∆±) = ∆(3.3.8)

Thus we get identities on the corresponding stable classes of complex vector bundles
over the sphere:

Corollary 3.16. The following relations hold:

• Over S2n = Spin(2n+ 1)/ Spin(2n),

{EΛk}C = {1}C for 1 ≤ k ≤ n(3.3.9)

{E∆+}C + {E∆−}C = {1}C(3.3.10)

{E∆+⊗C∆−}C = {1}C(3.3.11)

{E∆+⊗C∆+}C = 2n{E∆+}C(3.3.12)

• Over S2n−1 = Spin(2n)/ Spin(2n− 1),

{EΛk}C = {1}C for 1 ≤ k ≤ n− 1(3.3.13)

{E∆}C = {1}C(3.3.14)

Proof. The relations (3.3.10) and (3.3.14) follow immediately from (3.3.5) and (3.3.8). The
relations (3.3.9) and (3.3.13) follow recursively from (3.3.4) and (3.3.6) respectively, since
Λ0 = 1 = i∗2n,C(1). The latter, together with (3.3.2), gives us (3.3.11). Finally, observe
that

∆+∆+ + ∆−∆− = Λn+ + Λn− + 2Λn−2 + 2Λn−4 + . . .

= Λn + 2Λn−2 + 2Λn−4 + . . .

= i∗2n,C(ρ)(3.3.15)

for some representation ρ ∈ RepC(Spin(2n + 1)). On the other hand, by (3.3.5) we have
that ∆− = i∗2n,C(∆)−∆+, hence:

∆+∆+ + ∆−∆− = ∆+∆+ + (i∗2n,C(∆)−∆+)(i∗2n,C(∆)−∆+)

= 2∆+∆+ + i∗2n,C(∆∆)− 2i∗2n,C(∆)∆+(3.3.16)

Combining (3.3.15) and (3.3.16) we get

2∆+∆+ + i∗2n,C(∆∆) = i∗2n,C(ρ) + 2i∗2n,C(∆)∆+,

which proves (3.3.12) since Ei∗2n,C(∆) = Edim ∆ = 2n.
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3.3.2 The K-theory of the sphere

The rings KF(Sn) are well known (see [50], chapter IV). In the complex case:

K̃C(S2n+1) = 0, K̃C(S2n) = Z.

In the real case:
K̃R(S8n) = Z, K̃R(S8n+4) = Z,
K̃R(S8n+1) = Z2, K̃R(S8n+5) = 0,

K̃R(S8n+2) = Z2, K̃R(S8n+6) = 0,

K̃R(S8n+3) = 0, K̃R(S8n+7) = 0.

3.3.3 Proof of Theorem 3.4 for Sn

Proposition 3.17. The map

{α}F : RepF(Spin(n))→ SF(Sn)

is surjective for all n ∈ N both in the real and in the complex case. Moreover, the stable
classes in the cases in which K̃F(Sn) 6= 0 are given by

SC(S2n) = Z{E∆+}C,
SR(S8n) = Z{E∆+}R, SR(S8n+2) = {{1}R, {Er(∆+)}R},
SR(S8n+1) = {{1}R, {E∆}R} , SR(S8n+4) = Z{Er(∆+)}R.

Proof. The surjectivity of {α}C is included in Theorem 3.6. From Corollary 3.16 it follows
that SC(S2n) = Z{E∆+}C.

The surjectivity of {α}R when n ≡ 3, 5, 6, 7 (mod 8) is trivial since K̃R(Sn) = 0.

Now let E be an arbitrary real vector bundle over Sn for the remaining cases:

• n ≡ 0 (mod 8). By Theorem 5.12 in [50], chapter IV, the map

c : K̃R(Sn)→ K̃C(Sn) ∼= SC(Sn) = Z{E∆+}C

is an isomorphism. From Proposition 3.15 we know that ∆+ is real and therefore

SR(Sn) = Z{E∆+}R.

• n ≡ 2, 4 (mod 8). By Theorem 6.1 in [50], chapter IV, the real restriction map for
n ≡ 2 (mod 8) (resp. n ≡ 4 (mod 8))

r : K̃C(Sn)→ K̃R(Sn)

is surjective (resp. an isomorphism). Therefore

SR(Sn) = {{1}R, {Er(∆+)}R} if n ≡ 2 (mod 8).

SR(Sn) = Z{Er(∆+)}R if n ≡ 4 (mod 8).
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• n ≡ 1 (mod 8). By Proposition 3.15 the representation ∆ is real. We are going to
prove that {E∆}R is not trivial and hence

SR(S8n+1) = Z2 = {{1}R, {E∆}R}.

Denote by i∗F the map i∗8n+1,F. We want to see that there does not exist τ ∈
RepR(Spin(8n+ 2)) such that i∗R(τ) = ∆ + k, for any natural number k. Suppose it
does; then c(τ) ∈ RepC(Spin(8n+ 2)) is of the form

c(τ) =
∑

j1,...,j4n+1

aj1,...,j4n+1(Λ1)j1 . . . (Λ4n−1)j4n−1(∆+)j4n(∆−)j4n+1 .

We can rewrite this expression as

c(τ) =
∑
l1,l2

bl1,l2(Λ1, . . . ,Λ4n−1)(∆+)l1(∆−)l2

for the obvious polynomials bl1,l2 ∈ Z[Λ1, . . . ,Λ4n−1]. Now we have:

i∗C (c(τ)) =
∑
l1,l2

i∗C
(
al1,l2(Λ1, . . . ,Λ4n−1)

)
i∗C(∆+)l1i∗C(∆−)l2

=
∑
l1,l2

al1,l2(Λ1 + 1, . . . ,Λ4n−1 + Λ4n−2)(∆)l1+l2

On the other hand,

c (i∗R(τ)) = c(∆ + k) = ∆ + k ∈ RC(Spin(8n+ 1)).

From the identity i∗C ◦ c = c ◦ i∗R, it follows that
a0,0(Λ1 + 1, . . . ,Λ4n−1 + Λ4n−2) = k
a1,0(Λ1 + 1, . . . ,Λ4n−1 + Λ4n−2) + a0,1(Λ1 + 1, . . . ,Λ4n−1 + Λ4n−2) = 1
ai,j(Λ

1 + 1, . . . ,Λ4n−1 + Λ4n−2) = 0 if i+ j ≥ 2

The map φ : Z[Λ1, . . . ,Λ4n−1] → Z[Λ1, . . . ,Λ4n−1] defined by the rule φ(Λk) =
Λk + Λk−1 for k ≥ 1, is a ring isomorphism. The inverse is given recursively as
φ−1(Λk) = Λk − φ−1(Λk−1), where φ−1(Λ1) = Λ1 − 1. Therefore we have that

a0,0(Λ1, . . . ,Λ4n−1) = k
a1,0(Λ1, . . . ,Λ4n−1) + a0,1(Λ1, . . . ,Λ4n−1) = 1
ai,j(Λ

1, . . . ,Λ4n−1) = 0 if i+ j ≥ 2

We deduce that c(τ) equals either k+∆+ or k+∆−. It then would follow that either
∆+ or ∆− is in the image of the complexification map. But this is a contradiction
since as we can see in Proposition 3.15, the representations ∆+ and ∆− are not of
real type.

Finally, let d be the dimension of the real representation ∆. Observe that

2 (E∆ − dR) = r ◦ c (E∆ − dR) = r (E∆ − dC) = 0,

since r : K̃C(S8n+1)→ K̃R(S8n+1) is the zero map. It follows that 2{E∆}R = {1}R.
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3.3.4 Proof of Theorem 3.5

The proof follows from Proposition 3.17 together with Theorem 3.8. Let E be an arbitrary
real vector bundle over the sphere Sn. If E is stably trivial, then the Whitney sum E ⊕ k
is isomorphic to a trivial bundle if rank(E ⊕ k) ≥ n+ 1.

• n ≡ 3, 5, 6, 7 (mod 8). Since K̃R(Sn) = 0, every bundle is stably trivial so k0 ≤ n+1.

• n ≡ 1 (mod 8). Assume that E ∈ {E∆}R. Since dim ∆ = 2n ≥ n+ 1, it follows that
if rank(E ⊕ k) ≥ 2n then E ⊕ k is isomorphic to E∆ ⊕ k′ = E∆⊕k′ , so k0 ≤ 2n.

• n ≡ 2 (mod 8) is analogue to the case n ≡ 1 (mod 8) since dim r(∆+) = 2 ·2n−1 = 2n.

For the remaining cases we need the so-called Bott Integrability Theorem:

Theorem 3.18 (Corollary 9.8 in [42], Chapter 20). Let a ∈ H2n(S2n,Z) be a generator.
Then for each complex vector bundle E over S2n, the n-th Chern class cn(E) is a multiple
of (n − 1)!a, and for each m ≡ 0 (mod (n − 1)!) there exists a unique {E}C ∈ SC(S2n)
such that cn(E) = ma.

Recall that H∗(S2n,Z) = H0(S2n,Z) ⊕ H2n(S2n,Z), thus the total Chern class of a
complex vector bundle E over S2n is of the form cT (E) = 1 + cn(E). From the Whitney
Product Formula in Section 3.1.2 we get that cn(E ⊕ F ) = cn(E) + cn(F ) for E,F ∈
VectC(S2n). Since SC(S2n) = Z{E∆±}C, it follows that cn(E∆±) = (n−1)!(±a) and hence

(3.3.17) cn(lE∆±) = (n− 1)!(±l)a

for each integer l.

Now we return to the real setting, so let E be again an arbitrary real vector bundle
over the sphere Sn.

• n ≡ 0 (mod 8). Assume that E ∈ ±l{E∆+}R = {El∆±}R, for some positive integer
l. Since dim l∆± = 2n−1l ≥ n+ 1, it follows that if rank(E⊕ k) ≥ 2n−1l, then E⊕ k
is isomoprhic to El∆+ ⊕ k′ = El∆+⊕k′ , so k0 ≤ 2n−1l.

The (n/2)-th Chern class of the complexified vector bundle c(E) satisfies

cn/2 (c(E)) = cn/2
(
c
(
El∆±

))
= cn/2

(
El∆±

)
= ((n/2)− 1)!(±l)a

where the first equality follows from the stability of the Chern classes and the last
one from (3.3.17).

• n ≡ 4 (mod 8). Assume that E ∈ ±l{Er(∆+)}R = {Elr(∆±)}R, for some positive
integer l. Since dim lr(∆±) = 2 · 2n−1l ≥ n+ 1, it follows that if rank(E ⊕ k) ≥ 2nl,
then E ⊕ k is isomorphic to Elr(∆±) ⊕ k′ = Elr(∆±)⊕k′ , so k0 ≤ 2nl.

The (n/2)-th Chern class of the complexified vector bundle c(E) satisfies

cn/2 (c(E)) = cn/2
(
c
(
Elr(∆±)

))
= cn/2

(
c ◦ r

(
El∆±

))
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Now recall that c ◦ r = 1 + t, where t denotes the conjugation of complex vector
bundles, so

cn/2
(
c ◦ r

(
El∆±

))
= cn/2

(
El∆± ⊕ t

(
El∆±

))
= cn/2

(
El∆±

)
+ cn/2

(
t
(
El∆±

))
The Chern class of the conjugate bundle satisfies (see Proposition 11.1 in [42], Chap-
ter 17):

cn/2
(
t
(
El∆±

))
= (−1)n/2cn/2

(
El∆±

)
= cn/2

(
El∆±

)
since n/2 is even. So from (3.3.17) we get that

cn/2 (c(E)) = 2cn/2
(
El∆±

)
= ((n/2)− 1)!(±2l)a,

which together with the inequality k0 ≤ 2nl above proves the Theorem.

Finally, recall that the k-th Pontryagin class pk(E) ∈ H4k(M,Z) of a real vector bundle
E over a compact manifold M is defined as:

pk(E) = (−1)kc2k(c(E)).

Therefore when M is the sphere Sn of dimension n ≡ 0 (mod 8) (resp. n ≡ 4 (mod 8)),
we get that pn/4(E) = cn/2(c(E)) (resp. pn/4(E) = −1cn/2(c(E))). Anyway, in both cases

pn/4(E) = ((n/2)− 1)!(±pE)a

for some natural number pE , where a is a generator of Hn(Sn,Z).

3.4 Grassmannian manifolds

In this section F will stand for R, C or H. Let UF(n) denote the orthogonal group O(n),
the unitary group U(n) or the symplectic group Sp(n) ⊂ U(2n) for F = R, C or H
respectively. Throughout this section we will consider each of the groups UF(n) endowed
with its canonical biinvariant metric.

The Grassmannian manifold GF(k, n) is defined as the set of k-dimensional subspaces
W of Fn (right subspaces in the case of Hn). It can be viewed as the homogeneous space
UF(n)/(UF(k)×UF(n− k)) under the isomorphism

UF(n)/(UF(k)×UF(n− k)) −→ GF(k, n)

[M ] 7−→ M

(
Fk
0

)
This way, GF(k, n) inherits a quotient metric with nonnegative sectional curvature.
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3.4.1 Tautological bundle

The tautological vector bundle TF(k, n) over GF(k, n) is defined as

TF(k, n) = {(W,w) ∈ GF(k, n)× Fn : w ∈W} ,

where the bundle projection map is given by (W,w) 7→W . Define the representation:

ρF : UF(k)×UF(n− k) −→ UF(k)
(A,B) 7−→ A

It turns out that TF(k, n) is isomorphic to the homogeneous vector bundle EρF . The
isomorphism is given by:

EρF −→ TF(k, n)

[M, v] 7−→
(
M

(
Fk
0

)
,M

(
v
0

))
Notice that, although TH(k, n) is defined as a quaternionic vector bundle, here we are only
considering its underlying complex structure. As such, it is isomorphic to the complex
vector bundle

EρH = (UF(n)× C2k)/(UF(k)×UF(n− k)).

Observe that GF(k, n) is diffeomorphic to GF(n−k, n) under the map W 7→W⊥, where
Fn is endowed with the Euclidean metric. Clearly, the Whitney sum of TF(n− k, n) with
TF(k, n) is the trivial bundle of rank n. From now on we will write just TF to denote the
bundle TF(k, n).

3.4.2 Proof of Theorem 3.4 for projective spaces

Recall that GF(1, n + 1) is the projective space FPn. In these cases, the quotient metric
inherited from UF(n+1) is the one giving FPn the structure of compact rank one symmetric
space.

Proposition 3.19. For F = R, C and H, the following maps are surjective:

{α}R : RepR(UF(1)×UF(n))→ SR(FPn)

{α}C : RepC(UF(1)×UF(n))→ SC(FPn)

Proof. The real and complex K-theory of projective spaces are well known, see for example
[1] and [64]. The rings K̃R(FPn) and K̃C(FPn) are respectively generated by the following
elements:

TR − 1R ∈ K̃R(RPn), c(TR)− 1C ∈ K̃C(RPn),

r(TC)− 2R ∈ K̃R(CPn), TC − 1C ∈ K̃C(CPn),

r(TH)− 4R ∈ K̃R(HPn), TH − 2C ∈ K̃C(HPn).
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Since the tautological bundle TF is homogeneous, the map

αR : R̃R(UF(1)×UF(n))→ K̃R(FPn)

is surjective, and by Lemma 3.11,

{α}R : RepR(UF(1)×UF(n))→ SR(FPn)

is also surjective. The same arguments work for the map αC.

Proposition 3.19 proves that there is a homogeneous vector bundle in every stable class
of real and complex vector bundles over each projective space. Now apply Lemma 3.13 to
get Theorem 3.4 for projective spaces.

3.5 The Cayley plane

In this section we consider the Cayley plane CaP2. Recall that the Cayley plane is a
16-dimensional CW -complex consisting of three cells of dimensions 0, 8 and 16. As a
homogeneous space, it can be viewed as the quotient of the 52-dimensional exceptional
Lie group F4 under the action of the spin group Spin(9). Let us endow F4 with its canonical
biinvariant metric, so that CaP2 with the quotient metric is a compact rank one symmetric
space.

3.5.1 Representation rings RF(F4) and RF(Spin(9))

The representation rings of F4 are known (see [2], [52] and [73]). Denote by λk the k-
th exterior product of the irreducible 26-dimensional representation λ given in Corollary
8.1 in [2], and by κ the adjoint action of F4 on its Lie algebra f4. It turns out that the
representations λk and κ are real. We denote their complexifications in the same way.
The real and complex representation rings of F4 are the polynomial ring

RF(F4) = Z[λ1, λ2, λ3, κ],

where F stands for R or C, and the complexification map

c : RR(F4)→ RC(F4)

is an isomorphism.

The representation rings of Spin(9) have been described in Section 3.3.1. Observe that
the complexification map

c : RR(Spin(9))→ RC(Spin(9))

is surjective.
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3.5.2 The KF-theory of CaP2

The cohomology of CaP2 is well known, in particular we have:

Hk(CaP2,Z) =

{
Z if k = 0, 8, 16

0 otherwise

Hence H∗(CaP2,Z) is torsion-free and Theorem 3.14 gives us the following:

KC(CaP2) = Z⊕ Z⊕ Z.

The real K-theory of CaP2 follows from Lemma 2.5 in [40], which states that if M is a
finite CW -complex with cells only in dimensions 0 (mod 4) then

KR(M) = Z⊕ · · · ⊕ Z︸ ︷︷ ︸
n times

,

where n is the number of cells in M . In particular, we have

Proposition 3.20. KR(CaP2) = Z⊕ Z⊕ Z.

Now consider the induced map r ◦ c : KR(CaP2)→ KR(CaP2). By Proposition 3.20 we
know that KR(CaP2) is torsion-free, and since the map r ◦ c is nothing but multiplication
by 2, it must be injective.

Lemma 3.21. The induced map r ◦ c : KR(CaP2)→ KR(CaP2) is injective. In particular,
c : KR(CaP2)→ KC(CaP2) is also injective.

3.5.3 Proof of Theorem 3.4 for CaP2

First we construct homogeneous bundles in every stable class.

Proposition 3.22. The map

{α}F : RepF(Spin(9))→ SF(CaP2)

is surjective for F = R and C.

Proof. The surjectivity of {α}C is included in Theorem 3.6 since F4 is simply connected
and contains Spin(9) as a subgroup of maximal rank.

For the real case let E be an arbitrary real vector bundle over CaP2. By the discussion
above we have that

(3.5.1) c(E − rankRE) = Eρ − dim ρ

for some ρ ∈ RepC(Spin(9)). On the other hand

c : RR(Spin(9))→ RC(Spin(9))
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is surjective, so there exists ρ′ ∈ RepR(Spin(9)) such that c(ρ′) = ρ, and hence

(3.5.2) c(Eρ′ − dim ρ′) = Eρ − dim ρ.

By Lemma 3.21, the complexification map c : KR(CaP2)→ KC(CaP2) is injective, so from
(3.5.1) and (3.5.2) it follows that

Eρ′ − dim ρ′ = E − rankRE

in KR(CaP2) and hence {E}R = {Eρ′}R.

Finally, the proof of Theorem 3.4 for the Cayley plane is a direct consequence of
Proposition 3.22 together with Lemma 3.13.
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