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Motivation

◮ Notice: in the past, we have applied computational geometry
(CG) to statistical mechanics (SM). I.e. the α-shapes.

◮ Today, I’ll describe methods from SM applied to CG.



The problem

◮ When discretizing the continuum equations of hydrodynamics
using nodes (“particles”) one may obtain equations of motion.
Direct connection: Molecular dynamics No SM, really

◮ (Actually, interesting SM in the mesoscopic, Brownian regime,
but that’s not our topic today.)

◮ How to discretize the equations for some given particles?
Some unexpected SM.



Laws: Navier-Stokes equations

We would be happy to compute these two accurately:
Continuity:

∂ρ

∂t
= −∇ · ρv

Momentum density ρvα, for each coordinate α = 1, 2, 3:

∂ρvα

∂t
= −∇ · ρvαv −

∂p

∂xα

+ µ∇2vα



Euler’s view

Use a grid, and finite differences (or finite elements) for equations
that are written in this “frame”.



Euler’s view

Use a grid, and finite differences (or finite elements) for equations
that are written in this “frame”.
Notice “particles” are fixed here, are just space nodes. There is
usually lots of freedom in choosing them (and refining them).

SERG, U. Sheffield
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Limitations of fixed meshes

Problems arise in many situations.

◮ When one does not know in advance where more effort (CPU
and RAM) will be needed (turbulence, astrophysics. . . )

◮ When the boundary is also moving, “free boundary problems”.
E.g. surface waves (what people call “waves”!). (Spanish: ola
6= onda). I.e. almost always in naval engineering.

This calls for a Lagrangian approach, and computational methods
that will be either meshless or have a moving mesh.
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defined that follow the flow (pathlines).



Lagrange’s view

No need to go into details today. In a nutshell, “particles” are
defined that follow the flow (pathlines).
In this frame, the equations simplify remarkably. Now, we would be
happy just with these.
Lagrangian particles:

Dr

Dt
= v

Continuity:
DM

Dt
= 0

Momentum:
M

V

Dv

Dt
= −∇ p + µ∇2

v.
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Computing with fluid particles

Given a set of particles with

◮ positions {ra},

◮ velocities {va},

◮ and pressures {pa}

Dra

Dt
= va

DMa

Dt
= 0

Ma

Va

Dva

Dt
= −(∇ p)a + µ(∇2

v)a.



Computing with fluid particles

So, we need to provide expressions for:

◮ particles’ volumes {Va}

◮ pressure gradients {(∇p)a}

◮ velocity Laplacians {(∇2
v)a}
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Anyway!
Mathematically, our problem boils down to:

◮ given the values of a function u(x) on a set of nodes {xa},
{ua}

◮ find the derivatives at the nodes: {∇u}a, {∇
2u}a, etc.

◮ we are not alone: many people are considering related
problems in the field of imaging. E.g. reconstruction:
{ua} → u(x). Sometimes even {ua} → ∇2u(x) (edge
detection).

◮ also: we are unable to choose “nice” nodes. Even if we do,
they will move around, to who knows where (This is a huge
difference with the fixed grid community, such as FEMs).

The standard approach is to introduce a set of weight functions
{pa(x)}, from which:

u(x) =
∑

a

uapa(x) ∇u(x) =
∑

a

ua∇pa(x) . . .

(Actually, some quadrature may be needed on top of this.)
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Desired features

◮ posit pa > 0 (all of today’s talk, but MLS)

◮ 0-cons
∑

a
pa = 1

◮ 1-cons
∑

a
paxa = x

◮ 2-cons
∑

a
pax

2
a

= x2

◮ local

◮ mesh-free

◮ boundary

We would like these be satisfied, in some sense, at least. In order
of niceness:

◮ Identically

◮ For lots of particles (O(N) effort)

◮ For finer resolution (O(N2) effort, or worse)
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1

C
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Popular choices: SPH

pa =
1

C
exp[−β(x − xa)

2]

0-c 1-c 2-c loc m-free bound

◮ Quite bad consistency (needs resolution increase to converge),
but very easy to implement

◮ Uses: fluids with interfaces, both in science and in animation
industry (films, commercials. . . ). Next Limit’s Real Flow:
LotR, Avatar, Charlie and the Chocolate, Ice Age 1-3,
Watchmen. . .



Popular choices: SPH-Shepard

sa = exp[−β(x − xa)
2]

pa =
sa

Z

Z =
∑

a

sa

0-c 1-c 2-c loc m-free bound

◮ 0-consistency by construction, the rest is as bad as SPH.
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Popular choices: FEM

pa = finite elements on Delaunay mesh

◮ The very famous Finite Element Method of engineering

◮ Notice the elements are triangles in 1D, pyramids in 2D, but
in the later there are many possible triangulations on which to
build them

◮ The Delaunay lattice is the “best” in many ways: it is the one
with more open angles. Plus, its dual is the Voronoi
tesselation.



FEM

0-c 1-c 2-c loc m-free bound



Popular choices: MLS
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Popular choices: MLS

pa = fa(x) exp[−β(x − xa)
2]

0-c 1-c 2-c loc m-free bound

◮ Exact consistencies by construction.

◮ But notice: serious stability issues due to fitting.

◮ In fact, it violates positivity, pa < 0 sometimes.
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Our little experience with FEM and MLS

FEM seemed really the way to go. But! it never converges to the
proper ∇2! (on arbitrary point sets).
This was quite a shock, it being such stablished in engineering.
Then, we (re)discovered MLS. It did converge, but when used it is
very unstable. Beware of overfitting!
All in all, the FEM can already be used for reasonable results.
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FEM results: dam break

-0.5 0 0.5 1 1.5
x

-0.5

0

0.5

1

y

Step 2476000; time 24.76
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A Copernican revolution:

◮ instead of pa(x) → u(x) → ∇u

◮ Rather: fix x , find {pa} with the desired properties.

◮ E.g. find {pa} such that
∑

pa(x) = 1,
∑

pa(x − xa) = 0, plus
of course more requirements. Perhaps some variational
conditions (min or max something?)

◮ Notice: no functional form to the pa. This is both a source of
freedom and a computational nuisance.
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Previous hint: Rajan

◮ Impose
∑

pa(x) = 1,
∑

pa(x − xa) = 0.

◮ Consider the squared weighted distance from x to all {xa}:
U =

∑

pa(x − xa)
2. (Notice: all values {x − xa} are fixed:

it’s the weights we can play with).

◮ Minimize U subject to the constraints.

◮ Guess what we get?

Mathematically: extremize

L = β
∑

pa(x − xa)
2 + α

(

∑

pa − 1
)

+ λ
∑

pa(x − xa)
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Rajan – FEM

◮ If the “program” is carried out we recover . . .

◮ the FEM . . .

◮ on the Delaunay triangulation!

◮ Notice we don’t even compute the triangulation! (which is
non-trivial).

◮ Amazing or what? (It is to me.)
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◮ So, this U looks like an energy, doesn’t it: U =
∑

pa(x − xa)
2.

◮ It would be a sort of mean spherical model (all pa add up to
1), where each “spin” pa is coupled only to its field (x − xa)

2.

So, what if we tried “entropy” instead of “energy”?

L =
∑

pa (log pa − 1) + α
(

∑

pa − 1
)

+ λ
∑

pa(x − xa)

Notice: S = −
∑

pa (log pa − 1), which is maximized.
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Well, in SM the solution to this is well-known:

pa =
1

Z
exp [−λ∗(x − xa)] ,

where λ∗ is the value:
λ∗ : min

λ
log Z

Note: this is the physicist’s approach to LME. Computing people
have an easier time considering this from information theory: S is
the information entropy (Shannon’s), which reflects how much we
know about a system with variables pa. By maximizing it, we
choose the least-biased set.
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◮ They look nice and elegant, a bit like splines, not quite as
spiky as FEMs. They are quite wide.

◮ They automatically die out at the boundary, except for nodes
already at the boundary (just like FEM).

0-c 1-c 2-c loc m-free bound
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Extended LME

The functions are perhaps too wide, so recalling the result by
Rajan, we may consider:

L = β
∑

pa(x − xa)
2 +

∑

pa (log pa − 1) +

+ α
(

∑

pa − 1
)

+ λ
∑

pa(x − xa)

◮ Pure LEM: β → 0. Very hot limit (just entropy)

◮ Pure Rajan: β → ∞. Very cold limit (just energy)

◮ We can tune β, even have β = β(x).



Extended LME: pictures

Fixed spacing, varying β
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p a

Fixed β, varying spacing
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LME - SPH connection

Another interesting fact: if we drop 1-cons:

L = β
∑

pa(x − xa)
2 +

∑

pa (log pa − 1) +

+ α
(

∑

pa − 1
)

,

The solution is just:

pa =
exp[−β(x − xa)

2]

Z
,

SPH-Shepard!
I know, this is trivial, but few works bridge these fields: fluids,
computational geometry, and statistical physics.



Limitations of LME

Imagine we would also want 2-cons:
∑

a
pa(x − xa)

2 = 0.



Limitations of LME

Imagine we would also want 2-cons:
∑

a
pa(x − xa)

2 = 0.
But, the associated Lagrange multiplier already is our energy term!

L = β
∑

pa(x − xa)
2 + . . .



Limitations of LME

Imagine we would also want 2-cons:
∑

a
pa(x − xa)

2 = 0.
But, the associated Lagrange multiplier already is our energy term!

L = β
∑

pa(x − xa)
2 + . . .

Clearly, a minimum of L w.r.t. β will likely not be found.
In fact, the minimum will always be β → ∞, as we will see next,
and FEM will be recovered (which does not have 2-cons!)



LME’s lack of 2-cons

(Argument due to P. Español). The situation is clearer in 1D.

x
1

x
2

x
3

x
4

x
5x

β

λ
logZ

◮ Low λ < 0: Z ≈ e−λ|x−x1|, hence log Z ≈ −λ|x − x1|.

◮ High λ > 0: Z ≈ eλ|x−x5|, hence log Z ≈ λ|x − x5|.

So, for a fixed β we can expect to find a minimum of log Z . This
is nothing but the extended LEM.



LME’s lack of 2-cons

x
1

x
2

x
3

x
4

x
5x

β

λ
logZ

◮ Low β < 0: Z ≈ e−β|x−x3|
2

, hence log Z ≈ −β|x − x3|
2. OK,

thus far. But:

◮ High β > 0: Z ≈ e−β|x−x3|
2

, hence log Z ≈ −β|x − x3|
3.

Disaster.

Hence, the minimum squeezes away towards β → ∞!



Introducing SME

OK, now imagine we had:

log Z ≈ β(g − |x − x3|
2),

with g > |x − x3|
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Introducing SME

OK, now imagine we had:

log Z ≈ β(g − |x − x3|
2),

with g > |x − x3|
2?

Now, the minimum would not be at β → ∞ any more.
But then, of course, our original problem has changed to:

L =
∑

pa (log pa − 1) + α
(

∑

pa − 1
)

+

+ λ
∑

pa(x − xa) + β
(

∑

pa(x − xa)
2 − g(x)

)

.

Whose solution is again known from SM:

pa =
1

Z
exp

[

−λ∗(x − xa) − β∗
(

(x − xa)
2 − g(x)

)]

,

λ∗, β∗ : min
λ,β

log Z
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SME: the gap

Some inspection of the particular requirement g > |x − x3|
2 shows

that in general g(x), called “the gap” should be confined to this
region:

How bad is this? After all, 2-cons is lost . . .
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Well, not very bad. Consider the following choice

Here, g(x) is just a constant (except close to the boundaries).
Since we have imposed

∑

pa(x − xa)
2 − g(x) = 0, this means a

quadratic function will be reconstructed, only shifted by g(x).
But, if g(x) is constant, all the derivatives will be exact!! This is
exactly what we wanted!!!

0-c 1-c 2-c loc m-free bound
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To do

Basically: go ahead, and implement it on a simulation!
Is it hard? Not really: a minimization should be performed only at
each of the particles (not all x), which involves only ∂λ log Z and
∂σ log Z (these are quite easy).
For the derivatives, ∂2

λλ log Z etc are needed, but these are only
needed when the minimum has been found. Moreover, some
methods (quasi-Newton) are supposed to provide these second
derivatives automatically.
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