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Abstract. In this note we give an example of a quasiregular function
in Rn (n ≥ 3) of order of growth n−1 and whose set of asymptotic values
is A ∪ {∞} for a given Suslin analytic set A ⊂ Rn. Our example is a
modification of Drasin’s construction in [4] of a quasiregular function
with order of growth n− 1 and set of asymptotic values Rn ∪ {∞}.

1. Introduction

A quasiregular function f : Rn → Rn (n ≥ 2) is a continuous function
such that f ∈W 1

n,loc(Rn) and for some K ≥ 1,

(1) |f ′(z)|n ≤ KJf (z) a.e.,

where f ′ is the generalized derivative of f , |f ′(z)| is its operator norm and Jf
the Jacobian determinant. Often, f is called K-quasiregular. The smallest
number K for which the inequality (1) is true is called the (outer) dilatation
of f . When f is also a homeomorphism, f is said to be K-quasiconformal
(see [1] and [11]). Every L-bilipschitz map in Rn is K-quasiconformal with
K = L2(n−1). For n ≥ 3 and K = 1 the only quasiregular maps are the
orientation preserving Möbius transformations. The class of quasiregular
maps includes analytic functions in C and, in this sense, quasiregular maps
generalize analytic functions to dimensions n ≥ 3. Many of the properties of
holomorphic functions have a counterpart for quasiregular functions. For ex-
ample, a quasiregular map defined in Rn is unbounded (Liouville’s theorem
in Rn). Standard references on the subject are the books [8] and [12].

A point a ∈ Rn ∪ {∞} is an asymptotic value for f if there exists a
continuous path γ ⊂ Rn along which limz→∞, z∈γ f(z) = a. It is well known
that for n = 2 and f holomorphic (or meromorphic), the set of asymptotic
values of f , As(f), is a Suslin analytic set, see [7], and, conversely, for any
analytic set, A ⊂ C, there exists an entire function, f , for which As(f) =
A∪{∞}, see [5] (or [2] for the meromorphic case with finite order of growth).

Date: September 24, 2012.
1991 Mathematics Subject Classification. Primary 30C65; Secondary 30E25.
The first author was partially supported by a grant from Ministerio de Ciencia e In-

novación (Spain), MTM 2009-07800. The second author performed her research while on
leave from the Chinese Academy of Sciences. She wants to thank Purdue University for
its hospitability.

1



2 A. CANTÓN, J. QU

In this note, we show that these latter results can be extended to quasiregular
maps. Moreover, in a forthcoming paper, [3], it is shown that in fact, the
set of asymptotic values of a quasiregular function is always an analytic set.

Theorem 1. Let A be any analytic set in Rn, n ≥ 3. Then there exists
a quasiregular function f : Rn → Rn of order of growth n − 1 such that
As(f) = A ∪ {∞}.

The order of growth of f , ρf , is defined as

ρf = lim sup
r→∞

(n− 1)
log logM(r)

log r

where M(r) = max|z|=r |f(z)|. Rickman and Vourinen have shown in [9]
that if As(f) 6= ∅ there exist a constant c(n,K) > 0 so that ρf > c(n,K)
(in fact, they have proved the bound for the lower order of growth).

The proof of Theorem 1 is a modification of Drasin’s construction in
[4] of a quasiregular map f in Rn (n ≥ 3) of order of growth n − 1 with
As(f) = Rn ∪ {∞}. His main idea is to define a sine-like quasiregular
function, S : Rn → Rn, that is “modulated” by a smooth function H :
Rn → R that tends to zero along certain paths in Rn−1 with the structure
of countably many binary trees. By local quasiconformal translations that
act in neighborhoods of the branches of the trees, 0 is mapped to any point
in Rn. We use this construction, exploiting the representation of a Suslin
analytic set in Rn as the result of the A-operation on closed sets (see [10]
or [6] for references on analytic sets and [2] for another instance of this
application). The main difference with Drasin’s work is the need to show
that asymptotic values outside A are not assumed.

To make this note self-contained we will reproduce Drasin’s construction
and keep to some extent his notation.

If z is a point in Rn let z = (x1, . . . , xn−1, y) = (x, y) be its coordinates
with respect to an orthonormal basis with x = (x1, . . . , xn−1) ∈ Rn−1 and
y ∈ R. Denote by |z| its Euclidean norm. As usual, let B(a, r) = {z ∈
Rn : |z − a| < r}, and d(A,B) the Euclidean distance between the closures
of the sets A and B. If z = (x, y) ∈ Rn, its “conjugate” is the point
z = (x,−y). For x = (x1, . . . , xn−1) ∈ Rn−1 define ‖x‖ = maxi=1,...,n−1 |xi|.
If z = (x, y), z̃ = (x̃, ỹ) ∈ Rn denote by d′(z, z̃) = |x − x̃| where | · | is the
Euclidean distance in Rn−1.

In sections 2 and 3 of this paper we reproduce Drasin’s construction in [4]
of a quasiregular sine function, S(z), and its modulating function H : Rn →
R+, although we make some explicit choices of some intermediate functions
that do not appear in [4]. In §4, as in [2], the structure of an analytic set is
related to infinite sequences of natural numbers. Finally the function f of
Theorem 1 is defined in §5 and all its properties are proved therein.
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2. Drasin’s quasiregular sine function

In his example, Drasin mimics the structure of the analytic function in C,
sin z. He extends its action on

{
|Re(z)| < π

2

}
to dimensions n ≥ 3, by radial

symmetrization and uses reflections to get its periodic behavior. Concretely,
for n ≥ 3, let V + :=

{
(x, y) ∈ Rn : |x| < π

2 , y > arcsinh 1
}

and h : V + → Rn
be a quasiconformal function (see [4]) which is a radial extension of sin z
defined as

h(z) = h(x, y) =
(
x

|x|
sin |x| cosh y, cos |x| sinh y

)
,

where z = (x, y) with x ∈ Rn−1 and y ∈ R. The function h maps V + ∩{y =
c} (c > arcsinh 1) onto the upper half of the ellipsoid
E(c) :=

{
(x, y) : |x|2

cosh2 c
+ y2

sinh2 c
= 1
}

.

The periodic behavior characteristic of sin z is obtained by successive
reflections. With this aim the round cylinder, V +, is viewed as a quasicon-
formal image of a cubic based prism. Let C0 = {(x, y) ∈ Rn : ‖x‖ ≤ 1/2}
be an infinite prism and consider C∗0 = {(x, y) ∈ C0 : y > 1

2 − ‖x‖}. Define
a bilipschitz map g : C∗0 → V +,

g(z) = g(x, y) =
(
κ(x), y + ‖x‖ − 1

2 + c0

)
,

that is, g = g2 ◦ g1 where g1(x, y) =
(
x, y + ‖x‖ − 1

2

)
maps C∗0 onto C+

0 :=
{(x, y) ∈ C0 : y > 0} and g2(x, y) =

(
k(x), y + c0

)
maps C+

0 onto V + with
c0 = arcsinh 1 and κ a bilipschitz homeomorphism from

{
‖x‖ ≤ 1

2

}
onto{

|x| ≤ π
2

}
. We choose κ such that if x ∈

{
‖x‖ = 1

2

}
then κ(x) = π

2
x
|x| ∈{

|x| = π
2

}
, and hence the image of opposite (n− 2)-cells of

{
‖x‖ = 1

2

}
have

maximal separation on
{
|x| = π

2

}
.

Notice that the composition S = h ◦ g defines a quasiconformal function
in C∗0 onto Rn+ \E(c0). First extend S to C∗0 := {z ∈ Rn : z ∈ C∗0} as S(z) =
S(z). Since S maps the boundary of the polyhedron T = C0 \ (C∗0 ∪ C∗0 )
onto E(c0) = {|x|2 + 2y2 = 2} in a bilipschitz way it can be extended into
T as a bilipschitz homeomorphism so that S(z) = S(z) and S(0) = 0. Now
S is defined in all C0. Observe that S(∂C0) =

{
(x, 0) ∈ Rn : |x| ≥

√
2
}

.

Consider a partition of Rn into infinite prisms, all obtained by translating
C0 to Cn := {(x + n, y) ∈ Rn : (x, y) ∈ C0}, n ∈ Zn−1. Each (n − 1)-cell
of C0 defined by F i+0 := {z ∈ ∂C0 : xi = 1/2} or F i−0 := {z ∈ ∂C0 :
xi = −1/2}, with i ∈ {1, . . . , n − 1}, will be refered to as a (n − 1)-face of
C0 and analogously for the prisms Cn. Extend S(z) to Rn by repeated
reflections across the (n − 1)-faces of the prisms. More specifically, for
n = (n1, . . . , nn−1) ∈ Zn−1 and x = (x1, . . . , xn−1) ∈ Rn−1, set (−1)nx =(
(−1)n

1
x1, . . . , (−1)n

n−1
xn−1

)
. Then the reflections across the (n− 1)-faces

of the prisms yield to Rn : Cn → C0 given by Rn(x, y) =
(
(−1)n(x − n), y

)
.

Thus, define S in Cn by S(z) = S(Rn(z)). Notice that when Cn ∩ Cñ 6= ∅ if
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n and ñ differ at the i-th coordinate (i ∈ {1, . . . , n − 1}) then ni = ñi ± 1.
Thus for z ∈ Cn∩Cñ the i-th coordinate of z, xi = ni∓1/2 = ñi±1/2 which
implies Rn(z) = Rñ(z). Therefore, S is well defined and continuous in Rn.

As shown in [4], S : Rn → Rn is a quasiregular function. Also As(S) =
{∞} since |S| → ∞ uniformly as y →∞ and it is periodic in the first n− 1
variables. Moreover, its order of growth is n− 1 (see [4, Lemma 2]).

3. Modulation of the sine function

As in Drasin’s paper, the quasiregular sine function is modified with a
regular function H : Rn−1 → R+ that satisfies conditions below (see [4, §5]).

For some ε0 > 0 small enough,

(2) |∇ logH(x)| < ε0, for all x ∈ Rn−1,

(3) 0 < H(x) < 1 + |x|, for all x ∈ Rn−1.

Extend H to z = (x, y) ∈ Rn by H(z) = H(x).
Condition (2) and [4, Lemma 5.4] show that the function f0(z) = H(z)S(z)

is quasiregular. The oscillation of S(z) is inherited by f0. The next lemma,
in some sense, quantifies this oscillation.

Lemma 1. Consider f0 : Rn → Rn given by f0 = H · S and assume that
there exist z ∈ F , z̃ ∈ F̃ , F and F̃ two parallel (n − 1)-faces of Cn, such
that |f0(z)|, |f0(z̃)| > δ. Then

|f0(z)− f0(z̃)| ≥ 2δ√
n− 1

.

Proof. Notice that for any z = (x, y) ∈ ∂C0 then, ‖x‖ = 1/2 and therefore

S(z) = S(x, y) = cosh(|y|+ c0)
(
x

|x|
, 0
)
∈ Rn,

with c0 = arcsinh 1. Consider z0, z̃0 ∈ ∂C0 defined by z0 = Rn(z) and
z̃0 = Rn(z̃), therefore S(z) = S(z0) and S(z̃) = S(z̃0), and z and z0 lie on
parallel (n− 1)-faces of ∂C0. Thus, there exists i ∈ {1, . . . , n− 1} such that
z0 ∈ {z ∈ ∂C0 : xi = 1/2} and z̃0 ∈ {z ∈ ∂C0 : xi = −1/2} (or maybe, with
opposite signs). This implies,

|f0(z)− f0(z̃)| = |H(z)S(z0)−H(z̃)S(z̃0)|

=
∣∣∣H(z) cosh(|y|+ c0)

x0

|x0|
−H(z̃) cosh(|ỹ|+ c0)

x̃0

|x̃0|

∣∣∣
≥
∣∣∣H(z) cosh(|y|+ c0)

xi

|x0|
−H(z̃) cosh(|ỹ|+ c0)

x̃i

|x̃0|

∣∣∣
=

1
2

(
H(z) cosh(|y|+ c0)

|x0|
+
H(z̃) cosh(|ỹ|+ c0)

|x̃0|

)
,
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where x̃i is the i-th coordinate of x̃0. Using that |f0(z)| = H(z)|S(z0)| =
H(z) cosh(|y|+ c0) > δ and |f0(z̃)| = H(z̃) cosh(|ỹ|+ c0) > δ, then

|f(z)− f(z̃)| ≥ δ

2

(
1
|x0|

+
1
|x̃0|

)
≥ 2δ√

n− 1
,

since |x0|, |x̃0| ≤
√
n− 1/2 because ‖x0‖ = ‖x̃0‖ = 1/2. �

Now we will force f0 be close to 0 in certain sets by making H : Rn → R
very small. These sets will eventually contain the asymptotic paths of f
in Theorem 1. These sets are labeled after the sets Sm in the definition of
the analytic set below (see Theorem A). We introduce some notation. Let
N0 denote the countable collection of finite sequences of positive natural
numbers. If m = 〈n1, . . . , np〉 ∈ N0 and k ∈ N, the extension of m with k
is represented by mak = 〈n1, . . . , np, k〉 ∈ N0 and its truncation at the l-th
entry (l ≤ p) by m|l = 〈n1, . . . , nl〉.

Let D′ = {(x, 0) : (x2)2 + · · ·+ (xn−1)2 < x1} be a region in Rn−1 × {0}
and consider the subset D′0 ⊂ D′ the translation of D′ by (R, 0, . . . , 0) ∈ Rn
for some large R > 0. Let {D′(m) : m ∈ N0} be a collection of proper
simply connected unbounded subsets of D′0, D′(m) 6= ∅ such that
a) For all m ∈ N0, D′(mak)  D′(m) for all k ∈ N.
b) There are only a finite number of sets D′(m), m ∈ N0 that intersect

any ball B(0, r). Moreover, for every l ∈ N there exists r > 0 such that
B(0, r) ∩ D′(m) 6= ∅ if m = 〈n1, . . . , np〉 with n1 + · · · + np ≤ l and
B(0, r) ∩D′(m) = ∅ if n1 + · · ·+ np > l.

c) Let r0 = 2n+1
√
n− 1 and consider a sequence {rl}l≥0 with rl > rl−1,

l ≥ 1 such that rl ↑ ∞. If m = 〈n1, . . . , np〉 with l = n1 + · · ·+ np then,

(4) d
(
∂D′(m), D′(mak)

)
> rl, for all k ∈ N

and

(5) d
(
D′(mak1), D′(mak2)

)
> rl, for all k1 6= k2, k1, k2 ∈ N.

Finally take the sets D′0 and D′(m), m ∈ N0 such that there exists a constant
c1 > 1 for which

(6) |S(z)| ≥ c1 > 1, for all z ∈ ∂D′(m) and m ∈ N0 or for all z ∈ ∂D′0.

To control the asymptotic paths of f0 we will give more specific values of
H in the domains defined above. Concretely, given a decreasing sequence
{δp}p≥0 so that δp ↓ 0, then conditions (2)-(3) of H : Rn → R+ are comple-
mented with

(7) H(x, 0) = 1, if B
(
(x, 0), 1

)
∩D′0 = ∅,

(8) δ0 < H(x, 0) ≤ 2δ0, (x, 0) ∈ D′0 \
⋃
k∈N

D′(k),



6 A. CANTÓN, J. QU

and if p is the number of entries of m ∈ N0 then

(9)
δp < H(x, 0) ≤ δp−1, (x, 0) ∈ D′(m) \

⋃
k∈ND

′(mak),

H(x, 0) = δp−1, (x, 0) ∈ D′(m) and d′((x, 0), ∂D′(m)) < r0,

where d′(z,A) is the Euclidean distance from the projection of z to the
projection of A on Rn−1 × {0}.

The sequence {rl}l≥1 in (4) and (5) above is chosen so that conditions
(2)-(3) and (7)-(9) of H hold for the given sequence {δp}p≥0.

Remark 1. By condition (3) the order of growth of f0 is that of S, that
is, n− 1.

4. Analytic sets and bilipschitz maps

In this section some bilipschitz transformations are defined in such a way
that 0 is mapped to any point in the analytic set A ⊂ Rn as done in [2].
Without loss of generality it can be assumed that 0 ∈ A and for simplicity
suppose diamA ≤ 1 (at the end of the next section it will be explained how
to remove this latter condition).

Let NN be the set of all infinite sequences of natural numbers. If ν ∈ NN,
the truncation of ν at its first p (p ∈ N) entries is denoted by ν|p ∈ N0. We
will use the characterization of analytic sets in Rn via the A-operation in
the following terms.

Theorem A. Let A ⊂ Rn be an analytic set and {δp}p≥1, δp ↓ 0, a de-
creasing sequence. Then there exists a collection of sets {Sm}m∈N0 with the
following properties:

1)

A =
⋃
ν∈NN

⋂
p∈N

Sν|p .

2) Sm 6= ∅ is closed for all m ∈ N0.
3) Smak ⊂ Sm where mak = 〈n1, . . . , np, k〉 ∈ N0 for m = 〈n1, . . . , np〉 ∈ N0

and k ∈ N.
4) diam Sm ≤ δp+1 if m ∈ N0 has p entries.

For the proof of the theorem in this form we refer to the reader to [10]
and [2].

The sequence {δp}p≥0 that appears when defining conditions (8) and (9)
of H and also in Theorem A arises from applying repeatedly the following
lemma. Similar lemmas have been previously used in [4].
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Lemma 2. Given L > 1 there exists a positive number δ < 1/2 such that
for any a ∈ Rn with |a| ≤ δ the map

ϕ(z) =


z, |z| ≥ 1,
z + a, |z| ≤ δ,
z +

a

1− δ
(1− |z|), δ < |z| < 1,

is L-bilipschitz.

Proof. Set δ := (L− 1)/(2L− 1) < 1/2. In {δ ≤ |z| ≤ 1}, ϕ is L-bilipschitz
as a consequence of the triangle inequality and the fact that |a| ≤ δ. Since
ϕ is obviously 1-bilipschitz (an isometry) in {|z| ≤ δ}, to check that it is
bilipschitz in the ball {|z| ≤ 1} it is enough to consider z ∈ B(0, δ) and
w ∈ {δ < |z| ≤ 1}. Let ξ be the point of intersection of ∂B(0, δ) with
the line segment that joins z and w. Since both ξ, w ∈ {δ ≤ |z| ≤ 1} and
ϕ(z) = z + a if |z| ≤ δ,
|ϕ(z)− ϕ(w)| ≤ |ϕ(z)− ϕ(ξ)|+ |ϕ(ξ)− ϕ(w)| ≤ |z − ξ|+ L|ξ − w|

≤ L(|z − ξ|+ |ξ − w|) = L|z − w|.
For the lower bound, choose ζ ′ = ϕ(ζ) the point on the straight segment
that joins ϕ(z) to ϕ(w) that lies on ∂B(a, δ) (notice that this is possible
since ϕ(z) ∈ B(a, δ) and ϕ(w) /∈ B(a, δ)). Hence

|ϕ(z)− ϕ(w)| = |ϕ(z)− ζ ′|+ |ζ ′ − ϕ(w)| = |ϕ(z)− ϕ(ζ)|+ |ϕ(ζ)− ϕ(w)|

≥ |z − ζ|+ 1
L |ζ − w| ≥

1
L(|z − ζ|+ |ζ − w|) ≥ 1

L |z − w|.

We proceed in a similar way to show that ϕ is L-bilipschitz no only in B(0, 1)
but in Rn. �

By adequate re-scaling one obtains the following

Corollary 1. Given L > 1 and ρ > 0 (or respectively, given L > 1 and
δ > 0) there exists 0 < δ < ρ/2 (or respectively ρ > 2δ) such that if |a| ≤ δ
there is a L-bilipschitz function ϕ : Rn → Rn for which ϕ(z) = z + a if
|z| ≤ δ and ϕ(z) = z if |z| ≥ ρ.

We use this lemma (in fact, its corollary) in an iterative way. For a given
L > 1, take a sequence L1 > L2 > · · · with

(10)
∏
p≥1

Lp < L

(thus Lp ↓ 1). Apply Corollary 1 with δ = 2 and L = L1 obtaining ρ and
define δ1 = δ/2 = 1 = diamA and δ0 = ρ. For p ≥ 2 take L = Lp, ρ = δp−1,
apply Corollary 1 to obtain δ and define δp = δ/2. Clearly δp ↓ 0 and
2δp < δp−1 for p ≥ 1.

As in [4] successive applications of Corollary 1 will produce a large col-
lection of bilipschitz maps. At each point z = (x, y) ∈ Rn the final L-
bilipschitz map Ψ on w = f0(z) will be of the form Ψ(w) = Ψp(w) =
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ϕp ◦ ϕp−1 ◦ · · · ◦ ϕ0(w), the various ϕj , 0 ≤ j ≤ p, depend on the region
D′(m) (m ∈ N0) where x may lay.

Now, we relate these translations to the analytic set. For every m ∈ N0

pick am ∈ Sm where Sm is the set in Theorem A. This choice will be fixed for
the rest of the note. To eachm = 〈n1, . . . , np〉 ∈ N0 there will be associated a
“chain” of bilipschitz transformations, ϕ0, . . . , ϕp. Concretely, let am|0 := 0
and consider the points am|j ∈ Sm|j (recall that m|j = 〈n1, . . . , nj〉 is the
truncation of m at its first j entries, 1 ≤ j ≤ p). Notice that |am|1 | ≤
δ1 since 0, am|1 ∈ A and diamA ≤ 1 = δ1. Also, for j = 1, . . . , p − 1,
|am|j+1

− am|j | ≤ δj+1 since am|j+1
, am|j ∈ Sm|j and diam Sm|j ≤ δj+1. Thus,

for j = 0, . . . , p− 1, take ϕj : Rn → Rn the Lj+1-bilipschitz transformation
obtained in Corollary 1 with

ϕj(z) =

{
z + am|j+1

− am|j , |z − am|j | ≤ 2δj+1,

z, |z − am|j | ≥ δj .

Notice the abuse of notation since the chain ϕ0, . . . , ϕp depends on m ∈ N0

and it maybe different for different points in N0 with the same number of
entries. Nevertheless, the bilipschitz constants, Lj+1 (j = 0, . . . , p − 1), do
not depend on the particular choice m ∈ N0.

Observe that

0
ϕ0−→ am|1

ϕ1−→ am|2
ϕ2−→ · · ·

ϕp−1−−−→ am|p = am,

B(0, 2δp)
ϕ0−→ B(am|1 , 2δp)

ϕ1−→ B(am|2 , 2δp)
ϕ2−→ · · ·

ϕp−1−−−→ B(am, 2δp),

and moreover, if Ψp−1 = ϕp−1 ◦ · · · ◦ ϕ0, then by (10),

(11) |Ψp−1(z)− am| ≤ L|z|, for all z ∈ Rn.

If m′ = mak then the chain associated to m′ is obtained by adding an
extra bilipschitz transformation to the chain of m. Thus, in general, if
m = 〈n1, . . . , np〉 and m′ = 〈n1, . . . , np, . . . , nk〉 with k > p, then the chain
of bilipschitz transformations associated to m′ is an ampliation (by k − p
functions) of the chain associated to m.

The action of the chain ϕ0, . . . , ϕp associated to m ∈ N0 on z depends on
the size of |z|.

Lemma 3. Let ν ∈ NN and p ≥ 0. Consider the chain associated to ν|p+1

given by ϕ0, . . . , ϕp and denote by Ψp = ϕp◦ϕp−1◦· · ·◦ϕ0. If δk+1 < |z| ≤ δk,
then for any p ≥ k

Ψp(z) = ϕk(z + aν|k).

Proof. To simplify notation denote by ak := aν|k . Since |z| ≤ δk, then by
the definition of the ϕi’s, Ψk−1(z) = ϕk−1

(
ϕk−2 (· · · (ϕ0(z)) · · · )

)
= z + ak

since they all are translations in {|z| ≤ δk}.
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Let z̃ = z + ak and notice that z̃ /∈ B(ak, δk+1), therefore, ϕk(z̃) /∈
ϕk (B(ak, δk+1)) = B(ak+1, δk+1). Then, by the definition of ϕk+1,

Ψk+1(z) = ϕk+1(ϕk(z̃)) = ϕk(z̃).

Since B(ap+1, δp+1) ⊂ B(ap, δp) for all p ≥ 0 (recall 2δp+1 < δp and |ap+1−
ap| ≤ δp+1) and ϕk(z̃) /∈ B(ak+1, δk+1) then ϕk(z̃) /∈ B(ai, δi) for i =
k + 1, . . . , p. Arguing inductively, Ψp(z) = ϕk(z̃). �

Corollary 2. Using the notation of Lemma 3. If |z| > δk+1 then

Ψp+1(z) = Ψp(z), for all p ≥ k.

5. The definition of the quasiregular function

After all the preparation in the previous sections, we construct the func-
tion f of Theorem 1 as it was done in [4]. Concretely, consider the vertical
extension of the sets defined in section 3: D = {(x, y) ∈ Rn : (x, 0) ∈ D′},
D0 = {(x, y) ∈ Rn : (x, 0) ∈ D′0} and, D(m) = {(x, y) ∈ Rn : (x, 0) ∈
D′(m)}, m ∈ N0. Define f : Rn → Rn recursively as follows:

f(z) = f0(z), z ∈ Rn \
∞⋃
k=1

D(k),

and

f(z) = Ψp−1(f0(z)), z ∈ D(m) \
∞⋃
k=1

D(mak),

where Ψp−1 = ϕp−1 ◦ · · · ◦ ϕ0 is the chain associated to m ∈ N0, m with p
entries.

To show the continuity of f , observe that the functions, f0, ϕ0, . . . , ϕp−1

are continuous therefore it suffices to check it on the boundary of D(m) \
∪kD(mak).

Assume first that z = (x, y) ∈ ∂D(k), k ∈ N (an element of N0 with just
one entry). By (6) and (9)

|f0(z)| = H(z)|S(z)| ≥ c1H(x, 0) = c1δ0 > δ0.

If ϕ0 is the bilipschitz transformation that maps 0 7→ ak, ak ∈ Sk, then
f(z) = ϕ0(f0(z)) = f0(z) and thus f is continuous on ∂D(k).

In general, if z = (x, y) ∈ ∂D(mak) with m ∈ N0 and m with p entries,
then (6) and (9) imply

|f0(z)| = H(z)|S(z)| ≥ c1δp > δp

and by Corollary 2, Ψp(f0(z)) = Ψp−1(f0(z)), where Ψp = ϕp ◦ · · · ◦ ϕ0 and
Ψp−1 = ϕp−1 ◦ · · · ◦ ϕ0 are respectively the chain associated to mak and m.
Therefore f continuous on ∂D(mak) for all m ∈ N0 and k ∈ N.
Remark 2. In fact, as in [4], f = Ψ ◦ f0 is K1-quasiregular with K1 =
K1(n,K,L) where f0 is K-quasiregular and L > Πj≥1Lj as in (10). Also, the
order of growth of f , ρf , is n−1, since Ψ(z) = z if |z| > δ0 and ρf0 = n−1.
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If two points z, z̃ ∈ Rn are horizontally close then f(z) and f(z̃) are
defined using the same chain of functions ϕ0, . . . , ϕp. Recall the sequence
{rl}l≥1 of conditions (4) and (5) and the notation d′(z, z̃) = |x − x̃| if z =
(x, y) and z̃ = (x̃, ỹ).

Lemma 4. Let z, z̃ ∈ Rn such that d′(z, z̃) < r0 and z, z̃ ∈
⋃

n∈Zn−1 ∂Cn.
Then

|f(z)− f(z̃)| ≥ 1
L
|f0(z)− f0(z̃)|.

Proof. Define D(0) := Rn and 0ak := k, k ∈ N. Then the sets D(m) \
∪k∈ND(mak), with m ∈ N0 ∪ {0} form a partition of Rn and thus for
z, z̃ ∈ Rn there exist m, m̃ ∈ N0 ∪ {0} with p and p̃ entries respectively, so
that

z ∈ D(m) \ ∪k∈ND(mak), z̃ ∈ D(m̃) \ ∪k∈ND(m̃ak).

Since d′(z, z̃) < r0 conditions (4) and (5) imply that m̃ = m or m̃ = mal
or m = m̃al′ for some l or l′ in N. Assume first that m̃ = m then, by the
definition of f ,

f(z) = Ψp−1(f0(z)), and f(z̃) = Ψp−1(f0(z̃)),

where Ψp−1 = ϕp−1 ◦ · · · ◦ ϕ0 and ϕp−1, . . . , ϕ0 is the chain of bilipschitz
transformations associated to m. Thus,

|f(z)− f(z̃)| = |Ψp−1(f0(z))−Ψp−1(f0(z̃))| ≥

 p∏
j=1

1
Lj

 |f0(z)− f0(z̃)|

≥ 1
L
|f0(z)− f0(z̃)|,

since each ϕj function is Lj+1-bilipschitz, j = 0, . . . , p−1, and L >
∏
j≥1 Lj

by (10).

If, otherwise, m̃ = mal (the case m = m̃al′ is symmetrical) then by the
definition of f ,

f(z) = Ψp−1(f0(z)), and f(z̃) = ϕp
(
Ψp−1(f0(z̃))

)
,

where again Ψp−1 = ϕp−1◦· · ·◦ϕ0 and ϕp−1, . . . , ϕ0 is the chain of bilipschitz
transformations associated to m and ϕp is the extra function in the chain
associated to m̃. Since d′(z, z̃) < r0, z ∈ D(m) \ ∪k∈ND(mak) and z̃ ∈
D(mal) then d′(z̃, ∂D(mal)) < r0. By condition (9), H(z̃) = δp and thus
|f0(z̃)| ≥

√
2δp > δp. Hence, by Corollary 2,

ϕp(Ψp−1(f0(z̃))) = Ψp−1(f0(z̃)),

and as above,

|f(z)− f(z̃)| = |Ψp−1(f0(z))−Ψp−1(f0(z̃)) ≥ 1
L
|f0(z)− f0(z̃)|.

�
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Now it will be shown that f0 cannot be large on the asymptotic paths
of f with finite asymptotic value. For this purpose we are going to replace
the curve γ for an unbounded sequence of points on γ. Recall the notation
F i+0 and F i−0 for the (n − 1)-faces of the prism C0 given in section 2 and
the maps Rn : Cn → C0 of compositions of reflections across the (n − 1)-
faces of the prisms. The set of all (n − 1)-faces of the prisms is divided
into 2(n − 1) sets according to their equivalence class with respect to the
reflections. Concretely, for i ∈ {1, . . . , n− 1} let

F i+ :=
⋃

n∈Zn−1

{Fn : Fn = R−1
n (F i+0 )}, F i− :=

⋃
n∈Zn−1

{Fn : Fn = R−1
n (F i−0 )}.

Lemma 5. Let γ be an asymptotic path of f with finite asymptotic value.
Then there exists an unbounded sequence of points on γ, {zj}j≥1, such that,
for all j ≥ 1,

(1) there exists i = {1, . . . , n−1} such that z2j−1 ∈ F iξ and z2j ∈ F i(−ξ)
with ξ ∈ {+,−},

(2) d′(zj , zj+1) ≤ 2n(n − 1)1/2 = r0/2 (where d′(·, ·) is the Euclidean
distance of the vertical projection of the points. See the introduction).

Proof. Assume first that γ intersects a finite number of prisms Cn. Then for
z = (x, y) ∈ γ, x lies in a compact subset of Rn−1, and since H(z) = H(x, 0)
is continuous and positive for x ∈ Rn−1 (see conditions (7)–(9)) then there
exists c > 0 such that H(z) > c for z ∈ γ. Moreover, since |z| → ∞ on γ
then |y| → ∞ on γ which implies |S(z)| → ∞ on γ. Thus, |f(z)| = |f0(z)| =
|S(z)|H(z) → ∞ on γ. In this situation, γ could not be an asymptotic
curve with finite asymptotic value. Thus γ intersects infinitely many prisms
{Cn : n ∈ Zn−1}. Since γ → ∞, without loss of generality we can assume
that γ visits each prism Cn (n ∈ Zn−1) at most once.

Define a sequence {wk}k≥1 ⊂ γ ∩
(
∪n∂Cn

)
, ordered according to the

parametrization of γ, with the following property: if γ intersects an (n− 1)-
face, say Fn, then there is a unique point in the sequence {wk}k≥1 that
belongs to that (n− 1)-face, Fn. Clearly by construction,
a) if wk ∈ F i+ then wk+1 /∈ F i+, (and the same replacing + by −),
b) d′(wk, wk+1) ≤

√
n− 1 for all k ≥ 1.

Let N = 2n−1 + 1. Then among w1, . . . , wN there exist two points wk and
wk′ , and an index i ∈ 1, . . . , n− 1 such that wk ∈ F i+ and wk′ ∈ F i−.
Otherwise there will be two points among w1, . . . , wN in the same (n − 1)-
face of a prism. Take z1 and z2 to be wk and wk′ keeping the ordering of the
labels. By the same reasoning for any j > 1, there exist an i ∈ 1, . . . , n− 1
and two points wk, wk′ ∈ {wjN+1, . . . , w(j+1)N} such that wk ∈ F i+ and
wk′ ∈ F i−. Define z2j+1 and z2j+2 to be wk and wk′ keeping the ordering of
the labels.

Since d′(wj , wj+1) ≤
√
n− 1 then d′(zj , zj+1) ≤ 2(N−1)

√
n− 1 = 2n(n−

1)1/2. �
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Lemma 6. Let γ be an asymptotic path of f with finite asymptotic value
and {zj}j≥1 the unbounded sequence of points on γ given by Lemma 5. Then

lim
j→∞

|f0(zj)| = 0.

Proof. The proof is by contradiction. Suppose that lim supj→∞ |f0(zj)| > 0.
Without loss of generality it can be assumed that there exists δ > 0 such
that lim supj→∞ |f0(z2j−1)| > δ > 0. Consider a subsequence {w2`−1}`≥1 ⊂
{z2j−1}j≥1 with w2`−1 = z2j`−1 such that lim`→∞ |f0(w2`−1)| > δ. Define
w2` := z2j` . Then either lim`→∞ |f0(w2`)| = 0 or lim sup`→∞ |f0(w2`)| > 0.

In the first case, for ` large enough |f0(w2`−1)| > δ and |f0(w2`)| < δ/2.
By Lemma 5, d′(w2`−1, w2`) < r0 and w2`−1, w2` ∈ ∪∂Cn (since w2`−1 =
z2j`−1 and w2` = z2j`). Then Lemma 4 implies

|f(w2`−1)− f(w2`)| ≥
1
L
|f0(w2`−1)− f0(w2`)| >

δ

2L
> 0.

Since this inequality holds for ` large enough and, w`’s are points on γ, the
curve γ cannot be an asymptotic path with finite asymptotic value.

If otherwise, lim sup`→∞ |f0(w2`)| > 0, by taking again another subse-
quence if necessary, there can be found δ′ > 0 such that lim`→∞ |f0(w2`−1)| >
δ′ and lim`→∞ |f0(w2`)| > δ′ with w2`−1 = z2j`−1 and w2` = z2j` . Again
Lemma 5 implies that d′(w2`−1, w2`) < r0 and by Lemma 4

|f(w2`−1)− f(w2`)| ≥
1
L
|f0(w2`−1)− f0(w2`)|,

which by Lemma 1

|f(w2`−1)− f(w2`)| ≥
1
L
|f0(w2`−1)− f0(w2`)| >

2δ′

L
√
n− 1

> 0,

for ` large enough. �

We are ready to complete the final step of the proof of Theorem 1:

Proposition 1. The set of asymptotic values of f is A ∪ {∞}.

Proof. First we are going to show that As(f) ⊂ A ∪ {∞}. Assume that
γ is an asymptotic curve of f with finite asymptotic value b ∈ Rn. By
Lemmas 5 and 6, there exists an unbounded sequence of points on γ, {zj}j≥1,
for which limj→∞ |f0(zj)| = 0 and d′(zj , zj+1) ≤ 2n(n − 1)1/2. By the
construction of f (see (11)) for each zj there is a point aj ∈ A (aj = am
if zj ∈ D(m) \ ∪kD(mak) or aj = 0 if zj ∈ Rn \ ∪kD(k)) so that f(zj) ∈
B(aj , Lεj) with εj := |f0(zj)|. Since |f0(zj)| → 0 then aj → b. We are
going to show that b ∈ A.

We claim that there exists an unbounded subsequence {zjk}k≥1 ⊂ {zj}j≥1

for which one of the following statements holds:
a) {zjk}k≥1 ⊂ Rn \ ∪∞l=1D(l),
b) there exists m ∈ N0 such that {zjk}k≥1 ⊂ D(m) \ ∪∞l=1D(mal),
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c) for each k ≥ 2, there exists mk ∈ N0 such that zjk ∈ D(mk) and mk =
mk−1

alk−1 for some lk−1 ∈ N.
In the first case, f(zjk) = f0(zjk) → 0 therefore b = 0 ∈ A. Analogously,

in the second case for all k ≥ 1 andm ∈ N0 given in b), f(zjk) ∈ B(am, Lεjk),
that is ajk = am for all k ≥ 1 and therefore, aj → am which implies
b = am ∈ A.

Finally in the last case define a := ∩k≥1Smk
∈ A (the sets Smk

as defined
in Theorem A). Notice that a exists and it is a point in A since mk+1 =
ma
k lk for all k ≥ 1 which implies Smk+1

⊂ Smk
. By the construction of f ,

ajk = amk
∈ Smk

. Thus ajk → a ∈ A, which implies aj → a ∈ A, that is,
b = a ∈ A.

So we are left to show what is claimed above. Recall that r0 = 2n+1(n−
1)1/2 in (4) and (5). For the sequence {zj}j≥1 obtained in Lemmas 5 and 6
there are two mutually exclusive possibilities:
1) For all m ∈ N0, {zj} visits D(m) at most a finite number of times.
2) There exists m̃ ∈ N0 such that {zj} visits D(m̃) infinitely many times.

In case 1), {zj} visits at most a finite number of times each D(l), l ∈ N.
If it passes through finitely many of them, then there exists a subsequence
that {zjk}k≥1 ⊂ {zj}j≥1 such that {zjk} ⊂ Rn \ ∪lD(l). Otherwise, by
condition (4) and the fact that d′(zj , zj+1) < r0 the sequence {zj} passes
through Rn \∪lD(l) going from D(l) to D(l′) (l 6= l′) and since this happens
infinitely many times, there exists a subsequence {zjk}k≥1 ⊂ Rn \ ∪lD(l).
In both situations we obtain the subsequence in a).

In case 2), write m̃ = mak0 for some m ∈ N0 and k0 ∈ N. If {zj}
visits D(m̃) infinitely many times, and also leaves D(m̃) infinitely many
times, then conditions (4) and (5), and the fact that d′(zj , zj+1) < r0 imply
that {zj} visits D(m) \ ∪lD(mal) infinitely many times. Therefore, in this
situation, there exists a subsequence {zjk}k≥1 ⊂ D(m) \ ∪lD(mal), that is,
we have found a subsequence in b). Otherwise, without loss of generality it
can be assumed that {zj}j≥1 ⊂ D(m̃). Pick m ∈ N0 be the one with the
largest number of entries with such property. Then there exists j0 > 1, j0 ∈
N, such that zj0 ∈ D(m) \ ∪lD(mal). Using that there can only be a finite
number of points of {zj}j≥j0 in D(m) \ ∪lD(mal) together with conditions
(4) and (5) there can be found j1 > j0, j1 ∈ N, and m1 = mal0 (with l0 ∈ N)
so that {zj}j≥j1 ⊂ D(m1) and zj1 ∈ D(m1)\∪lD(m1

al). Again, since there
can only be a finite number of points of {zj}j≥j1 in D(m1)\∪lD(m1

al) there
exist j2 > j1, and m2 = m1

al1 (with l1 ∈ N) so that {zj}j≥j2 ⊂ D(m2) and
zj2 ∈ D(m2) \ ∪lD(m2

al). So, by induction, we get a subsequence {zjk}k≥1

with zjk ∈ D(mk) \ ∪lD(mk
al) where mk = mk−1

alk−1, that is, we have
found a sequence in c).

To prove the converse implication of the proposition, take a ∈ A so that
a = ∩νSν|p for some ν ∈ NN. Therefore a = limp→∞ aν|p. Write ap := aν|p .
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Let γ be a continuous curve in Rn−1 × {0} such that for every p ∈ N there
exists r > 0 with γ ∩ {|z| > r} ⊂ D(ν|p). For any z ∈ γ ∩ {|z| > r},
such that z ∈ D(ν|p+1) \D(ν|p+2) then |S(z)| ≤

√
2 and by condition (9),

H(z) ≤ δp. Therefore |f0(z)| ≤
√

2δp < δp−1 and by the definition of f ,
f(z) = Ψp(f0(z)) ∈ B (ap−1, δp−1). Thus as z →∞, f(z)→ a. �

In the case diamA > 1, write A = ∪j≥1Aj , as (at most) a countable
union of analytic sets, each of them satisfying diamAj ≤ 1, for all j ≥ 1.
For each j ≥ 1, construct a domain Dj congruent by a rigid motion to
D0, where the asymptotic values in Aj ∪ {0} will be attained. Construct a
sequence {δjp}p≥1 as in section 4 but replacing in the initial step diamA by
diam(Aj ∪{0}) and taking δj1 = min{1/2, diam(Aj ∪{0})}. Each set Dj will
be placed in {|z| > 2δj0}, far apart from each other so that if r ≥ 0 only a
finite number of them and a finite number of subsets Dj(m), m ∈ N0, j ≥ 1
intersect B(0, r) but in a way that they are all eventually exhausted. Since
the composition in section 5 act in disjoint regions the proof of Lemmas 5
and 6 and of Proposition 1 can be applied.
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