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Abstract. In this talk we show a construction for characterising
developable surfaces in the form of Bézier triangular patches. It is shown
that constructions used for rectangular patches are not useful, since they
provide degenerate triangular patches. Explicit constructions of non-
degenerate developable triangular patches are provided.
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1 Introduction

It is well known that developable surfaces play an important role in design
in several branches of industry, such as naval and textile. Even architectural
structures have been designed using developable surfaces. In these industries
surfaces are designed which mimic properties of the materials that are used in
production, which are intended to be deformed from plane sheets of metal or
cloth just by folding, cutting or rolling, but not stretching. This sort of industrial
procedures are less expensive or do not alter the properties of the material and
therefore developable surfaces are favoured.

In spite of their importance, developable surfaces are not easy to design within
the standard framework of NURBS surfaces. The null gaussian curvature condi-
tion is a cubic expression in the parametrization of the surface and can be solved
analitically just for low degrees.

This does not mean that NURBS developable surfaces have not been used
in design. On the contrary, pieces of plane, cylinders and cones have been used
extensively. However, the general case of developable surfaces [1,2], tangent sur-
faces, has not received the same attention, though it is by large the most impor-
tant case of developable surfaces.

Since the seminal papers by Mancewicz and Frey [3], Frey and Bindschadler [4]
at General Motors, several approaches have been used to cope with developable
surfaces:

– Solving null curvature equations for low degrees: papers by Aumann [5],
Lang and Röschel, [6], Chalfant and Maekawa [7].
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– Projective geometry methods: planes and points are exchanged using duality:
Bodduluri and Ravani [8], Pottmann and Farin [9], Pottmann and Wallner
[10].

– Based on the de Casteljau algorithm: Chu and Séquin [11], Aumann [12],
[13] and Fernández-Jambrina [14].

This last approach has been profitable for obtaining results with tensor product
patches of developable surfaces and in this paper we would like to derive an
extension to triangular patches.

The paper is organised as follows. Section 2 is devoted to ruled triangular
patches. Section 3 provides a quick overview of differential geometry of devel-
opable surfaces. Section 4 reviews construction of tensor product developable
surfaces. This approach is extended to triangular patches in Section 5. Finally,
cylindrical and conical triangular patches are described in Section 6.

2 Ruled Triangular Bézier Patches

Triangular Bézier patches are an alternative to tensor product patches for de-
signing polynomial surfaces. Instead of dealing with parametrizations of degree
n1 in a variable and degree n2 in the other one, triangles are parametrizations
of overall degree n.

Triangular Bézier patches of degree n (cfr. for instance [15] for a review) are
surfaces parametrised by

b(u, v, w) =
∑

i+j+k=n

n!
i!j!k!

uivjwkbijk, u + v + w = 1, 0 ≤ u, v, w ≤ 1 ,

for a control net {bijk : i + j + k = n, 0 ≤ i, j, k ≤ n} of (n+2)(n+1)/2 vertices.

c002

c200c101

c011

c020

c110

u=0

v=0

w=0

Fig. 1. Bézier triangle of degree two

The surface patch is bounded by three curves of degree n (see Fig. 1) located
at u = 0, v = 0, w = 0 and their respective control polygons are given by
{b0jn−j : j = 0, . . . , n}, {bi0n−i : i = 0, . . . , n}, {bin−i0 : i = 0, . . . , n}.
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We are interested in triangular patches of ruled surfaces interpolating linearly
between two curves of degree n parametrised by c(u) and d(v), u, v ∈ [0, 1],
intersecting at c(0) = d(0), with control polygons {c0, . . . , cn} and {d0, . . . , dn},
so that

b(u, 0, 1 − u) = c(u), b(0, v, 1 − v) = d(v) .

The boundary of the patch is formed then by both curves and a straight segment
at w = 0 linking the ending points of the curves, cn and dn. Obviously they have
to share the other end, c0 = d0.

Hence we already know the outer lines of the control net,

bi0n−i = ci, i = 0, . . . , n, b0jn−j = dj , j = 0, . . . , n ,

and by the linear precision property,

bin−i0 =
i

n
cn +

n − i

n
dn, i = 0, . . . , n ,

so that b(1 − v, v, 0) = (1 − v) cn + v dn traces a straight segment. Hence, we
have to prescribe just the inner vertices of the control net.

Since the surface is ruled we require that constant w = W lines on the surface
must be straight lines. In order to simplify the analysis, we extend the patch
from u + v + w = 1 to u + v = 1, so that these lines are parametrised as

rW (u) = b(u, 1 − u, W ) =
n∑

k=0

(
n
k

)
W krk(u) ,

rk(u) :=
Nk∑

i=0

(
Nk

i

)
ui(1 − u)Nk−ibijk ,

denoting Nk := n − k
Since {1, W, · · · , Wn} are linearly independent polynomials, if rW (u) is to be

the affine parametrization of a straight segment for all values of W , every rk(u)
must be the affine parametrization of a straight segment. We consider just the
case of general values of the vertices bijk. It is clear that, as it happens for tensor
product patches [16], for special positions of the vertices other solutions could
be feasible. But we are interested just in the general case.

Hence, by the linear precision property, for eack k, the vertices

{dn−k = b0n−kk, b1n−k−1k, · · · , bn−k−11k, bn−k0k = cn−k}

must be equally spaced in order to have linear parametrizations of segments,

bin−k−ik =
i

n − k
cn−k +

n − k − i

n − k
dn−k, i = 0, . . . , n − k ,

as we checked already for k = 0.
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Proposition 1. A Bézier triangular patch of degree n parametrised as b(u, v, w)
and bounded by two curves c(u), d(v) of degree n intersecting at c(0) = d(0), with
control polygons {c0, . . . , cn} and {d0, . . . , dn}, so that b(u, 0, 1 − u) = c(u) and
b(0, v, 1 − v) = d(v) is a ruled surface if its control net is given by

bijk =
ici+j + jdi+j

i + j
, i + j + k = n, b00n = c0 = d0 .

That is, the diagonal lines of the control net are formed by points which are
equally spaced between vertices of the curves with the same index. An example
may be seen in Fig. 2.

b1,1,0

b0,1,1

b1,0,1

b2,0,0

b0,0,2
b0,2,0

u=0

w=0
v=0

Fig. 2. Ruled Bézier triangle of degree two

For instance, for a triangle of degree four we get a control net

c0 = d0 d1 d2 d3 d4

c1
c2+d2

2
c3+2d3

3
c4+3d4

4

c2
2c3+d3

3
c4+d4

2

c3
3c4+d4

4
c4

.

As a counterexample, let us consider a Bézier triangle of degree two, bounded by
two curves, which provide every vertex of the control net but b110. If we choose
this point aligned with c2 and d2, but not in the middle of the segment, it is
easy to check that constant w lines are not straight.

Triangular ruled patches may be related to usual explicit ruled parametriza-
tions of surfaces,

B(U, V ) = (1 − V ) c(U) + V d(V ) , U, V ∈ [0, 1] ,

by a change of coordinates,

u = U(1 − V )
v = UV
w = 1 − U

⎫
⎬

⎭⇒
{

U = 1 − w = u + v

V =
v

1 − w
=

v

u + v
,
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which allow us to write down the parametrization of the ruled triangular patch
in terms of the parametrizations of the curves,

b(u, v, 1 − u − v) =
u c(u + v) + v d(u + v)

u + v
.

3 Developable Surfaces

Developable surfaces are ruled surfaces with null gaussian curvature [1,2]. Gaus-
sian curvature, K, of a surface parametrised by b(u, v) with unitary normal
vector ν = bu × bv/‖bu × bv‖ is defined as the quotient of the determinants of its
second, B, and first, G, fundamental forms,

G =
(

bu · bu bu · bv

bv · bu bv · bv

)
, B =

(
ν · buu ν · buv

ν · bvu ν · bvv

)
, K(u, v) =

detB(u, v)
detG(u, v)

,

but Gauss’ Theorema Egregium states that K may be written in terms of the
first fundamental form and its derivatives. Since the first fundamental form de-
termines angles, lengths and areas on the surface, gaussian curvature is invariant
under transformations, isometries, which preserve such features.

Starting with the usual parametrization of a ruled surface bounded by two
curves c(u), d(u),

b(u, v) = (1 − v)c(u) + vd(u) , u, v ∈ [0, 1] , (1)

since the second derivative bvv(u, v) is null, the determinant of the second fun-
damental form is negative and hence the gaussian curvature is negative or null
at every point of a ruled surface. The determinant of the first fundamental form
is positive, since this form is just the inner product of R

3 restricted to tangent
vectors to the surface.

Hence, developable surfaces are characterised by vanishing ν · buv at every
point, that is,

0 = (d′(u) − c′(u)) · ((1 − v)c′(u) + vd′(u)) × (d(u) − c(u))
= d′(u) · c′(u) × (d(u) − c(u)) .

This provides a useful and geometrical characterization of developable surfaces:

Proposition 2. A ruled surface parametrised as (1) is developable if and only
if the vector v(u) = d(u)− c(u), linking the points d(u), c(u), and the velocities
of the curves at these points are coplanary for every value of u.

Or put in another way, the tangent plane is the same for all points along the
straight line (generatrix or ruling of the surface) linking d(u) with c(u).

This means that we may write one of those velocities as a linear combination
of the other two vectors,

c′(u) = λ(u)v(u) + μ(u)v′(u) . (2)

This is useful for classifying developable surfaces:



212 A. Cantón and L. Fernández-Jambrina

1. Planar surfaces: Pieces of planes are the trivial case of surfaces of null cur-
vature.

2. Cylindrical surfaces: Ruled surfaces in which all straight lines (rulings) are
parallel. For them v(u) is parallel to v′(u).

3. Conical surfaces: Ruled surfaces in which all rulings meet at a point named
vertex.

4. Tangent surfaces: Ruled surfaces formed by all tangent lines to a given curve.

The latter is the most general case, since every non-cylindrical surface may be
shown to be either a tangent surface to a curve or, fulfilling additional conditions,
a conical surface:

Let us perform a change of base curve from c(u) by gliding it along the rulings
to c̃(u) = c(u) − μ(u)v(u),

c̃′(u) = c′(u) − μ′(u)v(u) − μ(u)v′(u) = (λ(u) − μ′(u))v(u) .

In the general case, the velocity c̃′(u) is parallel to the rulings of vector v(u),
that is, the surface is a tangent surface to the curve c̃(u). Only in the restrictive
case for which λ(u) = μ′(u), c̃′(u) ≡ 0, the new base curve reduces to a point,
the vertex of a cone.

4 Tensor Product Developable Patches

In order to describe Bézier developable surfaces we start by considering a ruled
surface interpolated between two polynomial curves of degree n, c(u), d(u), de-
fined by their respective control polygons, {c0, . . . , cn}, {d0, . . . , dn},

c(u) =
n∑

i=0

ciB
n
i (u), d(u) =

n∑

i=0

diB
n
i (u) ,

in terms of the Bernstein polynomials of degree n, or the de Casteljau
algorithm [17],

c
1)
i (u) = (1 − u)ci(u) + uci+1(u), i = 0, . . . , n − 1 ,

c
r)
i (u) = (1 − u)cr−1)

i (u) + uc
r−1)
i+1 (u) i = 0, . . . , n − r ,

c(u) := c
n)
0 (u) = (1 − u)cn−1)

0 (u) + uc
n−1)
1 (u) . (3)

The derivative of the curves,

c′(u) = n
(
c
n−1)
1 (u) − c

n−1)
0 (u)

)
, d′(u) = n

(
d

n−1)
1 (u) − d

n−1)
0 (u)

)
,

may be written as a difference between the two last-but-one points in the de
Casteljau algorithm.

Hence the vectors c′(u), d′(u), d(u)−c(u) are barycentric combinations of the
points c

n−1)
0 (u), c

n−1)
1 (u), d

n−1)
0 (u), d

n−1)
1 (u). Since we have already seen that

the ruled surface is developable if and only if these vectors are coplanary, the
developability condition for a Bézier ruled surface may be restated in terms of
these:
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Proposition 3. The ruled surface interpolating between two Bézier curves of
degree n, defined by their respective control polygons, {c0, . . . , cn}, {d0, . . . , dn}
is developable if and only if the points c

n−1)
0 (u), c

n−1)
1 (u), d

n−1)
0 (u), d

n−1)
1 (u) are

coplanary.

That is, there exist coefficients Λ(u), M(u), such that

(1 − Λ(u)) c
n−1)
0 (u) + Λ(u)cn−1)

1 (u) = (1 − M(u)) d
n−1)
0 (u) + M(u)dn−1)

1 (u) .
(4)

This way of writing the linear combination excludes the conical case. However,
it does not hinder our goal of coping with the generic case.

We may gain insight into this result by rewriting it in terms of blossoms,

c
1)
i [u1] := c

1)
i (u1) = (1 − u1)ci + u1ci+1, i = 0, . . . , n − 1 ,

c
r)
i [u1, . . . , ur] := (1 − ur)c

r−1)
i [u1, . . . , ur−1] + urc

r−1)
i+1 [u1, . . . , ur−1] ,

c[u1, . . . , un] := c
n)
0 [u1, . . . , un] , i = 0, . . . , n − r, r = 1, . . . , n , (5)

since the linear combinations of the points,

c
n−1)
0 (u) = c[u<n−1>, 0] , c

n−1)
1 (u) = c[u<n−1>, 1] ,

can be written in a rather compact form, taking into account that blossoms are
multi-affine,

c[u<n−1>, Λ(u)] = d[u<n−1>, M(u)] . (6)

We have therefore characterised developability of a rational ruled surface in
terms of blossoms:

Theorem 1. Two Bézier curves c(u), d(u) with control polygons {c0, . . . , cn},
{d0, . . . , dn} define a generic developable surface if and only if their respective
blossoms are related by

c[u<n−1>, Λ(u)] = d[u<n−1>, M(u)]

The simplest case which can be analysed is the one of constant coefficients Λ,
M ,

c[u<n−1>, Λ] = d[u<n−1>, M ] ,

which is the family of developable surfaces found by Aumann [12], though in that
paper the key issue was the use of an affine transformation between adjacent cells
of the control net of the surface.

This expression states the equality of two (n − 1)-atic forms, which is equiv-
alent to the equality of the respective symmetric (n − 1)-affine forms, since the
correspondence between blossoms and parametrizations is one-to-one,

c[u1, . . . , un−1, Λ] = d[u1, . . . , un−1, M ] . (7)
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We may draw information about the control net applying it to sequences of zeros
and ones, taking into account that the vertices are recovered as

cj = c[0<n−j>, 1<j>] ,

(1 − Λ)cj + Λcj+1 = (1 − M)dj + Mdj+1 , j = 0, . . . , n − 1 ,

stating that the cells of the control net of the surface are planar and share the
same linear combination between vertices.

These conditions may be solved recursively,

dn =
(

M − 1
M

)n

d0+
1 − Λ

M

(
M − 1

M

)n−1

c0+
M − Λ

M2

n−1∑

i=1

(
M − 1

M

)n−i−1

ci+
Λ

M
cn ,

in order to relate the first and last rulings of the patch with the vertices of the
control polygon of the curve c(u),

dn − cn =
M − Λ

M

((
M − 1

M

)n−1

c0 +
1
M

n−1∑

i=1

(
M − 1

M

)n−i−1

ci − cn

)

+
(

M − 1
M

)n

(d0 − c0) , (8)

or even its sides,

dn − cn =
(

M − 1
M

)n

(d0 − c0) +
Λ − M

M

n−1∑

i=0

(
M − 1

M

)n−i−1

Δci , (9)

denoting Δci = ci+1 − ci.
This construction of developable Bézier surfaces can be used to solve an in-

terpolation problem [12]:
“Given a Bézier curve c(u) of degree n and two straight lines l0 and l1 passing

through the endpoints of c(u), find a developable surface b(u, v) through c(u)
(b(u, 0) = c(u)) with l0 and l1 as first and last ruling (l0 : c(0, v), l1 : c(1, v)).”

Depending on the position of the rulings l0, l1 we have three possible solutions
to this problem:

– If l0, l1 are parallel, we may construct a cylinder through the curve c(u) with
rulings parallel to l0 and l1.

– If l0, l1 meet at one point V , we may construct a cone through c(u) and
vertex at V .

– If l0, l1 are neither parallel nor meeting at one point, we may resort to
Aumann’s construction (8),

dn − cn =
Λ − M

M

(
cn − a(M)

)
+
(

M − 1
M

)n

(d0 − c0) ,

a(M) :=
(

M − 1
M

)n−1

c0 +
1
M

n−1∑

i=1

(
M − 1

M

)n−i−1

ci , (10)
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relating a vector on l0, d0 − c0 = σv, and a vector on l1, dn − cn = τw with a
vector which is a barycentric combination of the vertices of the control polygon
of the curve c(u), cn − a(M).

This imposes a restriction on the value of M through an equation of degree
n − 1,

det(d0 − c0, dn − cn, a(M) − cn) = 0 .

If M0 is a solution of this equation, we may reckon the coefficients of the linear
combination,

a(M0) = cn + α0v + β0w ,

solving the linear system using Cramer’s rule,

α0 =
det(a(M0) − cn,w,N)

det(v,w,N)
, β0 =

det(v, a(M0) − cn,N)
det(v,w,N)

,

where N = v × w is a vector that completes a linear basis {v,w,N}.
Hence, equation (10) is written as

τ0w =
M0 − Λ

M0
(α0v + β0w) +

(
M0 − 1

M0

)n

σ0v ,

from which we may read the coefficients σ0 and τ0 that determine the ends of
the rulings,

σ0 =
Λ − M0

M0 − 1

(
M0

M0 − 1

)n−1

α0 , τ0 =
M0 − Λ

M0
β0 . (11)

The coefficient Λ remains a free parameter and may be fixed by choosing either
d0 along l0 or cn along l1, but not both. This problem may be avoided by
elevating the degree of the surface, stretching the surface patch along the rulings
d(u) − c(u) [13].

If we have already made use of Λ for fixing dn, this may be accomplished by
multiplying this vector by a linear factor (1 − A)u + A, so that the new surface
patch

b̃(u, v) = c(u) + v (d(u) − c(u))
(
(1 − A)u + A

)
,

is bounded by the curves c(u) and d̃(u) = c(u) +
(
(1 − A)u + A

)
(d(u) − c(u))

and we may use the coefficient A for choosing the end of the other ruling,

d̃0 = d̃(0) = c0 + A (d0 − c0) .

As we see in the next section, this construction is useful for designing developable
triangular patches.

5 Triangular Developable Patches

We may try to use Aumann’s family of developable surfaces to construct triangu-
lar developable surfaces limited by two curves of degree n and control polygons
{c0, . . . , cn}, {d0, . . . , dn}. The first cell of the control net is restricted by
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(1 − Λ)c0 + Λc1 = (1 − M)d0 + Md1 ,

but since the curves intersect at c0 = d0, the three points must be aligned,

d1 =
(

1 − Λ

M

)
c0 +

Λ

M
c1 .

This is a severe restriction, since it implies that the initial velocities of the curves
must be parallel with this construction. An example may be seen in Fig. 3.

c0

c2

c3

c1
d0

d1

d2

d3

Fig. 3. Degenerate triangular developable patch

Therefore, Aumann’s family of developable surfaces does not seem to be a
good starting point for designing triangular patches. However, we may use them
as an auxiliary patch for constructing them.

Though we do not know the direction of the ruling at the initial vertex of
the triangular patch, we may use Aumann’s construction to design a tensor
product developable patch through a curve c(u) of degree n and control polygon
{c0, . . . , cn} and fixing the last ruling by the choice of dn,

b(u, v) = c(u) + v v(u) , v(u) = d(u) − c(u) .

We fix the unknown vertex d0 by shortening the patch along the rulings of
direction v(u),

b̃(u, v) = c(u) + v uv(u) ,

so that the new bounding curve d̃(u) = b̃(u, 1) meets c(u) at c0.
The velocity of the v = const. curves is given by

∂b̃(u, v)
∂u

= c′(u) + v v(u) + v uv′(u) .

In particular, at the beginning of the curve d̃(u),

d̃′(0) = c′(0) + v(0) = n(c1 − c0) + (d0 − c0) ,
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we learn that we may fix the auxiliary initial ruling by prescribing the initial
velocity of the bounding curve d̃(u),

d0 = (n + 1)c0 − nc1 + d̃′(0) .

Hence, by this procedure it is possible to find triangular developable patches
with boundary on c(u) and the ruling dncn fixing the value of d′(0) and making
use of Aumann’s construction.

d0

d1

d2

c2

c1

c0

d'(0)

r0

c(u)

~

Fig. 4. Stretching a tensor product patch to a triangular patch

6 Cylindrical and Conical Triangular Patches

Triangular patches of cylinders and cones are easier to construct than tangent
surfaces.

Cylinders bounded by a curve c(u) of degree n and rulings parallel to a con-
stant vector v are parametrised as

b(u, v) = c(u) + vf(u)v ,

where f(u) is a polynomial vanishing at u = 0. The other bounding curve is
d(u) = b(u, 1). An example is shown in Fig. 5.

Hence, the only requirement for building a cylindrical triangular patch is
that the vertices of the control polygons of the bounding curves, {c0, . . . , cn},
{d0, . . . , dn} must lie on parallel lines,

−−→
c1d1 ‖ · · · ‖ −−→

cndn ,

except for the first pair which coalesce to a single point, c0 = d0.
Cones through a curve c(u) and with vertex on a point a may be parametrised

as
b(u, v) = c(u) + v v(u) , v(u) = c(u) − a .

Hence, if c(u) is a curve of degree n, a curve d(u) at v = const. is also of the
same degree. Since such curves are scaled copies of c(u), their control polygons
must have sides proportional to the ones of the original curve,

−−−−→
didi−1 = α−−−→cici−1 , i = 1, . . . , n ,
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c0

d0

c1

d1
d2

c2

Fig. 5. Cylindrical triangular patch

being {d0, . . . , dn} the control polygon of the second curve.
We may proceed as we did for tangent surfaces in order to get triangular

conical patches of degree n + 1. We shorten the patch linearly along the ruling
so that the first generatrix is reduced to a single point,

b̃(u, v) = c(u) + vuv(u) .

The degree of the bounding curve d̃(u) = b̃(u, 1) is n+1. An example is shown
in Fig. 6.

c0

d0

c1

d1
d2d3

c2
c3

Fig. 6. Conical triangular patch

7 Conclusions

In this paper control nets for ruled triangular Bézier patches bounded by two
curves and a straight line have been constructed. It has been shown that Au-
mann’s construction, which has been useful for designing general developable
surfaces with tensor product patches, renders degenerate triangular patches. A
construction grounded on degree elevation has been devised for bypassing this
problem and producing nondegenerate triangular Bézier developable surfaces.
This construction has been used for providing solutions to the problem of inter-
polating a triangular developable surface based on a curve and the last ruling of
the surface, knowing the initial velocity of the other bounding curve.
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