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Abstract

In this paper we address the calculation of geometric characteristics of conic
sections (axes, asymptotes, centres, eccentricity, foci. . . ) given in Bézier
form in terms of their control polygons and weights, making use of real and
complex projective and affine geometry and avoiding the use of coordinates.
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foci.

1. Introduction

Arcs of conic sections are easily represented as quadratic rational curves
and this is the way they have been implemented in Computer Aided Geo-
metric Design in exact form. Since they appear in almost every branch of
industry, conic sections by themselves justify the inclusion of weights and de-
nominators to extend polynomial curves in Bézier representation to rational
ones.

Deriving closed formulas for geometric characteristics of conics given in
Bézier form, that is, in terms of their control polygon and weights, was first
accomplished in some cases in Lee (1987) by use of metric or Euclidean
geometry. They may be found also in Piegl and Tiller (1997).

In Albrecht (2001) a different approach is followed, grounded in the cal-
culation of the foci as intersections of the tangents to the conic from the
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circular or absolute points. The main advantage of this approach is that the
results are common for ellipses, hyperbolas and parabolas.

In Goldman and Wang (2004) closed formulas are obtained for computing
geometric characteristics of conics from the invariants of rational quadratic
parameterizations under rational linear reparameterizations instead.

On the other hand, in Sánchez-Reyes (2004) recipes are produced for
constructing Bézier representations of conics when some of their geometric
characteristics are known. In Sánchez-Reyes (2011) complex arithmetic is
used to calculate some geometric characteristics of conic sections.

Most recently, in Xu et al. (2010) the eccentricity of conics in Bézier form
is formulated and this result is used for deriving the range and extreme values
of this parameter.

As a different approach we resort to projective and affine geometry to
calculate geometric characteristics of conic sections in Bézier form. Some
concepts such as center, foci and asymptotes can be defined at this level
without introducing additional structure (scalar product, angles, lengths),
though other geometric characteristics, such as axes, semi-axis lengths and
eccentricity require calculation of angles and lengths and require therefore
resorting to Euclidean geometry. The novel point in our approach is the
possibility of writing the implicit equation of the conic in a coordinate-free
expression that just uses the vertices and sides of the control polygon and
the weights. This enables us to write geometric characteristics in closed form
in a coordinate-free fashion.

In Section 2 we provide a quick review of some concepts of projective
and affine geometry, which we use in Section 3 to write down the implicit
equations of a conic arc in Bézier form. This form of writing the equations
is determinant for deriving expressions for geometric characteristics of conics
in Section 4.

2. Preliminaries and notation

We start by reviewing some concepts of projective geometry, that may
be ckecked in more detail elsewhere (cfr. for instance Semple and Kneebone
(1952)). Previous applications of projective geometry and point-line dual
representations may be found in Farin (1999), Hoschek (1983).

The projective plane is the set of vector lines of R3. Each point X of the
projective plane is then characterised by a vector ~v or its multiples λ~v, for
any λ 6= 0.
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A frame of the projective plane is a set {P,Q,R} of non-alligned points.
That is, if we choose vectors {~v1, ~v2, ~v3} along these lines as their respective
representatives, they form a basis of R3. Hence, we may write any point X
of the projective plane as a combination

X = αP + βQ+ γR, (1)

which just states that there is a representative ~v of X which satisfies

~v = α~v1 + β~v2 + γ~v3.

The expression 1 is unambiguous provided that the choice of vectors
{~v1, ~v2, ~v3} is fixed. However, the set of coordinates (α, β, γ) of X in this
frame is equivalent to (λα, λβ, λγ) for λ 6= 0, since this linear combination
produces a vector λ~v which is also a representative of X . Hence, the coor-
dinates of a point X in a frame are defined up to a non-zero multiplicative
factor.

Once a frame has been chosen, we may distinguish two types of points of
the projective plane:

• Points with coordinates (α, β, γ) such that α + β + γ 6= 0. We may
choose another set of coordinates (α̃, β̃, γ̃) = (λα, λβ, λγ), with λ =
1/(α+β+γ) so that these points are viewed as barycentric combinations
α̃P + β̃Q+ γ̃R, α̃ + β̃ + γ̃ = 1, of {P,Q,R}. See Figure 1. The frame
in the projective plane provides a frame in the affine plane.

Hence the plane in R
3 of equation α+β+γ = 1 is an affine plane and its

points are written as barycentric combinations of the frame {P,Q,R}.

• Points with coordinates (α, β, γ) such that α+β+γ = 0. It is clear that
these are not points of the affine plane. These points of the projective
plane form the line at infinity, of equation α + β + γ = 0. They are
the directions of vectors of the affine plane introduced in the previous
paragraph. See Figure 1.

We use capital letters for points in the projective plane, which may be
either points in the affine plane or points at infinity. By

−−→
XY we denote the

vector linking the points X and Y in the affine plane.
A line l in the projective plane is a vector plane of R3. We may assign to it

a linear map l so that l(X) = 0 is fulfilled by points X of the projective plane
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Figure 1: The affine plane as subset of the projective plane

on the line l. For simplicity in the notation, we denote then by l both the
line and a linear map that vanishes at points of the line l, that is, l(X) = 0
for X ∈ l. A line in the projective plane is formed by its points in the affine
plane and a point at the line at infinity, which is the direction of the line.
We use lower case letters for lines.

We consider now conic arcs in Bézier form,

c(t) =
c0(1− t)2 + 2wc1t(1− t) + c2t

2

(1− t)2 + 2wt(1− t) + t2
, t ∈ [0, 1],

defined by their control polygon, {c0, c1, c2} (in what follows we denote P =
c0, Q = c1, R = c2), and their normalised weights, {1, w, 1}. The arc starts
at P = c(0) and ends at R = c(1). Our frame is then the control polygon of
the conic arc.

We denote by p the line through P and Q, r is the line through R and
Q and q is the line through P and R. This choice reflects that p, q, r are
respectively the polar lines of P , Q, R, as will be shown below.

Since c′(0) = 2w
−→
PQ and c′(1) = 2w

−→
QR, the conic arc is tangent to p and

r at P and R respectively (see Figure 2).
The linear maps p, q, r are fixed up to a multiplicative factor, which we

may fix requiring that

p(R) = 1, q(Q) = 1, r(P ) = 1. (2)
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This means that {r, q, p} is the dual basis for {P,Q,R} since

p(P ) = 0 = p(Q), q(P ) = 0 = q(R), r(Q) = 0 = r(R).

P

Q

R

p

q

r

S

Figure 2: Conic arc in Bézier form

To avoid lengthy expressions, we shall denote the directions of the lines
p, q, r as

~p :=
−→
QP, ~q :=

−→
RP, ~r :=

−→
QR. (3)

A quick way to obtain the direction of a straight line l = πp + ρq + σr,
with real coefficients π, ρ, σ, is looking for a point at infinity αP +βQ+ γR,
α + β + γ = 0 along the line,

0 = (πp+ ρq + σr)(αP + βQ+ γR) = πγ + ρβ + σα.

A simple way of writing the solution to these equations is

α = λ(ρ− π), β = λ(π − σ), γ = λ(σ − ρ),

where λ is a nonvanishing factor that we may take equal to one if we are just
interested in the direction of the line:

Lemma 1. The direction of a straight line l = πp+ ρq + σr is given by

(ρ− π)P + (π − σ)Q+ (σ − ρ)R,

or in terms of ~p and ~r,
(ρ− π)~p+ (σ − ρ)~r.
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Conversely, the equation of a straight line through two points is readily
written:

Lemma 2. The straight line l through two points, α1P +β1Q+ γ1R, α2P +
β2Q + γ2R, is given by

l = πp+ ρq + σr, π =

∣

∣

∣

∣

α1 α2

β1 β2

∣

∣

∣

∣

, ρ =

∣

∣

∣

∣

γ1 γ2
α1 α2

∣

∣

∣

∣

, σ =

∣

∣

∣

∣

β1 β2

γ1 γ2

∣

∣

∣

∣

,

just finding solutions of the system of equations

0 = (πp+ ρq + σr) (αiP + βiQ+ γiR) = αiσ + βiρ+ γiπ, i = 1, 2.

The line at infinity is z = p + q + r, since its points are combinations
αP + βQ+ γR with α + β + γ = 0.

For a conic section the polar line (cfr. for instance Semple and Kneebone
(1952) or Richter-Gebert (2011)) of a point A is defined as:

• If A lies on the conic, the polar line of A is the tangent line at A. For
instance, p is the polar line of P and r is the polar line of R.

• If A lies out of the conic, we trace both tangents to the conic through
A. They meet the conic at two points. The line linking both tangency
points is the polar line of A. For instance, q is the polar line of Q.
If we cannot draw the tangents to the conic from a point A, we may
obtain its polar line a by linking two points B and D with polar lines
b, d meeting at A. See Figure 3.

In what follows, the polar line of a point and the point will be denoted
by the same letter in lower and upper case respectively, as we have already
done in the previous paragraphs.

We may obtain the polar line a of point A analitically: If C is the sym-
metric bilinear form associated to the conic, so that C(X,X) = 0 for points
X on the conic, the points X of a satisfy 0 = C(A,X).

3. Implicit equations of conic sections

For determining a conic section we require five points. Providing the
tangents p at P and r at R amounts to four points, since P and R are then
double points. There are two degenerate conics that satisfy these conditions:
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Figure 3: Examples of polar lines of points

the intersecting pair of lines C1 = p ∪ r of quadratic form p · r (pr + rp as
symmetric bilinear form), which fulfills the tangency conditions at P and R,
and the double line C2 = q ∪ q of quadratic form q2, for which P and R are
double points.

Hence, all conics satisfying these conditions are members of a pencil of
conics

pr + λq2,

(

pr + rp

2
+ λq2 as a symmetric form

)

, (4)

in terms of both degenerate conic sections.
It is obvious that P and R belong to the conics in the pencil, that is

p(P )r(P ) + λq(P )2 = 0 = p(R)r(R) + λq(R)2.

Using the symmetric form of the pencil of conics (4), we show that a point
X is on the polar line of P if and only if

0 =
r(P )p(X) + p(P )r(X)

2
+ λq(P )q(X) =

p(X)

2
,

and hence p is the polar line of P . Similarly, we get r as the polar line of R
and q as the polar line of Q,

r(Q)p+ p(Q)r

2
+ λq(Q)q = λq.

A fifth condition fixes the pencil parameter λ and is obviously related to
the weight w, which has not appeared so far. We may check it with the help
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of the shoulder point S (Farin (2002)),

S := c(1/2) =
P/2 + wQ+R/2

1 + w
,

which satisfies the conic equation,

0 = p(S)q(S) + λq(S)2 =
1/4 + λw2

(1 + w)2
⇒ λ = − 1

4w2
.

The w = ∞ case corresponds to the degenerate conic p ∪ r, whereas the
w = 0 case is the double line q ∪ q.

The polar line s of the shoulder point,

r(S)p+ p(S)r

2
+ λq(S)q =

1

4(1 + w)

(

p+ r − q

w

)

,

is parallel to the line q,

s(~q) =
1

4(1 + w)
(p(R)− r(P )) = 0,

since it contains the direction ~q of q (see Figure 2).
Analogously, we may think of a dual representation, exchanging the roles

of points and lines: A point l of the dual projective plane is a line and a line
P of the dual projective plane is the pencil of lines through the point P . A
line belongs to a conic C is it is a tangent to the conic.

We look for the tangential equation of our conic arc. That is, the implicit
equation for the tangent lines to the conic.

Since p and r are respectively the tangents to the conic at P and R, there
are already defined four conditions for the pencil of tangential conics.

We proceed again searching for two degenerate conics satisfying these
conditions:

The degenerate conic C̃1 = P ∪R of quadratic form PR (or (PR+RP )/2
as a symmetric form) contains both p and r,

p(P )p(R) = 0 = r(P )r(R),

and p is the polar line of P ,

p(P )R + p(R)p = p,
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and analogously r is the polar line of R.
The other degenerate conic is C̃2 = Q ∪Q of quadratic form Q2, since it

contains both p and r,

p(Q)p(Q) = 0 = r(Q)r(Q),

twice.
The pencil of conics tangent to p at P and to r at R is formed then by

linear combinations of both degenerate conics,

PR + µQ2,

(

PR +RP

2
+ µQQ as a symmetric form

)

.

Obviously the line p,

p(R)P + p(P )R

2
+ µp(Q)Q =

P

2
,

is the polar line of P and r is the polar line of R and q

q(R)P + q(P )R

2
+ µq(Q)Q = µQ

is the polar line of Q.
Again, we can fix again the free parameter µ making use of the shoulder

point S.
We already know that the tangent line s at the shoulder point has linear

map s = p+ r − q/w. Hence, from

0 = s(R)s(P ) + µs(Q)2 = 1 +
µ

w2
,

we learn that µ = −w2.
Summarising, we have obtained the implicit equation of a conic in terms

of its control polygon and weights:

Proposition 1. The implicit equation of a conic arc defined by its control
polygon, {P,Q,R}, and its normalised weights, {1, w, 1} is given by

p(X)r(X)− q(X)2

4w2
= 0. (5)

Analogously, the tangential equation of the conic is

x(P )x(R)− w2 x(Q)2 = 0, (6)

where p, q and r are respectively the linear maps corresponding to the polar
lines of P , Q, R, as described in (2).
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These expressions allow us to write in a straightforward and elegant man-
ner the implicit equations of conics given in terms of their control polygons
and weights, without making use of the coefficients of the conic equation,

a00 + a01x+ a02y + a11x
2 + a12xy + a22y

2 = 0,

The implicit equation of the conic in barycentric coordinates referred to
the frame {P,Q,R} is the direct result of applying the implicit equation to
a point X = αP + βQ+ γR,

0 = p(X)r(X)− q(X)2

4w2
= αγ − β2

4w2
.

Or for a straight line as a combination of p, q and r, x = πp + ρq + σr,
to be a tangent line to the conic,

0 = x(P )x(R)− w2x(Q)2 = πσ − w2ρ2.

Corollary 1. The implicit equation of a conic arc defined by its control poly-
gon, {P,Q,R}, and its normalised weights, {1, w, 1} in barycentric coordi-
nates referred to the vertices of the control polygon, αP + βQ+ γR, is given
by

αγ − β2

4w2
= 0. (7)

Analogously, the equation for tangent lines to the conic in barycentric coor-
dinates, referred to the sides of the control polygon, πp+ ρq + σr, is

πσ − w2ρ2 = 0, (8)

where p, q and r are respectively the linear maps corresponding to the polar
lines of P , Q, R, as described in (2).

4. Geometric characteristics of conics

4.1. Centres and diameters

A first instance of geometric characteristic of a conic which we characterise
without making use of Euclidean geometry is the centre.

The centre C is, to this end, defined as the point of intersection of the
diameters of the conic. Note that the diameters of the conic are the polar
lines of the points on the line at infinity, since the tangents to the conic at
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C

Figure 4: The centre of the conic as intersection of diameters

the intersections with a diameter are parallel. Hence, the polar line of the
centre is the line at infinity, z = p+ q + r (see Figure 4).

Hence using the tangential equation (6) of the conic we get the centre as
the point which has the line at infinity as polar line,

C =
z(R)P + z(P )R

2
− w2z(Q)Q =

P +R

2
− w2Q,

or writing it as a barycentric combination,

C =
P +R− 2w2Q

2− 2w2
,

for w 6= 1. The case w = 1 corresponds to the parabola. Another simple
reasoning for calculating the centre of a conic is found in Lee (1987).

Diameters are straight lines passing through the centre. Hence a line
πp+ ρq + σr is a diameter if

0 = (πp+ ρq + σr)(C) =
π + σ − 2w2ρ

2− 2w2
.

The case of the parabola, w = 1, can also be included here from this per-
spective, though within Euclidean geometry it is a noncentral conic section.
In this case the centre

C =
P +R

2
−Q =

~p+ ~r

2
,
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is a direction, not a point, since it is written as a barycentric combination in
which the sum of the coefficients is zero. Hence, the centre of the parabola is
its only point on the line at infinity, which is the direction of the axis of the
parabola. The parabola is tangent to the line at infinity at its centre. Since
all diameters meet at the centre of the conic, the diameters of the parabola
are straight lines parallel to the axis (see Figure 5).

V

C

∞d
D

D

Figure 5: The centre of a parabola lies at infinity

Proposition 2. The centre of a nondegenerate conic arc defined by its con-
trol polygon, {P,Q,R}, and its normalised weights, {1, w, 1} is given by

C =
P +R− 2w2Q

2− 2w2
, (~p+ ~r if w = 1) , (9)

and the diameters are straight lines of equation πp(X) + ρq(X) + σr(X) = 0
satisfying

π + σ − 2w2ρ = 0, (10)

where p, q and r are respectively the linear maps corresponding to the polar
lines of P , Q, R, as described in (2).

4.2. Asymptotes

Another interesting geometric characteristic of a conic section are its
asymptotes, defined as its tangent lines at infinity. They are real for hy-
perbolas and complex for ellipses. Parabolas just have a double asymptote
which is the line at infinity. Again, since they are not an Euclidean feature
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of conic sections, they have a simple derivation within projective and affine
geometry. A different approach to calculate them is used in Goldman and
Wang (2004). More on asymptotes of rational Bézier curves may be found
in Farin (1999).

We get the directions of the asymptotes as the intersections of the conic
with the line at infinity, searching for solutions

~v = αP + βQ+ γR, α + β + γ = 0,

of equation (7). Taking β = −2w to avoid denominators,

~v± =
(

w ±
√
w2 − 1

)

P − 2wQ+
(

w ∓
√
w2 − 1

)

R

=
(

w ±
√
w2 − 1

)

~p+
(

w ∓
√
w2 − 1

)

~r,

Of course, for the parabola, w = 1, we get the centre twice, ~v = ~p+ ~r.
The asymptotes are easily computed now as the tangents or polar lines

to these points at infinity,

0 = r(~v±)p+ p(~v±)r−
q(~v±)q

2w2
=
(

w ±
√
w2 − 1

)

p+
(

w ∓
√
w2 − 1

)

r +
q

w
.

For the parabola we get p+q+r = 0 twice, the line at infinity, as expected.

Proposition 3. The asymptotes of a nondegenerate conic arc defined by its
control polygon, {P,Q,R}, and its normalised weights, {1, w, 1} have implicit
equations

(

w ±
√
w2 − 1

)

p(X) +
(

w ∓
√
w2 − 1

)

r(X) +
q(X)

w
= 0, (11)

where p, q and r are respectively the linear maps corresponding to the polar
lines of P , Q, R, as described in (2).

The directions of the asymptotes are

~v± =
(

w ±
√
w2 − 1

)

~p+
(

w ∓
√
w2 − 1

)

~r, (12)

where ~p =
−→
QP and ~r =

−→
QR.
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4.3. Axes

For obtaining the axes we finally need Euclidean geometry, but we may
make use of our previous results. We denote by 〈~v, ~w〉 the scalar product of
two vectors ~v, ~w.

An axis is a diameter which is orthogonal to the tangent lines at the
interesection points with the conic.

The axis of a conic is one of the diameters d = πp + ρq + σr satisfying
equation (10),

π + σ − 2w2ρ = 0.

Following Lemma 1, its direction is

~v = (ρ− π)~p+ (σ − ρ)~r,

On the other hand, a diameter d is the polar line of a point D at infinity,

D =
d(R)P + d(P )R

2
− w2d(Q)Q =

πP + σR

2
− w2ρQ =

π~p+ σ~r

2
,

which is the direction of the tangents to the conic at the points where it
intersects the diameter (see Figure 4).

If these points are vertices of the conic section, the direction ~v of the
diameter is orthogonal to the direction D of the tangents at the vertices,

0 = 〈π~p+ σ~r, (ρ− π)~p+ (σ − ρ)~r〉
= π(ρ− π)‖~p‖2 + ρ(σ − π)〈~p, ~r〉+ σ(σ − ρ)‖~r‖2. (13)

We may solve (10) and remove the ambiguity in the coefficients π, ρ, σ
by fixing

π − σ = 2, π = w2ρ+ 1, σ = w2ρ− 1,

so that equation (13) takes the form

w2(w2 − 1)ρ2 +
2w2 (‖~r‖2 + ‖~p‖2)− ‖~q‖2

(‖~p‖2 − ‖~r‖2) ρ+ 1 = 0, (14)

which provides the two axes:

Proposition 4. The equations of the axes of a conic defined by its control
polygon, {P,Q,R}, and its normalised weights, {1, w, 1}, w 6= 1, are πp(X)+
ρq(X) + σr(X) = 0, with coefficients given by

π = w2ρ+ 1, σ = w2ρ− 1
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and ρ is a solution of (14), except for the case of an isosceles polygon, ‖~p‖ =
‖~r‖, for which the coefficients satisfy either π = −σ = 1, ρ = 0 or π = σ =
w2, ρ = 1.

The directions of the axes are

~v1 = (ρ− π)~p+ (σ − ρ)~r, ~v2 = π~p+ σ~r,

as linear combinations of the vectors introduced in (3).

The case of the parabola is simpler, since we already now that the axis
has the direction given by the centre, a point at the line at infinity ~p+~r, and
is one of the diameters d = πp+ ρq + σr satisfying (10),

π + σ − 2ρ = 0.

The diameters intersect the conic at its centre and at another point (see
Figure 5) and the direction of the tangent at it is π~p + σ~r. If this point is
the vertex of the parabola, V , the direction ~p+~r of the axis is orthogonal to
the direction of the tangent at the vertex,

0 = 〈π~p+ σ~r, ~p+ ~r〉 = π‖~p‖2 + (π + σ)〈~p, ~r〉+ σ‖~r‖2,

and we may read the coefficients of the equation of the axis,

π = 2〈~r, ~p+ ~r〉, ρ = ‖~r‖2 − ‖~p‖2, σ = −2〈~p, ~p+ ~r〉,

which can be obtained as the case w = 1 of (14).
The vertex is obtained intersecting the axis with the parabola:

Proposition 5. The equation of the axis of a parabola defined by its control
polygon, {P,Q,R} is

2〈~r, ~p+ ~r〉p+
(

‖~r‖2 − ‖~p‖2
)

q − 2〈~p, ~p+ ~r〉r = 0,

where p, q and r are respectively the linear maps corresponding to the polar
lines of P , Q, R, as described in (2) and ~p =

−→
QP , ~r =

−→
QR.

The vertex of the parabola is given by

V =
〈~r, ~p+ ~r〉2P + 2〈~p, ~p+ ~r〉〈~r, ~p+ ~r〉Q + 〈~p, ~p+ ~r〉2R

‖~p+ ~r‖4 .
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4.4. Eccentricity

Let a be the length of the semi-major axis (the one containing the foci),
b the length of the semi-minor axis (the one containing the foci) and c the
semi-focal distance. The eccentricity of a nondegenerate conic is defined as
the quotient

e =
c

a















= 0 circumference

=
√
a2−b2

a
< 1 ellipse

= 1 parabola

=
√
a2+b2

a
> 1 hyperbola

taking into account that for the ellipse a2 = b2 + c2 and for the hyperbola
c2 = a2 + b2.

It is possible to use our expressions for the asymptotes in order to calculate
the eccentricity of a conic section, instead of using the lengths of the axes.

If we consider a hyperbola, the angle θ (see Figure 6) between any of the
asymptotes and the major axis is related to its eccentricity,

cos θ =
1

e
.

a

b c

θ

Figure 6: Asymptotes of a hyperbola and its eccentricity

Since the axes produce lengthy expressions in Bézier form, it is more
convenient for our purposes to use the angle 2θ between the asymptotes,

cos 2θ = cos2 θ − sin2 θ =
a2 − b2

c2
=

2

e2
− 1,
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taking into account that we already know the asymptotic directions v± ob-
tained in (12),

〈v+, v−〉 = ‖~p‖2 + ‖~r‖2 + 2(2w2 − 1)〈~p, ~r〉 = ‖~p− ~r‖2 + 4w2〈~p, ~r〉,

where the sign has been chosen in order to produce the correct definition of
θ and not the complementary angle.

‖v±‖2 = (2w2 − 1)
(

‖~p‖2 + ‖~r‖2
)

± 2w
√
w2 − 1

(

‖~p‖2 − ‖~r‖2
)

+ 2〈~p, ~r〉,

‖v+‖2‖v−‖2 = ‖~p‖4 + ‖~r‖4 + 4〈~p, ~r〉2 + 2(8w4 − 8w2 + 1)‖~p‖2‖~r‖2
+ 4(2w2 − 1)〈~p, ~r〉

(

‖~p‖2 + ‖~r‖2
)

=
(

‖~q‖2 − 2w2
(

‖~p‖2 + ‖~r‖2
))2

+ 4w2(1− w2)
(

‖~p‖2 − ‖~r‖2
)2

.

Naming

∆ =
‖v+‖2‖v−‖2

w2
, b = −〈v+, v−〉

w2
,

following the notation in Xu et al. (2010), we get the formulas for the angle

cos 2θ =
〈v+, v−〉
‖v+‖‖v−‖

=
−b√
∆

(15)

=
‖~q‖2 + 4w2〈~p, ~r〉

√

(‖~q‖2 − 2w2 (‖~p‖2 + ‖~r‖2))2 + 4w2(1− w2) (‖~p‖2 − ‖~r‖2)2
,

and the eccentricity of the conic section,

e =

√

2

1 + cos 2θ
=

√

2
√
∆√

∆− b
. (16)

A similar reasoning may be applied to ellipses, with complex asymptotes
instead, leads to the same result:

Proposition 6. The eccentricity of a conic arc defined by its control polygon,
{P,Q,R}, and its normalised weights, {1, w, 1} is given by (16), where ~p =−→
QP , ~q =

−→
RP , ~r =

−→
QR.

If the conic section is a hyperbola, the angle between its asymptotes is
given by (15).
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4.5. Foci

A central conic has four foci (two real and two complex ones) which are
constructed as the intersections of the isotropic lines, which are the tangents
to the conic drawn from two complex points located at the line at infinity
named absolute or circular points I, J . The polar lines of the foci are called
directrices.

The circular points are the points at the line at infinity where all circum-
ferences meet (Semple and Kneebone (1952), Richter-Gebert (2011)). They
are also the only points of the projective plane which are invariant under
translations and rotations. The invariance under translations requires that
the circular points cannot be points of the affine plane, but vectors. And
the invariance under rotations requires that they have zero length. A con-
sequence is the remarkable property that they have the same coordinates in
every cartesian frame. In this section the bar denotes complex conjugation
and i is the imaginary unit

√
−1.

F1

F3

F2

F4

I

J
f1

f3

f2

f4

i
j

Figure 7: Foci and directrices of a conic

As we see in Figure 7 (note that the diagram is ficticious due to the
impossibility of drawing it in the complex plane), the polar lines i, j of the
circular points provide the four tangency points of the isotropic lines. We
may draw six lines through couples of these points. Four of them are the
directrices.

The vanishing modulus conditions allow us to write the circular points as

18



complex barycentric combinations of {P,Q,R},

I = aP + bQ + cR, J = āP + b̄Q + c̄R,

a = ‖~r‖eiϕ/2, c = −‖~p‖e−iϕ/2, b = −a− c,

where ϕ is the angle between ~p and ~r.
Though these expressions are valid for every system of coordinates, it

is useful for practical purposes (for instance, the examples at the end of the
paper) to write down the expressions of a set of coefficients a, b, c in cartesian
coordinates.

Noticing that a, b and c are defined up to a factor, we can also write these
coefficients as

a = (Rx −Qx) + i(Ry −Qy),

b = (Px −Rx) + i(Py − Ry), c = (Qx − Px) + i(Qy − Py),

where (Px, Py), (Qx, Qy), (Rx, Ry) are the coordinates of P , Q, R in any
given frame.

The linear maps of the polar lines of the circular points are then

i = ap + cr − b

2w2
q, j = āp+ c̄r − b̄

2w2
q,

in terms of the lines p, q, r.
Hence the tangency points αP + βQ + γR of the isotropic lines of I to

the conic section satisfy both

aγ + cα− b

2w2
β = 0, αγ − β2

4w2
= 0, (17)

whereas those of J satisfy the complex conjugate equations.
The simplest case is that of a parabola. The polar lines of the circular

points are diameters of the conic section since the circular points lie at in-
finity and hence they meet at the centre of the conic. But the centre of a
parabola is a point of the parabola. Hence, the four tangency points reduce
to three: twice the centre and two other points. The parabola has then
just one directrix (and one focus), defined by the two non-central tangency
points.

The two solutions of equations (17) for w = 1 are the centre C = P +
R− 2Q and

T =
a

c
P − 2Q+

c

a
R.
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The directrix f , the line through T and T̄ is, following Lemma 2, f =
πp+ ρq + σr, with

π = 2
( ā

c̄
− a

c

)

=
‖~r‖
‖~p‖4i sinϕ, ρ =

āc

ac̄
− ac̄

āc
= −2i sin 2ϕ,

σ = 2
( c

a
− c̄

ā

)

=
‖~r‖
‖~p‖4i sinϕ,

or multiplying it by ‖~p‖ ‖~r‖/4i sinϕ, in order to get simpler real coefficients,

f = ‖~r‖2p− 〈~p, ~r〉q + ‖~p‖2r.

The focus F of the parabola is the point which has f as polar line:

Proposition 7. The equation of the directrix of a parabola defined by its
control polygon, {P,Q,R} is

‖~r‖2p(X)− 〈~p, ~r〉q(X) + ‖~p‖2r(X) = 0,

where p, q and r are respectively the linear maps corresponding to the polar
lines of P , Q, R, as described in (2) and ~p =

−→
QP , ~r =

−→
QR.

The focus of the parabola is

F =
‖~r‖2P + 2〈~p, ~r〉Q+ ‖~p‖2R

‖~p+ ~r‖2 .

The case of central conics is more involved. Taking β = 2w, γ = 1/α for
simplicity, equations (17) reduce to

wcα2 − bα + wa = 0, (18)

for the intersections of the polar line of I with the conic.
The two points T± of intersection of the polar line of I have

α± =
b±

√
b2 − 4w2ac

2wc
, β± = 2w, γ± =

1

α±
=

b∓
√
b2 − 4w2ac

2wa
(19)

as barycentric coordinates.
Their complex conjugates are the coordinates of the intersections T̄± of

the polar line of Ī with the conic. Note that this fact relies on keeping the
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same choice of the branch of the root in (19). Otherwise the roles of T̄+ and
T̄− would reverse.

In Albrecht (2001) the foci are constructed using the intersections of the
tangents to the conic section from the circular points.

The pairs
{

T+, T̄+

}

,
{

T+, T̄−
}

,
{

T−, T̄+

}

,
{

T−, T̄−
}

define the four direc-
trices of the conic section. We are interested mainly in the two real directrices.

According to Lemma 2, it is clear that the two real directrices f± are
the ones spanned by

{

T+, T̄+

}

and
{

T−, T̄−
}

, since their expressions f± =
π±p+ ρ±q + σ±r have coefficients

π± = 2w(α± − ᾱ±), ρ± = γ±ᾱ± − α±γ̄± =
ᾱ2
± − α2

±
|α±|2

,

σ± = 2w(γ̄± − γ±) = 2w
α± − ᾱ±

|α±|2
,

which may be simplified and made real dividing them by 2(α± − ᾱ±)/|α±|2.
Hence, the linear maps of the real directrices of the conic section are

f± = w|α±|2p− ℜ(α±)q + wr, (20)

where ℜ(α±) = (α± + ᾱ±)/2 is the real part of α±.
The real foci F± are the points which have the directrices f± as polar

lines:

Proposition 8. The equations of the real directrices of a central conic de-
fined by its control polygon, {P,Q,R} and its normalised weights, {1, w, 1},
are

w|α±|2p(X)− ℜ(α±)q(X) + wr(X) = 0,

where the coefficients α± are defined in (19) and p, q and r are respectively
the linear maps corresponding to the polar lines of P , Q, R, as described in
(2).

The respective foci of the conic are

F± =
|α±|2P + 2wℜ(α±)Q+R

|α±|2 + 2wℜ(α±) + 1
.
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5. Examples

We end up with some examples of application of our results to determi-
nation of geometric characteristics of conics. Though our formulas do not
depend on the choice of coordinates (barycentric, cartesian. . . ) made and
are valid for all of them, we express points in usual cartesian coordinates in
the affine plane. That is, the coordinates of a point are of the form (1, x, y)
referred to an orthogonal basis.

5.1. Example of a parabola

We consider a parabola defined by its control polygon

P = (1, 0, 0), Q = (1, 1/2, 0), R = (1, 1, 1),

−→
QP = (0,−1/2, 0),

−→
QR = (0, 1/2, 1),

p(x, y) = y, q(x, y) = 2x− 2y, r(x, y) = 1− 2x+ y.

The geometric characteristics of this parabola are drawn in Figure 8.

P Q

R

p

r

F

a

d

Figure 8: Geometric characteristics of a parabola

The cartesian equation of the parabola is

0 = p(x, y)r(x, y)− q(x, y)2

4
= y − x2 = 0.

The centre (direction of the axis) of the parabola is

C = P +R− 2Q = (0, 0, 1).
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The vertex of the parabola is

V =
〈~r, ~p+ ~r〉2P + 2〈~p, ~p+ ~r〉〈~r, ~p+ ~r〉Q+ 〈~p, ~p+ ~r〉2R

‖~p+ ~r‖4 = (1, 0, 0).

The equation of the axis a is

2〈~r, ~p+ ~r〉p+
(

‖~r‖2 − ‖~p‖2
)

q − 2〈~p, ~p+ ~r〉r = 2x = 0.

The focus of the parabola is

F =
‖~r‖2P + 2〈~p, ~r〉Q+ ‖~p‖2R

‖~p+ ~r‖2 =

(

1, 0,
1

4

)

.

And the equation of the directrix d is

‖~r‖2p− 〈~p, ~r〉q + ‖~p‖2r = y +
1

4
= 0.

5.2. Example of a hyperbola

We compute the geometric characteristics of a hyperbola with control
polygon

P = (1, 4, 0), Q = (1, 4, 1), R =

(

1, 5,
9

4

)

,

and normalised weight w = 3
√
2/4. Hence

−→
QP = (0, 0,−1),

−→
QR =

(

0, 1,
5

4

)

,
−→
RP =

(

0,−1,−9

4

)

,

p(x, y) = x− 4, q(x, y) = 9 + y − 9x

4
, r(x, y) =

5x

4
− 4− y,

which are drawn in Figure 9.
The cartesian equation of the hiperbola is

0 = p(x, y)r(x, y)− q(x, y)2

4w2
=

x2

8
− 2y2

9
− 2 = 0,

which is the one of a hyperbola centered at the origin with axes coincident
with the cartesian axes and semiaxes lengths equal to 4 and 5. We get these
results within our formulation:
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P

Q

R

F- F+C

Figure 9: Geometric characteristics of a hiperbola

The centre of the hiperbola is

C =
P +R− 2w2Q

2− 2w2
= (1, 0, 0).

The asymptotes have equations (11),

√
2

24
(3x± 4y) = 0.

The angle between the asymptotes has cosine 7/25 and the eccentricity
is 5/4, respectively computed with (15) and (16).

The equations of the axes are πp(x, y) + ρq(x, y) + σr(x, y) = 0, with
coefficients π = w2ρ+ 1 σ = w2ρ− 1, satisfying (14),

9ρ2 − 80ρ+ 64 = 0 ⇒ ρ = 8,
8

9

and hence the equations of the axes read

2x = 0,
8y

9
= 0,

as expected.
The foci of the hyperbola are

F± =
|α±|2P + w(α± + ᾱ±)Q+R

|α±|2 + w(α± + ᾱ±) + 1
= (1,±5, 0),
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where

α+ = −3
√
2

4
− i

√
2

12
, α− = −3

√
2

4
+ i

3
√
2

4
,

are obtained through (19).

5.3. Example of an ellipse

Finally we provide an example of an ellipse with vertices

P = (1, 3, 0), Q = (1, 3, 5
√
3), R =

(

1,−3

2
,
5
√
3

2

)

and normalised weight w = 1/2. Hence

−→
QP = (0, 0,−5

√
3),

−→
QR =

(

0,−9

2
,−5

√
3

2

)

,
−→
RP =

(

0,
9

2
,−5

√
3

2

)

,

p(x, y) =
2

3
− 2x

9
, q(x, y) =

x

9
+

√
3y

15
− 1

3
, r(x, y) =

x

9
−

√
3y

15
+

2

3
,

which are drawn in Figure 10.

P

Q

R p

r

F+

F-

C

Figure 10: Geometric characteristics of an ellipse

The cartesian equation of the ellipse is

0 = p(x, y)r(x, y)− q(x, y)2

4w2
=

1

3
− x2

27
− y2

75
= 0,
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and it corresponds to an ellipse with axes coincident with the cartesian axes
and semiaxes lengths equal to 3 and 5 respectively.

The centre of the ellipse is located at

C =
P +R− 2w2Q

2− 2w2
= (1, 0, 0).

and the eccentricity is 4/5 according to (16).
The equations of the axes are πp(x, y) + ρq(x, y) + σr(x, y) = 0, with

coefficients π = w2ρ+ 1 σ = w2ρ− 1, satisfying (14),

−3ρ2 + 8ρ+ 16 = 0 ⇒ ρ = −4

3
, 4

and hence they read

−4

9
x = 0,

4
√
3

15
y = 0.

The foci of the ellipse are

F± =
|α±|2P + w(α± + ᾱ±)Q+R

|α±|2 + w(α± + ᾱ±) + 1
= (1, 0,±4),

where

α+ = −1

2
− 2

√
3

5
− 3

√
3i

10
, α− = −1

2
+

2
√
3

5
− 3

√
3i

10

are obtained through (19).

6. Conclusions

In this paper we have shown that projective and affine geometry simplify
the problem of calculating geometric characteristics of conic sections given
in Bézier form, since many of these geometric characteristics can be defined
without resorting to Euclidean geometry. Even for geometric characteristics
which cannot be defined out of Euclidean geometry, the calculations are mit-
igated by using affine constructions. Closed formulas for implicit equations
of conic arcs in terms of their control polygons and weights, both in standard
and tangential form, have been provided. They have been used to calculate
the axes, centres, diameters, foci, directrices and asymptotes of the arcs.

26



Acknowledgments.

The present work has been supported by Spanish Ministry of Science
grant MTM2011-22886.

References

Albrecht, G., 2001. Determination of geometrical invariants of rational
parametrized conic sections, in: Lyche, T., Schumaker, L. (Eds.), Mathe-
matical methods for curves and surfaces, Oslo 2000, Vanderbilt University
Press, Nashville. pp. 15–24.

Farin, G., 1999. NURBS: from projective geometry to practical use. A K
Peters Ltd., Natick, MA.

Farin, G., 2002. Curves and surfaces for CAGD: a practical guide. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Goldman, R., Wang, W., 2004. Using invariants to extract geometric char-
acteristics of conic sections from rational quadratic parameterizations. In-
ternational Journal of Computational Geometry and Applications 14, 161
– 187.
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as rational Bézier quadratics. Computer Aided Geometric Design 27, 458
– 460.

28


