
ON SMOOTHNESS OF SYMMETRIC MAPPINGS II

A. CANTÓN

Abstract. If the dilatation of a quasiconformal selfmap of the upper
half plane vanishes near the real line as a power of the height, the in-
duced quasisymmetric mapping is Lipschitz with the same exponent. In
this note, it is shown that the converse does not hold for any positive
exponent. In addition, a sufficient condition is found to have locally a
quasiconformal extension with the desired growth in the dilatation.

1. Introduction and notation

We will consider quasiconformal selfmappings f , of the upper half plane
H, that fix ∞. These maps induce a boundary homeomorphism, h on R,
that satisfies the M -condition, namely:

1
M

≤
∣∣∣∣
h(x + t)− h(x)
h(x)− h(x− t)

∣∣∣∣ ≤ M

for all t > 0 and x ∈ R.
Conversely, if h : R → R is an increasing homeomorphism for which the

M -condition holds (so called quasisymmetric mapping), there exists a qua-
siconformal extension of h to the upper half plane. This extension is not
unique. In spite of the regularity implied by the M -condition, quasisym-
metric mappings can be singular with respect to the Lebesgue measure (see
[4]).

We shall use the standard notations for the derivatives of f , fz = ∂f/∂z
and fz = ∂f/∂z. The complex dilatation of a quasiconformal mapping f at
the point z is µf (z) = fz(z)/fz(z). This dilatation is defined almost every-
where and ‖µf‖∞ < 1. When ‖µf‖∞ = 0, f is a conformal automorphism
of H.

We say that f is locally quasiconformal if ess supz∈K |µf (z)| ≤ k < 1 for
every compact set in K ⊂ H, where k depends on K. Let

K(y) = ess sup x∈R,
0<t≤y

|µf (x + it)|.
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2 A. CANTÓN

If K(y) ↘ 0 as y ↘ 0 one might expect the corresponding quasisymmetric
mapping h to be smoother. Carleson [5], Anderson and Hinkkanen [2],
Hamilton [10], Semmes [14], Gardiner and Sullivan [9], Dahlberg [6], Dyn’kin
[7], Belinskij and, Nikolaev and Shefel [13] among others have studied this
problem.

In the remainder of the paper we will always consider β a positive expo-
nent and n ∈ N ∪ {0} an integer such that 0 < β − n ≤ 1.

Since we are interested in the behaviour of quasiconformal mappings near
the real line, we are going to introduce the class Qβ that consists of those
locally quasiconformal mappings for which

ess sup x∈R,
0<t≤y

|µf (x + it)| = O(yβ).

Different classes of smoothness of real functions will be used in this note.
1. Let Λβ stand for the class of Lipschitz functions of exponent β, i.e.

those functions h ∈ Cn(R), so that

|h(n)(x + t)− h(n)(x)| ≤ Ctβ−n

uniformly on compact sets.
2. We say that a function h has n-th Peano derivative at a point x if

there exists a polynomial of degree at most n, Pn, such that

h(x + t)− Pn(t) = o(tn), t → 0.

Then the n-th Peano derivative of h at x is P
(n)
n (0). See [15] for

references. It is easy to see that if h has n-th Peano derivative at x
(n ≥ 1) then h′(x) exists.

We will denote by Pβ the class of functions h that can be ap-
proximated by a polynomial of degree at most n, in the following
sense,

|h(x + t)− Pn(t)| ≤ C(x)tβ.

The constant may depend on x, but it will be uniform in compact
subsets of R. Note that if h ∈ Pβ, then h has k-th Peano derivative
for any integer k ≤ β. Clearly if h ∈ Λβ then h ∈ Pβ.

3. Finally, for α ∈ (0, 1) denote byMα the collection of quasisymmetric
mappings h which satisfy

sup
|x|≤N, 0<t<N

∣∣∣∣
h(x + t) + h(x− t)− 2h(x)

h(x + t)− h(x)

∣∣∣∣ t−α < ∞.

This condition was introduced in more generality by Carleson in [5].
This note is a follow up to [1] where, to answer a question raised in [2],

it was shown that there are quasisymmetric Lipschitz maps of exponent
α ∈ (0, 1) which are not the restriction to the real line of a quasiconformal
function in Qα. In Theorem 2 we extend this result for any exponent β > 0
and in Theorem 3 we find a sufficient condition to have locally such an
extension.
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2. Dilatation decay and smoothness

In this section there will be stated several known results that relate the
rate of the decay of the dilatation of a quasiconformal map in a neighbour-
hood of a point with the smoothness of the map at such a point.

The first of these results is the well-known Teichmüller-Wittich-Belinskij
theorem that roughly asserts that when the dilatation of a quasiconformal
map vanishes at a point then the function is conformal at that point (see
[11]; p.224-232, for references). Namely,

Theorem A. Let f be a quasiconformal map of the plane such that f(0) = 0,
f(∞) = ∞ and

I(r) =
1
2π

∫ ∫

|z|<r

|µf (z)|
|z|2 dA(z) < ∞, for r < R.

Then there exists a complex number w 6= 0 such that∣∣∣∣
f(z)

z
− w

∣∣∣∣ ≤ |w|ε(|z|),

where ε(|z|) → 0 as z → 0 and ε depends only on I, R and ‖µf‖∞.

In the same vein, the next theorem due to Nikolaev and Sheffel shows
that if the dilatation decays at certain rate in a neighbourhood of a point
then the quasiconformal map has Peano derivative at such a point (see [13]).

Theorem B. Let f be quasiconformal on a disc D, centered at 0 and radius
R, and suppose |µf (z)| ≤ C|z|β for almost every z in D. Then there exists
a polynomial Pn+1 of degree at most n + 1, 0 < β − n ≤ 1, such that,

|f(z)− Pn+1(z)| ≤ C̃|z|β+1,

where C̃ depends on C, β, R and the diameter of f(D).

When f is quasiconformal in H and the dilatation of f decays near a
boundary point, then the corresponding quasisymmetric mapping is smooth
at that point. This was Carleson’s point of view in [5]. Concretely,

Theorem C. Let α ∈ (0, 1), then f ∈ Qα if and only if h = f |R ∈Mα.

The theorem appears in this form in [1].
For general exponents β > 0, something else can be said about the

smoothness of the quasisymmetric restriction, as the following theorem due
to Anderson and Hinkkanen and Dyn’kin shows (see [2] and [7] respectively).

Theorem D. If f ∈ Qβ then h = f |R ∈ Λβ+1.
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Anderson and Hinkkanen have obtained that h ∈ Λγ for all γ < β +1 (see
[2]). Dyn’kin showed the result in the form presented here (see [7], Theorem
5).

3. Quasiconformal extensions

Here and hereafter by a quasiconformal extension we mean a quasiconfor-
mal extension to the upper half plane of a quasisymmetric mapping of the
real line that fixes ∞.

In the middle 50’s Beurling and Ahlfors showed that,

f(x+iy) =
1
2

(∫ 1

0
h(x + ty) + h(x− ty)dt

)
+

i

2

(∫ 1

0
h(x + ty)− h(x− ty)dt

)

is a quasiconformal extension of h whenever h is a quasisymmetric mapping.
Many variants of the Beurling-Ahlfors construction have been studied

where the real part of the extension consists on a convolution of h with a
positive even kernel Ke that integrates to 1 and whose imaginary part is
a convolution with an odd kernel, Ko such that Ko(x) ≥ 0 for x ≥ 0. In
order to obtain a quasiconformal extension, decay conditions on the kernels
as |x| → ∞ are needed, see for example [8], p.115.

In the same line we can consider extensions defined as follows. Let h :
R→ R be an increasing homeomorphism, h ∈ C1(R). We say that h ∈ ABk

if there exist k + 1 distinct real numbers 0 < a0 < ... < ak < 1 and M ≥ 1
so that

(1)
1
M

≤
∑k

j=0 h′(x + ajy)
∑k

j=0 h′(x− ajy)
≤ M,

for every x ∈ R and y ≥ 0.

Theorem 1. h ∈ ABk if and only if

f(x + iy) = 1
2

(∑k
j=0 pj(h(x + ajy) + h(x− ajy))

)

+ i
2

(∑k
j=0 pj(h(x + ajy)− h(x− ajy))

)

is a quasiconformal extension of h, where aj ∈ (0, 1) as given above and pj

are positive numbers
∑k

j=0 pj = 1.

Here we are considering 1
2

∑k
j=0 pj(δaj + δ−aj ) as the even kernel of the

extension and 1
2

∑k
j=0 pj(δaj − δ−aj ) as the odd kernel.

Remarks

1. If the condition ABk is defined locally (i.e. the quotient is locally
bounded) then the extension is locally quasiconformal.

2. h ∈ AB0 if and only if h is a C1(R) homeomorphism such that log h′
is bounded. As a consequence h is a C1(R) increasing bilipschitz
homeomorphism.
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3. If h ∈ ABk then h is quasisymmetric.
4. Choosing aj so that 1

2k < |aj − aj−1| ≤ 2
k and taking limits in the

extension one gets Beurling-Ahlfors extension.

Proof. Clearly f is an extension of h, i.e. f |R = h. Indeed, f(x) =
1
2

∑k
j=0 pj2h(x) = h(x)

∑k
j=0 pj = h(x).

Notice also that f is a proper function, that is, lim|z|→∞ |f(z)| = ∞.
The modulus of f is given by,

2|f |2 =




k∑

j=0

pjh(x + ajy)




2

+




k∑

j=0

pjh(x− ajy)




2

Let z = x + iy, then, if |z| → ∞, either x + ajy →∞ for all j, or x− ajy →
−∞ for all j. Since every pj is positive, |f | → ∞; i.e. f is proper.

Next, it will be shown that f : H → H. Since h is an increasing homeo-
morphism and the aj ’s and the pj ’s are all positive, we get

∑

j

pjh(x + ajy) >
∑

j

pjh(x− ajy),

and therefore Im(f) > 0. This shows f : H→ H.
Since f is proper to show that f is a homeomorphism it suffices to show

that f is injective. For k = 0, this follows easily from the injectivity of h.
Suppose k ≥ 1.

Observe that f is injective in the upper half plane if and only if
k∑

j=0

pjh(x+ajy) =
k∑

j=0

pjh(x′+ajy
′) ⇒

k∑

j=0

pjh(x−ajy) 6=
k∑

j=0

pjh(x′−ajy
′),

for x + iy 6= x′ + iy′ and y, y′ > 0.
Suppose

k∑

j=0

pjh(x + ajy) =
k∑

j=0

pjh(x′ + ajy
′).

If h(x + ajy) = h(x′ + ajy
′) for every j we would have x = x′ and y = y′,

since h is a homeomorphism, and k ≥ 1. Thus, there exist l and m such
that,

h(x + aly) < h(x′ + aly
′), and h(x + amy) > h(x′ + amy′).

Assume al < am. Since h is increasing the points are ordered as,

x + aly < x′ + aly
′ < x′ + amy′ < x + amy,

which implies that x < x′ and y > y′ > 0 and so, x− ajy < x′ − ajy
′ for all

j. Using again that h is monotone and that each pj is positive,
k∑

j=0

pjh(x− ajy) <
k∑

j=0

pjh(x′ − ajy
′).
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So f is injective.
Finally, we shall see that the dilatation of f is bounded away from 1, that

is, |µf (z)| ≤ κ < 1. Doing some computations we get,

4fz(x, y) =
∑k

j=0 pj((1 + aj) + i(1− aj))h′(x + ajy)

+
∑k

j=0 pj((1 + aj)− i(1− aj))h′(x− ajy),

4fz(x, y) =
∑k

j=0 pj((1− aj) + i(1 + aj))h′(x + ajy)

+
∑k

j=0 pj((1− aj)− i(1 + aj))h′(x− ajy).

Now setting,

A =
∑k

j=0 pj(1 + aj)h′(x + ajy); B =
∑k

j=0 pj(1 + aj)h′(x− ajy)

C =
∑k

j=0 pj(1− aj)h′(x + ajy); D =
∑k

j=0 pj(1− aj)h′(x− ajy).

We have that, 4fz = (A+B)+ i(C −D) and 4fz = (C +D)+ i(A−B) and
then the expression for the dilatation of f becomes,

µf =
(C + D) + i(A−B)
(A + B) + i(C −D)

.

Now if h ∈ ABk then,
1
M̃

≤ A

B
≤ M̃.

Observe that M̃ could depend on pj and aj .
Clearly A > C and B > D, so there exists a λ < 1 (depending only on

aj , j = 0, . . . , n) such that λA > C and λB > D. Therefore

AB − CD > δ(A2 + B2 + C2 + D2)

where δ depends on M and λ. And we conclude that,

|µf (z)|2 =
A2 + B2 + C2 + D2 − 2(AB − CD)
A2 + B2 + C2 + D2 + 2(AB − CD)

≤ κ2 < 1,

for some κ that depends on M and λ.
Conversely, if

|µf (z)| ≤ κ < 1,

there exists δ > 0 so that,

AB − CD > δ(A2 + B2 + C2 + D2).

And since λA > C and λB > D for some λ < 1, we get,
1
M

≤ A

B
≤ M,

where M depends on δ and λ. Therefore h ∈ ABk. ¤
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Observe that if we write f(z) = u(z) + iv(z) then AB − CD > δ(A2 +
B2 +C2 +D2) is equivalent to ux(z)vy(z)−vx(z)uy(z) > δ(ux(z)2 +vx(z)2 +
uy(z)2 + vy(z)2).

4. Converse results

In [1], it was shown by a complicated argument that Theorem D does not
have a converse for β < 1. Next we will show that the result is true for any
positive β.

Theorem 2. For each β > 0 there exists a quasisymmetric homeomorphism,
h : R → R in Λβ that cannot be extended to a quasiconformal map in Qγ,
for any γ > 0.

To prove Theorem 2 it suffices to find a quasisymmetric map, h, which is
in Λβ for β > 0 and is not in Mα for any α ∈ (0, 1). Theorem C implies
that there does not exist an extension of h in Qγ for any γ > 0 which would
conclude the proof of Theorem 2. So it is enough to show the following
lemma.

Lemma 1. For n > 1, h(x) = x|x|n−1 is a quasisymmetric homeomorphism
that belongs to Λn but it is not in Mα for any α ∈ (0, 1).

Proof. First, f(z) = z|z|n−1 is a quasiconformal extension of h to H, there-
fore h is quasisymmetric.

Now choose x = t, then
∣∣∣∣
h(x + t) + h(x− t)− 2h(x)

h(x + t)− h(x)

∣∣∣∣ =
∣∣∣∣
2t|2t|n−1 − 2t|t|n−1

2t|2t|n−1 − t|t|n−1

∣∣∣∣ =
2n − 2
2n − 1

,

and therefore, h /∈Mα for any α ∈ (0, 1).
Finally, h ∈ Λn, since h(n−1)(x) = n!x if n is odd and h(n−1)(x) = n!|x| if

n is even. ¤

Although Theorem D does not admit a converse, with some different
conditions a certain converse can be proved.

Theorem 3. Let f ∈ Qβ and h = f |R, then log h′ is continuous on R and
h ∈ Pβ+1.

Conversely, let h be an increasing homeomorphism such that h′ ∈ Pβ and
log h′ is locally bounded. Then for every x ∈ R there exists a neighbourhood
of x, Ux ⊂ R∪H and an extension of h in H, f , which is quasiconformal in
Ux and

ess sup ξ∈Ux∩R,
0<t≤y

|µf (ξ + it)| = O(yβ), as y → 0

for y so that x + iy ∈ Ux.

Notice that the direct part of this theorem is a consequence of Theorem D.
Nevertheless, the proof presented here uses different techniques.
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Proof. The direct part of Theorem 3 is a corollary of Theorems A and B of
section §1.

First we will see that log h′ is continuous as a consequence of Theorem A.
Indeed, by Carleson’s result (see [5] p.1), h′ is a continuous function on R,
so there remains only to show that h′(x) 6= 0 for all x ∈ R.

Fix x ∈ R and define,

Fx(z) =
{

f(z + x)− h(x), z ∈ H ∪ R
f(z + x)− h(x), z ∈ H−,

where H− = {z : Im(z) < 0}. Then the mapping Fx(z) is locally quasicon-
formal and it fixes 0 and ∞. It has complex dilatation,

µFx(z) =
{

µf (x + z), z ∈ H ∪ R
µf (x + z), z ∈ H−,

so |µFx(z)| ≤ C|z|β, in a neighbourhood of zero (since f ∈ Qβ).
Therefore Fx(z) satisfies the hypothesis of Theorem A so there exists a

complex number, wx 6= 0, such that
∣∣∣∣
Fx(z)

z
− wx

∣∣∣∣ ≤ |wx|ε(|z|).

Now, for t ∈ R,

lim
t→0

Fx(t)
t

= lim
t→0

h(x + t)− h(x)
t

= h′(x),

and so h′(x) = wx 6= 0.
Using Theorem B we will find a polynomial that approximates h. Again,

fix x ∈ R, and define Gx(z) = Fx(z)/h′(x). Since h′(x) 6= 0, Gx(z) is a local
quasiconformal mapping in C fixing 0 and ∞ and ∂Gx

∂z (0) = 1. Moreover
Gx(z) has complex dilatation, |µGx(z)| ≤ C|z|β in some disc D(0, R) where
R is uniform on compact sets since f ∈ Qβ.

By Theorem A, we get

|Gx(z)| ≤ |z|(1 + ε(|z|)),
where ε depends on I,R and ‖µGx‖∞. Since ‖µGx‖∞ = ‖µf‖∞ and R is
uniform on compact sets there exists a uniform ρ > 0, small enough so that,

|Gx(z)| ≤ C|z|, for |z| < ρ.

Then,
diam(Gx(D(0, ρ/2)) ≤ C,

C uniform on compact sets. Note that neither ρ nor C depend on x since
the decay condition on µf is uniform on compact subsets of the real line.

By Theorem B, there exists a polynomial Qn+1
x (z) such that,

|Gx(z)−Qn+1
x (z)| ≤ C̃|z|β+1,
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where C̃ = C̃(C, β) does not depend on x, and therefore it is uniform on
compact sets. In particular, for z = t ∈ R+, t small enough,

|h(x + t)− Pn+1
x (t)| ≤ C̃|h′(x)|tβ+1,

uniformly on compact sets, where Pn+1
x (t) = h(x) + h′(x)Qn+1

x (t).
To prove the converse direction, as usual, let n be so that 0 < β − n ≤ 1

and consider the function,

A(x + iy) =
n+1∑

j=0

pjh(x + ajy),

where aj ∈ (0, 1) for j ∈ {0, . . . , n + 1}. Choose pj , j ∈ {0, . . . , n + 1} so
that,

(2)
n+1∑

j=0

pja
k
j = (−1)[k/2], for k = 0, ..., n + 1

where [x] denotes the integer part of x. Notice that (2) defines a linear
system of n + 2 equations and n + 2 unknowns, with the VanderMonde
matrix as the coefficient matrix of the system.

As in Theorem 1, define the extension of h given by

f(x + iy) =
1
2

(A(x + iy) + A(x− iy)) +
i

2
(A(x + iy)−A(x− iy)) .

In this case, condition (2) forces some of the pj ’s to be negative and therefore
we cannot conclude that f is a homeomorphism.

First, we shall show that for each x ∈ R, there exists a neighbourhood of
x, Vx ⊂ R ∪H such that |fz(z)| > 0 for z ∈ Vx.

Since h ∈ C1(R), the expression of f can be differentiated and evaluating
at z = x + iy,

4fz(x + iy) =
∑n+1

j=0 wjh
′(x + ajy) + wjh

′(x− ajy),

4fz(x + iy) = i
∑n+1

j=0 wjh
′(x + ajy)− wjh

′(x− ajy)

where wj = pj((1− aj) + i ((1 + aj)).
For y = 0, condition (2) on aj ’s and pj ’s implies,

4fz(x) = −i
∑

j

(wj − wj)h′(x) = 2
∑

j

pj(1 + aj)h′(x) = 4h′(x) 6= 0,

since log h′ is locally bounded in R.
On the other hand, condition (2) yields,

4fz(x) =
∑

j

(wj + wj)h′(x) = 2
∑

j

pj(1− aj)h′(x) = 2(1− 1)h′(x) = 0.

Therefore,
Jf (x) = |fz(x)|2 − |fz(x)|2 = (h′(x))2 > 0
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where Jf denotes the Jacobian of f . Since Jf is continuous (h is a C1(R)
homeomorphism) there exists a neighbourhood of x, Vx, so that Jf (z) > 0
in Vx. In particular, |fz(z)| > 0 for every z ∈ Vx.

Next we show that there exists a neighbourhood of x, Ux, such that
ess supξ∈Ux∩R, t≤y|µf (ξ + it)| = O(yβ) for y such that ξ + iy ∈ Ux.

Since h′ ∈ Pβ there exists a polynomial of degree at most n, P x
n (t), that

approximates h′(x + t) for small t. Write P x
n (t) =

∑n
m=0 cm(x)tm where

c0(x) = h′(x). Take Ux ⊂ Vx, x ∈ Ux, such that for any ξ + it ∈ Ux the
polynomial approximation of h′ exists at ξ + ajt, j = 0, . . . , n + 1.

Let ξ + it = x + s + it ∈ Ux, so if we replace h′ by its approximation,

4fz(ξ + it) =
n+1∑

j=0

wjh
′(ξ + ajt) + wjh

′(ξ − ajt)

=
n+1∑

j=0

wj

(
n∑

m=0

cm(x)(s + ajt)m

)

+
n+1∑

j=0

wj

(
n∑

m=0

cm(x)(s− ajt)m

)
+ C(x)O(tβ)

=
n∑

m=0

m∑

k=0




n+1∑

j=0

(wj + (−1)kwj)ak
j




(
m

k

)
cm(x)tksm−k

+C(x)O(tβ).

To calculate
∑n+1

j=0 (wj +(−1)kwj)ak
j , k = 0, . . . , n, we consider separately

the cases of even and odd k.
• For even k, observe that, [k/2] = [(k + 1)/2]. By condition (2),

n+1∑

j=0

(wj + wj)ak
j = 2

∑

j

pj(1− aj)ak
j = 2((−1)[k/2] − (−1)[(k+1)/2]) = 0.

• For odd k, observe that, [k/2] + 1 = [(k + 1)/2]. By condition (2),

n+1∑

j=0

(wj − wj)ak
j = 2i

∑

j

pj(1 + aj)ak
j = 2i((−1)[k/2] + (−1)[(k+1)/2]) = 0.

Therefore for every ξ + it ∈ Ux,

4fz(ξ + it) = C(x)O(tβ).
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Analogously, for fz,

4fz(ξ + it) = i
n+1∑

j=0

wjh
′(ξ + ajt)− wjh

′(ξ − ajt)

= i

n∑

m=0

m∑

k=0




n+1∑

j=0

(wj + (−1)k+1wj)ak
j




(
m

k

)
tksm−kcm(x)

+C(x)O(tβ)

=
n∑

k=0

Bk(x, s)tk + C(x)O(tβ).

where, Bk(x, s) = 4bk
∑n

m=k

(
m
k

)
cm(x)sm−k and bk =

{
(−1)[k/2], if k even
i(−1)[k/2], if k is odd.

Observe that, for every k, Bk(x, s) is continuous in s and B0(x, 0) =
c0(x) = h′(x) 6= 0.

So the dilatation of f at ξ + it ∈ Ux,

µf (ξ + it) =
C(x)O(tβ)∑n

k=0 Bk(x, s)tk + C(x)O(tβ)
,

and thus,
ess supξ∈Ux∩R, t≤y|µf (ξ + it)| = O(yβ).

¤
Remarks

1. In this case, in order to obtain (2), we need some pj to be negative.
In Theorem 1 it was necessary to require each pj to be positive in
order to obtain a homeomorphic extension.

2. This technique of cancelling the intermediate derivatives of a func-
tion by adding up the values of the function evaluated at different
points is known as Richardson’s extrapolation method. See [3], p.372
and [12], p.194.

3. Notice that if h ∈ Λβ and log h′ is continuous then h′ ∈ Pβ, and
therefore there exists a local extension of h in Qβ.
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