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Abstract

For any holomorphic map in the unit disk, the set of radial limits at a Borel set
on the unit circle is a Suslin-analytic set. Here it is proved that, for a conformal
map, this set is, in fact, Borel. As a consequence the sets of accessible boundary
points, of cut points and of transition points are Borel. In addition, it is shown
that the set of end points is a Gδ-set.

§1. Introduction

Although Borel sets are well-behaved under most operations performed
in analysis, Suslin observed that the continuous image of a Borel set need
not be Borel. He characterized sets obtained as continuous images of Borel
sets as analytic sets and showed that the class of analytic sets is closed under
continuous (or Borel measurable) functions (see for example [15], Theorem
73, p.145). Suslin also noted that every Borel set is an analytic set and,
moreover, that Borel sets can be characterized as those analytic sets whose
complement is analytic ([15], [1]). He and Lusin furthermore proved that
injective Borel functions do preserve Borel sets. More precisely, ([6], Theorem
15.1)

Theorem (Lusin-Suslin) Let B be a Borel set in C and let f : B → C be
Borel measurable and injective. Then f(B) is also a Borel set.

Let the function f be holomorphic in the unit disk D. We denote by Ef

the set of points on the unit circle T at which f has a radial limit, namely

Ef = {ζ ∈ T : f(ζ) := lim
r→1

f(rζ) ∈ Ĉ exists}.

It is known that f |Ef
is a Borel function and moreover that Ef is a Borel set

(see, e.g. Proposition 6.5 in [12]). Therefore, if A ⊂ Ef is analytic then f(A)
is analytic, and the conclusion cannot be strengthened even if A is assumed
to be Borel.
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McMillan [11] showed that, in general, if A is the set of asymptotic values
of a function continuous in the disc, then A is analytic. Moreover, Berman
and Nishiura [2], proved that, for any nowhere dense perfect subset B ⊂ T
and any analytic set A ⊂ Ĉ, there is a holomorphic function in D such that
B ⊂ Ef and f(B) = A.

The set of asymptotic values of a holomorphic function in D is also an
analytic set (see [9]). Here, an asymptotic value of f at the point ζ ∈ T is a
limit of f along a simple curve in D ending at ζ, in analogy with the radius
ending at ζ. Ryan in [13], [14], characterized the set of asymptotic values of
a holomorphic function in D as belonging to a certain subclass of the class
of analytic sets.

Heins, in [5], showed that every infinite analytic set that contains the
point at infinity is the set of asymptotic values of some entire function of
infinite order. This is also the case for meromorphic functions defined in D
(see [7]) and for meromorphic functions in C of any order ρ, 0 ≤ ρ < ∞ (see
[3]).

Acknowledgement. We would like to thank Prof. Joan Carmona for his
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§2. The main result

Consider a conformal map in D onto a domain G ⊂ Ĉ. We show now
that, in contrast, the set of the radial limits remains Borel if f is injective.

Theorem 1 Let f be a conformal map in D onto G ⊂ Ĉ and let A ⊂ T be
such that

f(ζ) = lim
r→1

f(rζ) ∈ Ĉ exists for ζ ∈ A.

Then if A is a Borel set, so is f(A).

Proof. Without loss of generality we can assume that f(0) = ∞ and
therefore, ∂G ⊂ C. Consider the sets

A1 = {ζ ∈ A : f(ξ) 6= f(ζ) for ξ ∈ A, ξ 6= ζ}
A2 = {ζ ∈ A : f(ξ) = f(ζ) for a unique ξ ∈ A, ξ 6= ζ}
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A3 = {ζ ∈ A : f(ξ) = f(ζ) for two or more ξ ∈ A, ξ 6= ζ}.

It is known that the set f(A3) is countable and since f |A is Borel-measurable,
A3 is a Borel set (see Propositions 2.19 and 6.5 [12]).

To show that f(A1 ∪ A2) is Borel, we shall decompose A1 ∪ A2 into a finite
collection of disjoint sets in such a way that the restrictions of f to these
sets is 1-1, and then get the desired conclusion by means of the Lusin-Suslin
theorem.

We write A1 ∪ A2 = L and define a function g : L× L → C by

g(ζ, ξ) = f(ζ)− f(ξ)

and note that L, L × L and g−1({0}) = {(ζ, ξ) ∈ L × L : g(ζ, ξ) = 0} are
Borel. Indeed, L = A\A3 is Borel, consequently so is L×L (see Proposition
3.1.23 in [16]) and

g−1({0}) =
⋂
n

⋃
m>n

Vnm,

where Vnm := {(ζ, ξ) ∈ L × L : |f((1 − 1
m

)ζ) − f((1 − 1
m

)ξ)| < 1/n} is an
open set relative to L× L and thus Borel.

Therefore,

Z+ := {(ζ, ξ) ∈ L× L : arg ζ > arg ξ, g(ζ, ξ) = 0}
Z− := {(ζ, ξ) ∈ L× L : arg ζ < arg ξ, g(ζ, ξ) = 0}

are also Borel, where we consider the branch of the argument that takes
values in [0, 2π).

Define A±
2 as the projection of Z±, that is,

A±
2 := {ζ ∈ L : there exists ξ ∈ L, ξ 6= ζ such that (ζ, ξ) ∈ Z±}.

The projection of Z+ onto A+
2 is continuous and injective. For if not, there

would exist ξ, ξ′ ∈ L such that, arg ξ, arg ξ′ < arg ζ and (ζ, ξ), (ζ, ξ′) ∈ Z+,
where ξ 6= ξ′. Then f(ζ) = f(ξ) = f(ξ′) and therefore, ζ /∈ L.

A+
2 is a 1-1 continuous image of a Borel set, and by the Lusin-Suslin theorem,

a Borel set. Similarly A−
2 is Borel, and hence so are A2 = A+

2 ∪ A−
2 and

A1 = L \ A2.
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Since f |A+
2

is a Borel function, we are left to show that f |A+
2

is injective.

Assume otherwise, then there exist η, ζ ∈ A+
2 such that, arg η < arg ζ and

f(η) = f(ζ) and therefore g(η, ζ) = 0. Since η ∈ A+
2 there exists another

point ξ ∈ L such that arg ξ < arg η and f(ξ) = f(η). So there are points,
ξ 6= η 6= ζ 6= ξ in L with f(ξ) = f(η) = f(ζ), a contradiction.

We have shown that f |A1 , f |A+
2

and f |A−2 are Borel and injective, and again,

by the Lusin-Suslin theorem f(A1), f(A+
2 ) and f(A−

2 ) are Borel. Thus f(A)
is Borel.

§3. Some applications

It is known that for a general continuum in C the sets of accessible and
cut points are Borel (see [10], also [8], p.176 and [17], p.52 Thm. 5.2, re-
spectively). In the particular case of the continuum being the boundary of
a simply connected domain, these results are consequences of Theorem 1.
Also, we will show that the set of end points is a Gδ-set.

Let f : D → G be a conformal map and recall that Ef denotes the set of
points on T for which the radial limit of f exists.

A point w ∈ ∂G is accessible if there exists a Jordan arc Γ such that
Γ ⊂ G ∪ {w}.

Corollary 1 The set of accessible points is a Borel set.

Proof. The point w ∈ ∂G is accessible if and only if w = f(ζ) for some
ζ ∈ Ef (see [12], Cor. 2.17). Since Ef is a Borel set, the set of accessible
points is also Borel.

A point w ∈ ∂G is called a cut point if ∂G \ {w} is not connected.

Corollary 2 The set of cut points is Borel.

Proof. As a consequence of the Plane Separation Theorem ([17], p.108), w
is a cut point if and only if there exist ζ, ξ ∈ Ef , ζ 6= ξ with f(ζ) = f(ξ) = w.
Let E1, E2 and E3 be subsets of Ef defined as in the proof of the Theorem 1.
Then each Ej (j = 1, 2, 3) is Borel, and therefore so is the set of cut points,
f(E2 ∪ E3).
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A point w ∈ ∂G is a transition point with respect to the component
H ⊂ Ĉ \ ∂G, where H 6= G, if there exist Jordan arcs Γ ⊂ G ∪ {w} and
Γ′ ⊂ H ∪ {w} (see [4]).

Corollary 3 The set of transition points is Borel.

Proof. Let Hk, k = 1, 2, . . . be the components of Ĉ \ ∂G such that
Hk 6= G. Since G is a domain, the domains Hk are simply connected domains.
Therefore, by Corollary 1, the intersection of the set of points accessible from
Hk with the set of points accesible from G is Borel. Consequently, the set of
transition points, being the union of these intersections, is also Borel.

A point w ∈ ∂G is called an end point if w lies within Jordan curves Jn

contained in G that intersect ∂G exactly once and satisfy that diamJn → 0
as n →∞.

Propostion The set of end points is a Gδ-set.

Proof. Let T be the set of end points on ∂G. Denote by Int (Jn(w)) the
open domain that contains w whose boundary is Jn.

Define
C :=

⋂
n≥1

⋃
w∈T

Int (Jn(w)) ,

where diam (Int (Jn(w))) < 1/n. Clearly C is Gδ-set and T ⊂ C.

Next it will be shown that C ⊂ T . Indeed, if w ∈ C, then for every n ∈ N
there exists wn ∈ T so that w ∈ Int (Jn(wn)) and since diam (Int (Jn(w))) <
1/n, wn → w as n →∞. Moreover, w ∈ ∂G because ∂G is closed.

Thus, in brief, w is a point in ∂G so that w ∈ Int (Jn(wn)), Jn(wn)
intersects ∂G once and diam (Int (Jn(wn))) < 1/n. That is, w ∈ T .
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