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Abstract. This paper shows that under appropriate assumptions adding or removing an infinite amount of
edges to a given planar graph preserves its non-hyperbolicity, a result which is shown to be false in general.

The authors consider the conjecture which states that every tessellation graph of R2 with convex tiles is

non-hyperbolic; it is shown that in order to prove this conjecture it suffices to consider tessellations graphs
of R2 such that every tile is a triangle and a partial answer to this question is given. A weaker version of

this conjecture stating that every tessellation graph of R2 with rectangular tiles is non-hyperbolic is stated

and partially answered. If this conjecture were true, many tessellation graphs of R2 with tiles which are
parallelograms would be non-hyperbolic.

AMS Subject Classification numbers 2010: 05C10; 05C63; 05C75; 05A20.
Keywords: Planar Graphs; Gromov Hyperbolicity; Infinite Graphs; Geodesics; Tessellation.

1. Introduction.

Hyperbolic spaces play an important role in geometric group theory and in the geometry of negatively
curved spaces. The concept of Gromov hyperbolicity grasps the essence of both negatively curved spaces
like the classical hyperbolic space or Riemannian manifolds of negative sectional curvature, and of discrete
spaces like trees and the Cayley graphs of many finitely generated groups. It is remarkable that a simple
concept leads to such a rich general theory (see [1, 18, 19]).

The theory of Gromov spaces was used initially for the study of finitely generated groups (see [19] and
the references therein), where its practical importance was discussed. This theory was mainly applied to the
study of automatic groups (see [33]), which appear in computational science. The concept of hyperbolicity
appears also in discrete mathematics, in particular, a few algorithmic problems in hyperbolic spaces and
hyperbolic graphs have been considered in recent papers (see [14, 15, 17, 30]). Another application of these
spaces is secure transmission of information on the internet (see [23, 24, 25]), playing a significant role in the
spread of viruses through the network (see [24, 25]). Hyperbolicity is also useful in the study of DNA data
(see [7]). It has been shown empirically in [45] that the internet topology embeds with better accuracy into
a hyperbolic space than into an Euclidean space of comparable dimension.

The study of mathematical properties of Gromov hyperbolic spaces and its applications is a topic of recent
and increasing interest in graph theory; see, for instance [3, 4, 5, 7, 8, 10, 16, 23, 24, 25, 26, 27, 29, 31, 32,
35, 36, 37, 38, 42, 43, 44, 46, 47].

In recent years several researchers have been interested in showing that metrics used in geometric function
theory are Gromov hyperbolic. For instance, the Gehring-Osgood j-metric is Gromov hyperbolic; and the
Vuorinen j-metric is not Gromov hyperbolic except in the punctured space (see [20]). The study of Gromov
hyperbolicity of the quasihyperbolic and the Poincaré metrics is the subject of [2, 6, 21, 22, 38, 39, 40, 43, 44].
In particular, in [38, 43, 44, 46] it is proved the equivalence of the hyperbolicity of many negatively curved
surfaces and the hyperbolicity of a very simple graph. Deciding whether a space is hyperbolic is a difficult
problem since the location of geodesics is unknown, and hence, it is useful to know hyperbolicity criteria for
graphs. This will be the topic of discussion in what follows.

One of the main questions in the study of any mathematical property is to find transformations which
preserve that property. In [8, Theorem 3.15] the authors prove that adding or removing any finite amount of
edges of a graph preserves its non-hyperbolicity (or hyperbolicity). It is thus natural to consider what would
happen if the amount of edges were infinite. Theorem 3.1 below gives a positive answer to this question under
some appropriate hypotheses for planar graphs; Theorem 3.6 shows that the general answer is negative, even
for planar graphs.

The papers [9] and [37] study the hyperbolicity of some type of planar graphs. In particular, in [9], the
authors conjectured that every tessellation graph of R2 with convex tiles is non-hyperbolic. Sections 4 and 5
deal with this open problem. Theorem 5.1 shows that in order to prove this conjecture, it suffices to consider
tessellation graphs of R2 such that every tile is a triangle. A weaker conjecture is stated, namely that every
tessellation graph of R2 with rectangular tiles is non-hyperbolic. Theorem 4.6 gives a partial answer to this
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question. Finally, Theorem 4.2 shows that if this weaker conjecture is true, then many tessellation graphs
of R2 with tiles which are parallelograms are non-hyperbolic.

2. Background on Gromov hyperbolic spaces.

Let (X, d) be a metric space and let γ : [a, b] −→ X be a continuous function. The curve γ is a geodesic if
L(γ|[t,s]) = d(γ(t), γ(s)) = |t− s| for every s, t ∈ [a, b], where L denotes the length of a curve; a geodesic line
is a geodesic with domain R, and a geodesic ray is a geodesic with domain [0,∞). X is a geodesic metric
space if for every x, y ∈ X there exists a geodesic joining x and y; denote by [xy] any of such geodesics (since
uniqueness of geodesics is not required, this notation is ambiguous, but convenient). It is clear that every
geodesic metric space is path-connected. If the metric space X is a graph, [u, v] denotes the edge joining the
vertices u and v.

In order to consider a graph G as a geodesic metric space, one must identify any edge [u, v] ∈ E(G) with
the real interval [0, l] (if l := L([u, v])); therefore, any point in the interior of any edge is a point of G and, if
the edge [u, v] is considered as a graph with just one edge, then it is isometric to [0, l]. A connected graph G
is naturally equipped with a distance defined on its points, induced by taking shortest paths in G, inducing
in G the structure of a metric graph. Note that edges can have arbitrary lengths.

Throughout the paper only simple, connected and locally finite graphs are considered (i.e., graphs without
loops or multiple edges and so that each ball contains a finite number of edges); these properties guarantee
graphs are geodesic metric spaces. The study of the hyperbolicity of graphs with loops and multiple edges
can be reduced to the study of the hyperbolicity of simple graphs (see [4, Theorems 8 and 10] ).

If X is a geodesic metric space and J = {J1, J2, . . . , Jn} is a polygon with sides Jj ⊆ X, then J is said
to be δ-thin if for every x ∈ Ji one has that d(x,∪j 6=iJj) ≤ δ. The sharp thin constant of J , δ(J), is then
δ(J) := inf{δ ≥ 0 : J is δ-thin } . If x1, x2, x3 are points in X, a geodesic triangle T = {x1, x2, x3} is the
union of the three geodesics [x1x2], [x2x3] and [x3x1]. The space X is δ-hyperbolic (or satisfies the Rips
condition with constant δ) if every geodesic triangle in X is δ-thin. Denote by δ(X) the sharp hyperbolicity
constant of X, i.e., δ(X) := sup{δ(T ) : T is a geodesic triangle in X }. The space X is hyperbolic if X is
δ-hyperbolic for some δ ≥ 0; in this case, δ(X) = inf{δ ≥ 0 : X is δ-hyperbolic }.

Trivially, every bounded metric space X is (diamX)-hyperbolic. The real line R is 0-hyperbolic whereas
the Euclidean plane R2 is not. In general, a normed vector space E is hyperbolic if and only if dim E = 1.
Every metric tree with arbitrary length edges is 0-hyperbolic; every simply connected complete Riemannian
manifold with sectional curvature verifying K ≤ −c2 < 0 is hyperbolic. More background and further results
are given in, e.g, [1, 18].

Those spaces X with δ(X) = 0 are precisely the metric trees, and the hyperbolicity constant of a geodesic
metric space can be viewed as a measure of how “tree-like” the space is.

There are several definitions of Gromov hyperbolicity, all equivalent in the sense that if X is δ-hyperbolic
with respect to definition A, then it is δ′-hyperbolic with respect to definition B for some δ′ (see, e.g., [1, 18]).

Let (X, dX) and (Y, dY ) be two metric spaces. A map f : X −→ Y is said to be an (α, β)-quasi-isometric
embedding, with constants α ≥ 1, β ≥ 0 if for every x, y ∈ X:

α−1dX(x, y)− β ≤ dY (f(x), f(y)) ≤ αdX(x, y) + β.

The function f is ε-full if for each y ∈ Y there exists x ∈ X with dY (f(x), y) ≤ ε.

A map f : X −→ Y is said to be a quasi-isometry, if there exist constants α ≥ 1, β, ε ≥ 0 such that f is
an ε-full (α, β)-quasi-isometric embedding. In that case we say that X and Y are quasi-isometric.

Note that a quasi-isometric embedding, in general, is not continuous.

Let X be a metric space, Y a non-empty subset of X and ε a positive number. The ε-neighborhood of Y
in X, denoted by Vε(Y ) is defined as the set {x ∈ X : dX(x, Y ) ≤ ε}.

A fundamental property of hyperbolic spaces is the following:
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Theorem 2.1 (Invariance of hyperbolicity). Let f : X −→ Y be an (α, β)-quasi-isometric embedding between
the geodesic metric spaces X and Y . If Y is hyperbolic, then X is hyperbolic.

Besides, if f is ε-full for some ε ≥ 0 (a quasi-isometry), then X is hyperbolic if and only if Y is hyperbolic.

If D is a closed subset of X, the inner metric considered in D is defined as

dD(z, w) := inf
{
LX(γ) : γ ⊂ D is a continuous curve joining z and w

}
≥ dX(z, w) .

Consequently, LD(γ) = LX(γ) for every curve γ ⊂ D.

In an informal way, a tessellation, T , on a complete Riemannian surface, X, is a partition of X by
geometric shapes (called tiles) with no overlaps and no gaps. The tessellation graph associated to T is the
union of the boundaries of the tiles. More precisely, for n ≥ 1, an n-cell is a topological space homeomorphic
to the open ball in Rn. A 0-cell is a singleton space. A tesselation on a complete Riemannian surface, X,
is a CW 2-complex on X such that every point on X is contained in some n-cell of the complex for some
n ∈ {0, 1, 2}. A tessellation graph is the 1-skeleton (the set of 0-cells and 1-cells). The edges (1-cells) of
a tessellation graph are just rectifiable paths in X and have the length induced by the metric on X (these
paths may or may not be geodesics in X). Throughout the paper X = R2 with the exceptions of Theorem
3.4 and the proof of Theorem 3.6, where X will stand for the hyperbolic plane.

Along the paper, given a set E contained in a Riemannian surface X, we denote by AX(E) its area and
by E its closure.

3. Hyperbolicity of tessellation graphs.

If G0 is a non-hyperbolic tessellation graph of R2, a natural question is whether this non-hyperbolicity
will be preserved when adding to it any number (possibly infinite) of vertices and edges. The next result
gives an affirmative answer to this question under some regularity hypotheses on G0. Theorem 3.6 below
will show this result to be false in general.

The next result shows the connection between the continuous and the discrete frame (see, e.g., [28]).

Theorem 3.1. Let G0 be the 1-skeleton of a tessellation of R2 with tiles {Fn}n∈I . Assume that there exists
a partition I = Λ1 ∪ Λ2 of the set of indices and positive constants c1, c2, verifying the following properties:

(i) diamG0 ∂Fn ≤ c1 and AR2(Fn) ≥ c2 for every n ∈ Λ1,
(ii) d∂Fn

(x, y) ≤ c1dR2(x, y) for every x, y ∈ ∂Fn and for every n ∈ Λ2.
Then G0 is not hyperbolic. Moreover, any 1-skeleton G of a tessellation of R2 which contains G0 as a

subgraph is not hyperbolic.

Proof. It will be proven that the inclusion i : G0 −→ R2 is a quasi-isometric embedding; in fact, it is shown
that

(3.1) dR2(x, y) ≤ dG0(x, y) ≤
(
2c21c

−1
2 + c1

)
dR2(x, y) + πc31c

−1
2 ,

for every x, y ∈ G0.
First of all, it is clear that dR2(x, y) = dR2(i(x), i(y)) ≤ dG0(x, y) for every x, y ∈ G0.
Fix now x, y ∈ G0 and let σ be the Euclidean segment joining x and y in R2. If n ∈ Λ1 and Fn ∩ σ 6= ∅,

then Fn ⊆ VdiamFn(σ) ⊆ Vc1(σ). Since Vc1(σ) is the union of two half-disks and a rectangle, clearly
AR2(Vc1(σ)) = 2c1L(σ) + πc21. Let N (σ) denote the number of Fn with n ∈ Λ1 that cross σ, then

c2 N (σ) ≤ AR2(Vc1(σ)) = 2c1L(σ) + πc21.

Therefore,
N (σ) ≤ c−1

2

(
2c1dR2(x, y) + πc21

)
.

Consider σ as an oriented segment from x to y. A finite set of points will be inductively defined as follows:
let y1 be the first point on σ with y1 ∈ ∪n∈Λ1Fn; then y1 ∈ Fr1 for some r1 ∈ Λ1; take y2 to be the last point
on σ ∩ Fr1 . Proceeding this way, assume that {y1, . . . , y2j} have been defined with y2s−1 the first point and
y2s the last on σ∩Frs

for s = 1, . . . , j. If σ \ [y1y2j ] does not intersect ∪n∈Λ1\{r1,...,rj}Fn, then this process is
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stopped. If σ \ [y1y2j ] intersects ∪n∈Λ1\{r1,...,rj}Fn, then define y2j+1 as the first point in (σ \ [y1y2j ])∪{y2j}
with y2j+1 ∈ ∪n∈Λ1\{r1,...,rj}Fn; then y2j+1 ∈ Frj+1 for some rj+1 ∈ Λ1 and define y2j+2 as the last point in
σ ∩ Frj+1 . Eventually his process will finish and a finite set {y1, . . . , y2N} will be obtained.

Let [x1x2], [x3x4], . . . , [x2m−1x2m] be the Euclidean segments contained in the closure of σ\∪Nl=1[y2l−1y2l].
Notice that [x2j−1x2j ] ⊂ σ ∩ (∪n∈Λ2Fn ), and thus

dG0(x, y) ≤ sup
n∈Λ1

{diamG0 ∂Fn} N (σ) +
m∑
j=1

dG0(x2j−1, x2j)

≤ c1N (σ) + c1

m∑
j=1

dR2(x2j−1, x2j)

≤
(
2c21c

−1
2 + c1

)
dR2(x, y) + πc31c

−1
2 ,

which completes the proof of equation (3.1).

We shall show next that G0 is not hyperbolic. To this end it will be first proven that

(3.2) δ(G0) ≥ 1
2

sup
n

diamR2 ∂Fn.

For any fixed n, let us consider the set An of closed curves in G0 freely homotopic to ∂Fn in R2 \ Fn.
Choose a closed curve σn ∈ An with L(σn) = min{L(σ) : σ ∈ An}; it is clear that L(σn) ≥ 2 diamR2 ∂Fn,
and that dσn

(x, y) = dG0(x, y) for every x, y ∈ σn since σn is a shortest curve in An. Let xn, yn be points in
σn with dG0(xn, yn) = dσn(xn, yn) = L(σn)/2. Then there are two different geodesics σ1

n, σ
2
n in G0 joining

xn and yn with σ1
n ∪ σ2

n = σn. Therefore the set Bn = {σ1
n, σ

2
n} is a geodesic bigon (a geodesic triangle

having two of its vertices to be the same point). If un is the midpoint of σ1
n, then δ(Bn) ≥ dG0(un, σ2

n) =
dG0(un, {xn, yn}) = 1

4L(σn) ≥ 1
2 diamR2 ∂Fn. Taking the supremum on n equation (3.2) above follows.

If supn diamR2 ∂Fn = ∞, by equation (3.2) G0 is not hyperbolic. If supn diamR2 ∂Fn = c∗1 < ∞, then
the inclusion i : G0 −→ R2 is a c∗1-full (a0, b0/a0)-quasi-isometry, with a0 := 2c21c

−1
2 + c1 > c1 ≥ 1 and

b0 := πc31c
−1
2 , since diamR2 Fn ≤ diamG0 ∂Fn. In this case, Theorem 2.1 implies G0 is not hyperbolic.

Let us finally show that any 1-skeleton G of a tessellation of R2 which contains G0 as a subgraph will not
be hyperbolic.

Clearly dG(x, y) ≤ dG0(x, y) for every x, y ∈ G0, and also dR2(x, y) ≤ dG(x, y) for every x, y ∈ G,. By
equation (3.1),

dG(x, y) ≤ dG0(x, y) ≤ a0dR2(x, y) + b0 ≤ a0dG(x, y) + b0

or, equivalently,
1
a0
dG0(x, y)− b0

a0
≤ dG(x, y) ≤ dG0(x, y),

for every x, y ∈ G0,. Thus the inclusion i0 : G0 −→ G is an (a0, b0/a0)-quasi-isometric embedding. Therefore,
since G0 is not hyperbolic, by Theorem 2.1 one obtains that G is not hyperbolic. �

The arguments just given in the proof of Theorem 3.1 have the following consequences:

Theorem 3.2. Let G0 be the 1-skeleton of a tessellation of R2 such that there exist non-negative constants
a0, b0 so that dG0(x, y) ≤ a0dR2(x, y) + b0 for every x, y ∈ G0. Then any 1-skeleton G of a tessellation of R2

which contains G0 as a subgraph is not hyperbolic.

Theorem 3.3. Let G be the 1-skeleton of a tessellation of R2 with tiles {Fn}. Then

δ(G) ≥ 1
2

sup
n

diamR2 ∂Fn.
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A direct consequence of Theorem 3.3 is that, if supn diamR2 ∂Fn = ∞, then G is not hyperbolic. It will
be shown in Theorem 3.6 that if supn diamG ∂Fn =∞, this is false.

The following results on hyperbolicity will be needed in the proof of Theorem 3.6, one of the main results
of this section:

Theorem 3.4. ([37, Theorem 3.1 and Remark 3.2]) Let G be the 1-skeleton of a tessellation of the hyperbolic
plane H with tiles {Fn}. If for some positive constants c1, c2, one has diamG ∂Fn ≤ c1 and AH(Fn) ≥ c2 for
every n, then G is hyperbolic.

Let us denote by G \ {v} the metric space obtained by removing the point {v} from the metric space G.
A vertex v of a graph G is a cut vertex if G \ {v} is not connected. Note that in a tree, any vertex with

degree greater than one is a a cut vertex.
Finally, let us denote by {Gr}r the closures in G of the connected components of the set

G \
{
v ∈ V (G) : v is a cut vertex of G

}
.

The set {Gr}r is the canonical T-decomposition of G.

Example. Let us consider two cycle graphs Γ1,Γ2, and x1 ∈ V (Γ1), x2 ∈ V (Γ2). Define the graph G as
the graph with V (G) = V (Γ1) ∪ V (Γ2) and E(G) = E(Γ1) ∪ E(Γ2) ∪ [x1, x2]. Then {Γ1,Γ2, [x1, x2]} is the
canonical T-decomposition of G.

Theorem 3.5. ([4, Theorem 5]) If {Gr}r is the canonical T-decomposition of G, then δ(G) = supr δ(Gr).

The next result will deal with periodic graphs. The tessellation graph G of R2 is periodic if there exist
(u, v) ∈ R2 \ {(0, 0)} such that T (G) = G, where T : R2 −→ R2 is defined as T (x, y) = (x, y) + (u, v).

Recall that a geodesic line is a geodesic with domain R. By Euclidean line we mean an straight line in
R2, i.e., a geodesic line in the Euclidean plane.

Theorem 3.6. There exists a periodic hyperbolic 1-skeleton G of a tessellation of R2 with tiles {Fn} verifying
supn diamG ∂Fn = ∞ and containing infinitely many Euclidean lines. Furthermore, there exists a periodic
non-hyperbolic subgraph G0 of G which is also a tessellation graph of R2.

Remark 3.7. The main idea in the construction of such a tessellation is to include in R2 a tessellation
graph quasi-isometric to a periodic model of the hyperbolic plane. The example given in Theorem 3.6 shows
that it is not possible to replace supn diamR2 ∂Fn by supn diamG ∂Fn in Theorem 3.3. Theorem 4.6 shows a
large class of non-hyperbolic tessellation graphs containing infinitely many Euclidean lines.

Proof. The structure of the proof is as follows: first, a hyperbolic graph G3, which is a tessellation of H, will
be defined; based on G3, define a new hyperbolic graph G6 which is a tessellation of R2; finally, the graph
G satisfying all conditions in the statement will be defined from G6.

Let us consider the hyperbolic plane H with its Fermi coordinates (see, e.g., [11, p. 247]), i.e., the plane
R2 with the Riemannian metric ds2 = cosh2y dx2 + dy2 (thus dA = cosh y dx dy).

Let [t] stand for the integer part of t. Consider the segments Im,n in H given by Im,n := {(x, y) ∈
H : n/[coshm] ≤ x ≤ (n + 1)/[coshm], y = m} for m = 0, 1, 2, . . . and 0 ≤ n ≤ [coshm] − 1, and
Jm,n := {(x, y) ∈ H : x = n/[coshm],m ≤ y ≤ m+ 1} for m ≥ 0 and 0 ≤ n ≤ [coshm].

Let G1 := ∪m,n
{
Im,n ∪Jm,n

}
, S0(x, y) := (x,−y) and G2 := G1 ∪S0(G1). Also, let Rk(x, y) := (x+ k, y)

for k ∈ Z. The graph G3 is now defined as G3 := ∪kRk(G2). Clearly, G3 is a tessellation graph of H. Let
us check that it verifies the hypotheses in Theorem 3.4.

To this end, let {F ∗r } be the tiles of the tessellation G3. Since S0 and Rk are isometries of H,

diamG3 ∂F
∗
r ≤ LH(∂F ∗r ).
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A standard computation gives

LH(Im,n) =
∫ (n+1)/[coshm]

n/[coshm]

coshmdx =
coshm
[coshm]

≤ 2, LH(Jm,n) =
∫ m+1

m

dy = 1,∫ (n+1)/[coshm]

n/[coshm]

cosh(m+ 1) dx =
cosh(m+ 1)

coshm
· coshm

[coshm]
≤ em+1

em/2
· 2 = 4e,

AH
(
{(x, y) ∈ H :n/[coshm] ≤ x ≤ (n+ 1)/[coshm],m ≤ y ≤ m+ 1}

)
=

=
∫ (n+1)/[coshm]

n/[coshm]

∫ m+1

m

cosh y dy dx ≥
∫ (n+1)/[coshm]

n/[coshm]

coshmdx =
coshm
[coshm]

≥ 1.

Therefore,
diamG3 ∂F

∗
r ≤ LH(∂F ∗r ) ≤ 4e+ 4, AH(F ∗r ) ≥ 1,

for every r, and Theorem 3.4 allows to conclude that G3 is hyperbolic.
Consider now the graph G3 embedded in the Euclidean plane R2. Let us define K0,0 := I0,0; for m ≥ 1

and 0 ≤ n ≤ [coshm] − 1, let Km,n be a polygonal curve joining the endpoints of Im,n which is contained
in the rectangle {(x, y) ∈ R2 : n/[coshm] ≤ x ≤ (n + 1)/[coshm],m − 1/6 ≤ y ≤ m + 1/6}, where
LR2(Km,n) = LH(Im,n) and

[cosh(m−1)]−1⋃
n=0

(n/[cosh(m− 1)],m) ⊂
[coshm]−1⋃

n=0

Km,n.

Set G4 := ∪m,n
{
Km,n∪Jm,n

}
, G5 := G4∪S0(G4) and define the next graph G6 as G6 := ∪kRk(G5). Clearly

G6 is a tessellation graph of R2. Since the graphs G3 (in H) and G6 (in R2) are isometric, the graph G6 is
hyperbolic.

Finally, let us define G. For m ≥ 0, 0 ≤ n ≤ [coshm] − 1 and 0 ≤ s ≤ m, let Mm,n,s be the cycle graph
which is the union of the four Euclidean segments joining the points(n+ s/(4m+ 4)

[coshm]
, m+

1
2

)
,
(n+ (2s+ 1)/(8m+ 8)

[coshm]
, m+

2
3

)
,(n+ (s+ 1)/(4m+ 4)

[coshm]
, m+

1
2

)
,
(n+ (2s+ 1)/(8m+ 8)

[coshm]
, m+

1
3

)
.

Set G7 := ∪m,n,sMm,n,s, G8 := G7 ∪ S0(G7), G9 := ∪kRk(G8) and G := G6 ∪ G9. Clearly G is a
tessellation graph of R2. Note that the sets Mm,n,s, its images by S0 and Rk, and G6, are the canonical
T-decomposition of G; hence, Theorem 3.5 gives that δ(G) = max{δ(G6), supm,n,s δ(Mm,n,s)}. One can
check that δ(Mm,n,s) = LR2(Mm,n,s)/4 ≤ 1; since δ(G) ≤ max{δ(G6), 1} <∞, the graph G is hyperbolic.

Let us check the condition on the tiles of this graph. Denote by {Fr} the tiles of G; if ∂Fr contains
Mm,n,0,Mm,n,1, . . . ,Mm,n,m, then

diamG ∂Fr ≥
1
2

m∑
s=0

LR2(Mm,n,s) ≥
1
2

(m+ 1)
2
3

=
m+ 1

3
,

and one concludes that supr diamG ∂Fr =∞.
Furthermore, the graph G is periodic and contains infinitely many Euclidean lines by construction.
Finally, let us construct a periodic non-hyperbolic subgraph G0 of G which is also a tessellation graph of

R2. Let us define Km := ∪[coshm]−1
n=0 Km,n G10 := ∪m{Km ∪ Jm,0 ∪ Jm,[coshm]}, G11 := G10 ∪ S0(G10) and

G0 := ∪kRk(G11). It is clear that G0 is a tessellation graph of R2 and a subgraph of G. For each m ≥ 0,
consider the midpoint pm of Km, i.e., the point with dG0(pm, (0,m)) = dG0(pm, (1,m)) = LR2(Km)/2, and
the geodesic bigon Bm in G0 with two different geodesics γ1

m, γ
2
m, joining pm and pm+1; then γ1

m ∪ γ2
m =
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Km ∪Km+1 ∪ Jm,0 ∪ Jm,[coshm]. If qm is the midpoint of γ1
m, then

δ(Bm) ≥ dG0(qm, γ2
m) = dG0(qm, {pm, pm+1}) =

1
2
LR2(γ1

m)

=
1
2

(1
2
LR2(Km) + LR2(Jm,0) +

1
2
LR2(Km+1)

)
=

1
2

(1
2

coshm
[coshm]

[coshm] + 1 +
1
2

cosh(m+ 1)
[cosh(m+ 1)]

[cosh(m+ 1)]
)

=
1
4
(

coshm+ cosh(m+ 1) + 2
)
,

and one concludes δ(G0) ≥ supm δ(Bm) =∞. �

A corollary for 2-quasiperiodic graphs follows. Recall that the tessellation graph G of R2 is 2-periodic if
there exist two linearly independent vectors (u1, v1), (u2, v2) ∈ R2 such that

Tj(G) = G , for j = 1, 2 ,

where Tj : R2 −→ R2 are defined as

Tj(x, y) = (x, y) + (uj , vj) , j = 1, 2 .

The graph G is 2-quasiperiodic if there exists a 2-periodic subgraph G0 of G.

Corollary 3.8. If G is 2-quasiperiodic then G is not hyperbolic

Proof. If G0 is a 2-periodic subgraph with tiles {Fn}n∈I , then one can take the partition Λ1 = I, Λ2 = ∅ of
the set of indices in the statement of Theorem 3.1. Therefore, G is not hyperbolic. �

4. tessellations with parallelograms and rectangles

In this section it is shown that the hyperbolicity of certain tessellations with parallelograms is equivalent
to the hyperbolicity of tessellations with rectangles. It is also shown that under some hypotheses rectangular
tessellations are not hyperbolic.

4.1. Tessellations with parallelograms. Next it will be shown that considering tessellations of parallel-
ograms with bounded inclinations is equivalent to considering rectangular tessellations with sides parallel to
the axis in order to study hyperbolicity.

Consider the standard basis in R2 defined by {−→e1 ,
−→e2} and, given α, β, let

−→
Uα and

−→
Vβ be the vectors defined

by
−→
Uα := (cosα, sinα),

−→
Vβ := (sinβ, cosβ).

Fix real numbers a and b with a < b < π + a. A tessellation T is a p-tessellation of R2 if its tiles satisfy
the following conditions:

(1) F is a parallelogram, for all F ∈ T .
(2) For each F ∈ T there exists a pair of angles α, β satisfying that α ∈ (a, b), β ∈ (−π2 − a,

π
2 − b), such

that the sides of F are parallel to
−→
Uα and

−→
Vβ respectively.

Notice that the second condition above implies that if two adjacent tiles in T partially share a side, then
(for both of them) there is a side that is either parallel to

−→
Uα (for some α) or to

−→
Vβ (for some β).

Theorem 4.1. Given a p-tessellation T of R2, there exists a tessellation T of R2 with rectangular tiles and
a bijective continuous function f : T −→ T so that f |G is an isometry from the 1-skeleton G of T to the
1-skeleton G of T .
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Proof. Applying a rotation, without loss of generality, α ∈ (−c, c) where c = (b− a)/2. Then the vectors
−→
Uα

and
−→
Vβ give, respectively, the “almost-horizontal” and “almost-vertical” directions of a tile. In fact, if P is

a vertex of a tile, F ∈ T , the lines with directions
−→
Uc and

−−→
U−c through P divide the plane in four sectors.

Since the sides of every F ∈ T are parallel to
−→
Uα and

−→
Vβ with α ∈ (−c, c) and β ∈ (−π2 + c, π2 − c), no more

than four tiles can share a vertex and therefore T has the structure of a rectangular tessellation.
For a given

−→
Uα and

−→
Vβ , let

S(α, β) =
{
F : F ∈ T is a parallelogram of angles α, β

}
.

The tessellation T induces a “partition” of R2, S, given by the connected components of S(α, β), with
α ∈ (−c, c), β ∈ (−π2 + c, π2 − c). If B 6= ∅ is a connected component of S(α, β) then B is a union of closures
of tiles of T . If B = R2, then there exists α and β so that all the tiles in T have sides parallel to

−→
Uα and−→

Vβ . In this situation define f = fαβ where fαβ : R2 −→ R2 is the linear map such that fαβ(
−→
Uα) = −→e1 and

fαβ(
−→
Vβ) = −→e2 . Clearly f is an isometry from the 1-skeleton G of T to the 1-skeleton G of T .

In what follows it is assumed that B 6= R2. Since each B 6= ∅ is the union of parallelograms whose
sides have a fixed inclination, then its boundary components are polygonal lines with two possible angles.
Moreover, B is a convex set and therefore it is either a parallelogram (if B bounded) or otherwise, it is a
generalized parallelogram with a side at infinity, that is, a half-strip (if there is one side at infinity), a strip
or a sector (if there are two) or half-plane (if there are three). Indeed, if it is not convex, there is a tile
F ∈ T , F /∈ B, that shares two sides with B and therefore F is a parallelogram with sides parallel to those
of B, thus F ∈ B. The same argument implies that if B′ 6= B are two connected components of S(α, β) and
S(α′, β′) such that B ∩B′ 6= ∅, then B and B′ share a whole side or a vertex.

The function f : T −→ T will be a piecewise linear function defined on the sets B inductively and so that
if B ∈ S(α, β), then

(4.3) f(x)− f(y) = fαβ(x)− fαβ(y) = fαβ(x− y), for all x, y ∈ B,

where fαβ : R2 −→ R2 is the linear map such that fαβ(
−→
Uα) = −→e1 and fαβ(

−→
Vβ) = −→e2 .

To start the induction, let O = (0, 0) and define f(O) = O. Denote by BO one of the sets which contains
O, and let α0 and β0 be so that BO ∈ S(α0, β0). If x ∈ BO then

f(x) := fα0β0(x) = f(O) + fα0β0(x−O).

Notice that, for all x, y ∈ BO, relation (4.3) trivially holds by the linearity of fα0β0 . Let C0 := BO. Assume
now that f is defined and continuous on a connected set Cn which is a finite union of blocks B ∈ S defined
as Cn := {B ∈ S : B ∩ Cn−1 6= ∅} and that (4.3) holds for every set B ∈ Cn. Extend f from Cn onto
Cn+1 = {B ∈ S : B ∩ Cn 6= ∅}, in the following way: for B ∈ Cn+1 \ Cn, B ∈ S(α, β), take any point
P ∈ ∂B ∩ Cn, and define

f(x) := f(P ) + fαβ(x− P ), x ∈ B.
Notice that (4.3) holds for points x, y ∈ B by the linearity of fαβ . We are left to show that the extension is
well defined. Indeed, since no more than four tiles of T can meet at a vertex, and since different B’s share
a whole side, at each vertex exactly four different sets B ∈ S meet. The function f straightens the sides of
each B and places it adjacent to the images of its neighbors. Concretely, if B ∈ Cn+1 \Cn and x ∈ ∂B ∩Cn
then considering x as a point on B ∈ Cn+1 \ Cn,

fB(x) = f(P ) + fαβ(x− P ),

for a point P ∈ ∂B ∩Cn where f(P ) was already defined. If x = P there is nothing to prove. If x 6= P , then
there exists B′ ∈ Cn such that x ∈ ∂B′, thus B and B′ share a side the one with P and x. By (4.3)

fB′(x) = f(P ) + fα′β′(x− P ).

Since both x, P ∈ ∂B′ ∩ ∂B then, fαβ(x− P ) = fα′β′(x− P ) and therefore f is well defined on B ∩ Cn. To
see that is well defined on Cn+1, consider now B,B′ ∈ Cn+1 \ Cn so that B ∩ B′ 6= ∅. Then, there exists a
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point Q ∈ B ∩B′ ∩ Cn and by (4.3)

fB(x) = f(Q) + fαβ(x−Q); fB′(x) = f(Q) + fα′β′(x−Q).

Since f is well defined on Cn, f(Q) is the same in both definitions, and since x,Q ∈ B∩B′ then fαβ(x−Q) =
fα′β′(x−Q). Thus fB(x) = fB′(x) = f(x) and f is well defined on Cn+1. An induction argument gives that
f is continuous in R2.

Notice that, by construction, f maps each B to a rectangle with sides parallel to the axes, and each
F ∈ B to a rectangle inside f(B) also with sides parallel to the axes. Also if B1 and B2 are adjacent to B
on opposite sides (that is, B ∩Bi 6= ∅, i = 1, 2 and B1 ∩B2 = ∅), then f(B1) and f(B2) are also adjacent to
f(B) on opposite sides. Therefore, the function f is both injective and surjective. Finally, since f is linear
on B each tile F ∈ T is mapped to a rectangle and its side lengths are preserved. That is, when restricted
to the 1-skeleton G of T the function f is an isometry. �

The next result is a consequence of the previous theorem.

Theorem 4.2. All p-tessellation graphs of R2 are non-hyperbolic if and only if all tessellation graphs of R2

whose tiles are rectangles are non-hyperbolic.

4.2. Tessellations with infinitely many parallel rays.

Lemma 4.3. Let T be a rectangular tessellation in R2 ≈ C with tiles parallel to the coordinate axes and
with infinitely many vertical rays in the upper-half plane. If F is any tile on the tessellation, L and l are the
lengths of its longest and shortest sides respectively, consider the following two conditions:

(1) There exists an increasing function g : R+ −→ R+ such that for every tile F
L

l
≤ g(dR2(F, iR)),

where iR denotes the imaginary axis.
(2) There exists a constant C so that for every tile F

l dG(F, 0) ≥ C.
If (1) or (2) hold, then for any point x lying on a vertical ray and any other vertical ray γ with Rex < Re γ,

there is a geodesic advancing always rightwards and upwards which joins x to γ.

Remark. Note that any curve advancing always rightwards and upwards is a geodesic.

Proof. Let γ0 and γ1 be any two of these vertical rays, and without loss of generality suppose γ0 lies on the
left of γ1. Let D be defined as D := d(γ0, iR) ≥ 0. Let σ be the geodesic ray starting in x defined as follows:
σ(t) = x+ it for t ∈ [0, t0], where t0 := max{0, infz∈γ1 Im z − Imx}; after that σ advances rightwards when
it is possible and otherwise upwards. Denote by {Fk} a choice of (ordered) tiles with σ ⊂ ∪k∂Fk.

For any tile Fk, let hk denote the length of its horizontal side, and vk the length of its vertical side. The
goal is to show that, in any case, there exists N so that

N∑
k=1

hk ≥ d(γ0, γ1).

Suppose not. Then, there exists C1 so that
∑∞
k=1 hk ≤ C1. It will be shown that this implies that there

exists C2 so that
∑∞
k=1 vk ≤ C2, contradicting the fact that T is a tessellation.

Assume (1) holds. Without loss of generality, we can assume that g(t) ≥ 1 for every t > 0; then
vk ≤ hkg(dR2(Fk, iR)) for all k. Therefore,

∞∑
k=1

vk ≤
∞∑
k=1

hk g(d(Fk, iR)) ≤
∞∑
k=1

hk g

(
k−1∑
n=1

hn +D

)
≤

≤
∞∑
k=1

hk g(C1 +D) ≤ C1 g(C1 +D) := C2 .
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Assume (2) holds. Without loss of generality, by Theorem 3.3 we can assume that supk L(∂Fk) = C0 <∞.
Then,

dG(Fk, 0) ≤ dG(F1, 0) +
k−1∑
j=1

(vj + hj) ≤ dG(F1, 0) +
k−1∑
j=1

C0 ≤ dG(F1, 0) + C0(k − 1).

Thus, by hypothesis,

hk ≥
C

dG(Fk, 0)
≥ C

dG(F1, 0) + C0(k − 1)
,

and therefore one concludes
∞∑
j=1

hk =∞.

�

As it was mentioned above, there are several equivalent definitions of hyperbolicity. For the proof of the
next result, the one involving uniformity in the divergence of the geodesics is used. Namely:

Definition 4.4. The function e : R+ −→ R+ is a divergence function for the geodesic metric space X if for
all x ∈ X, all R ∈ R+ and all geodesics γ = [xy], γ′ = [xz], e satisfies the following condition: if r > 0,
R + r ≤ min{d(x, y), d(x, z)}, d(γ(R), γ′(R)) ≥ e(0) > 0 and α is a path in X \B(x,R+ r) from γ(R + r)
to γ′(R+ r), then L(α) ≥ e(r).

Definition 4.1. Let X be a geodesic metric space. The geodesics diverge in X if there is a divergence
function e(r) such that limr→∞ e(r) =∞.

In [1] and [34] it was shown the following result.

Theorem 4.5. A geodesic metric space X is hyperbolic if and only if geodesics diverge in X.

Theorem 4.6. Let T be a rectangular tessellation of R2 ≈ C with tiles parallel to the coordinate axes and
with infinitely many vertical rays. If F is any tile on the tessellation, L and l are the lengths of its longest
and shortest sides respectively, consider the following two conditions:

(1) There exists an increasing function g : R+ −→ R+ such that for every tile F
L

l
≤ g(dR2(F, iR)),

where iR denotes the imaginary axis.
(2) There exists a constant C so that for every tile F

l dG(F, 0) ≥ C.
If (1) or (2) hold, then the 1-skeleton of T is not hyperbolic.

Remark. Theorem 3.6 shows that the existence of infinitely many vertical rays (or even infinitely many
vertical lines) does not guarantee the non-hyperbolicity of a tessellation graph.

Proof. Seeking for a contradiction assume that the 1-skeleton G of the tessellation T is hyperbolic. Then,
there exists a divergence function, e : R+ −→ R+.

Denote by {γk}k the vertical rays in G. Without loss of generality we can assume that Re γk increases
with k and that limt→∞ Im γk(t) =∞ for every k. Let x ∈ γ0.

Let η be a geodesic starting at x which is the union of horizontal and vertical displacements and such
that η∩γk 6= ∅ for every k ≥ 0 (recall Lemma 4.3). Denote by ηk the segment of η which starts at the point
x and finishes at the first point zk of γk.

Fix n be so that dG(γ0, γn) > e(0). Let R be so that ηn(R) = zn; then dG(γ0(R), ηn(R)) ≥ dG(γ0, ηn) >
e(0).
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Consider a new geodesic µ which starts at γ0(R) and which is the union of horizontal and vertical
displacements, and such that µ∩γn 6= ∅; let us fix wn ∈ µ∩γn and let µn be the segment of µ which finishes
at wn ∈ γn. Denote by ηn,1 and µn,1 the vertical rays starting at zn and wn, respectively.

The curve Γ1 given by the geodesic segments [xγ0(R)] ∪ µn ∪ µn,1 is a geodesic; similarly, the curve Γ2

defined as Γ2 := ηn ∪ ηn,1 is also a geodesic. Note that if wn = Γ1(t0), then Γ1(t) = Γ2(t) for every t ≥ t0,
and dG(Γ1(R),Γ2(R)) > e(0). This contradicts the hyperbolicity assumption. �

5. tessellations with convex tiles

In [9], the authors conjectured that every tessellation graph of R2 with convex tiles is non-hyperbolic.
Our next result shows that in order to prove this conjecture, it suffices to consider tessellation graphs of R2

with triangular tiles.

Theorem 5.1. All tessellation graphs of R2 whose tiles are convex polygons are non-hyperbolic if and only
if all tessellation graphs of R2 whose tiles are triangles are non-hyperbolic.

Proof. Let G be a tessellation graph of R2 whose tiles are convex polygons, and consider its tiles Fn.
If supn diamR2 ∂Fn = ∞, then G is non-hyperbolic and the conclusion holds. Therefore, assume that
c := supn diamR2 ∂Fn <∞. For each n, let Pn,1 and Pn,2 be two vertices of Fn accomplishing the maximum
Euclidean distance between the vertices of Fn. Let us consider a new tessellation graph of R2, G′, obtained
from G by adding in each tile Fn new edges which join each vertex of Fn with Pn,1 by the Euclidean segment
between them. That is, all the tiles of G′ are triangles and therefore, by hypothesis, G′ is non-hyperbolic. We
shall show that the inclusion ι : G −→ G′ is a c-full (1 + π/2, 0)-quasi-isometry and, therefore, by Theorem
2.1, G will also be non-hyperbolic.

Let us consider a tile Fn and its corresponding vertices Pn,1 and Pn,2. Then Fn is contained in the closure
of the Euclidean circle with center Pn,2 and radius equal to the Euclidean distance between Pn,1 and Pn,2.
Without loss of generality one can assume that Pn,2 is the origin of coordinates and Pn,1 is the point with
coordinates (1, 0). Let Pn be a point of ∂Fn; since Fn is a convex polygon, Pn is contained in the right
half-plane, i.e., if (r, θ) are the polar coordinates of Pn, then 0 ≤ r ≤ 1 and −π/2 ≤ θ ≤ π/2. Let P ′n be
the projection of Pn over the circumference {x2 + y2 = 1}. The goal is to compare the Euclidean distance
between Pn and Pn,1 and the sum of the Euclidean distance between Pn and P ′n plus the length of the arc
of the circumference {x2 + y2 = 1} between P ′n and Pn,1. To this end, one needs to bound the function

f(r, θ) :=
θ + 1− r
|1− reiθ|

=
θ + 1− r√

1 + r2 − 2r cos θ
, 0 ≤ r ≤ 1 , −π/2 ≤ θ ≤ π/2 .

Let us consider the functions:

g1(r, θ) :=
θ2

1 + r2 − 2r cos θ
, g2(r, θ) :=

(1− r)2

1 + r2 − 2r cos θ
.

For fixed θ, the function g(r) = 1 + r2 − 2r cos θ attains its minimum value when r = cos θ, therefore
g1(r, θ) ≤ θ2/ sin2 θ. Since the ratio θ/ sin θ increases for θ ∈ [0, π/2],

g1(r, θ) ≤ π2/4 , for 0 ≤ r ≤ 1 , −π/2 ≤ θ ≤ π/2 .
Also, since −2r ≤ −2r cos θ,

g2(r, θ) ≤ 1 , for 0 ≤ r ≤ 1 , −π/2 ≤ θ ≤ π/2 .
Therefore it follows

sup
0≤r≤1, −π/2≤θ≤π/2

f(r, θ) ≤ 1 + π/2 .

The tile Fn is convex, thus

d∂Fn
(Pn, Pn,1) ≤ θ + 1− r ≤ (1 + π/2)

√
1 + r2 − 2r cos θ(5.4)

= (1 + π/2) dR2(Pn, Pn,1) = (1 + π/2) dG′(Pn, Pn,1) .
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For any points P,Q on the graph G, let us consider a geodesic γ in G′ joining P and Q. Let γn = γ ∩ F ′n,
where F ′n is the subgraph of G′ obtained by adding to ∂Fn the new edges joining the corresponding point
Pn,1 with the other vertices of ∂Fn. If γn is contained in ∂Fn, then the length of γn in G′ coincides with its
length in G. If γn is not contained in ∂Fn, then γn = γ′n ∪ γ′′n where γ′n = γn ∩ ∂Fn, γ′′n = γn \ γ′n. Note
that the closure of γ′′n is connected and its endpoints are vertices in ∂Fn ∩ V (G). Let σn be a geodesic in G
joining the endpoints of γ′′n; since Fn is convex, σn is contained in ∂Fn. ¿From (5.4) one gets

dG′(P,Q) = L(γ) =
∑
n

L(γn) =
∑
n

[L(γ′n)+L(γ′′n)] ≥
∑
n

[L(γ′n)+(1+π/2)−1L(σn)] ≥ (1+π/2)−1dG(P,Q) .

In any case one concludes that

(1 + π/2)−1dG(P,Q) ≤ dG′(P,Q) ≤ dG(P,Q) ,

which means that the inclusion ι : G −→ G′ is a (1 + π/2, 0)-quasi-isometric embedding. It is clear that ι is
c-full, with c := supn diamR2 ∂Fn <∞. By hypothesis the graph G′ is non-hyperbolic, and by Theorem 2.1
it follows that G is also non-hyperbolic. �
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