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Abstract. The asymptotic values of a meromorphic function (of any order)
defined in the complex plane form a Suslin-analytic set. Moreover, given an an-

alytic set A∗ we construct a meromorphic function of finite order and minimal
growth having A∗ as its precise set of asymptotic values.

1. Introduction

A nonconstant meromorphic function f(z) in the plane has the asymptotic value
a if there is a curve γ tending to ∞ such that f(z) → a as z → ∞, z ∈ γ. Let As(f)
be the set of asymptotic values of f ; for example, As(ez) = {0,∞}. A classical
result of Mazurkiewicz [13] asserts that As(f) is an analytic set in the sense of
Suslin [3, 16].

Recall that the order of f is given by

λ = lim sup
r→∞

logT (r, f)

log r
,

where T (r, f) is the Nevanlinna characteristic (when f is entire, T (r, f) may be
replaced by logM(r, f), with M(r, f) the maximum modulus function).

Heins [11] showed that given an analytic set A∗, there is a meromorphic function
f with As(f) = A∗ and, if ∞ ∈ A∗, then A∗ = As(f) for some entire function f .
In general, Heins’s function has infinite order. For example, if

(1) A := A∗ \ {∞} = A∗ ∩ C,

and card (A) = ∞ with A bounded, Heins produces a Riemann surface with infin-
itely many ‘logarithmic branch points’ over w = ∞, so by Ahlfors’s theorem λ = ∞.
Note that A, as the intersection of two analytic sets, is analytic.

Eremenko [8] produced meromorphic functions with λ < ∞ having As(f) = Ĉ.
In fact, if ψ(r) is a given increasing unbounded function, he could arrange that

(2) T (r, f) < ψ(r) log2 r as r → ∞,
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and so f even has order 0. The significance of condition (2) is that when ψ(r) =
O(1), Valiron [17] showed that As(f) contains at most one element.

Theorem 1. Given an analytic set A∗ in Ĉ and λ, 0 ≤ λ ≤ ∞, there is a function
f meromorphic in the plane of order λ such that

As(f) = A∗.

Indeed, given an increasing function ψ : R+ → R+, ψ(r) → ∞ as r → ∞, one can
arrange that f satisfy (2).

Although questions of this type have been considered in various contexts for
many years, the definitive result for meromorphic functions requires additional
tools. Our final function f appears only indirectly, although the structure of the
asymptotic curves and the asymptotic values assigned to them is presented explic-
itly. In contrast to [8], a full chapter (§4) is needed to show that no other asymptotic
values occur, and it requires new techniques. In [6] there is an informal outline of
this work, and full details are given here.

Since there are elementary examples with A∗ being empty or having one element,
we assume A∗ has cardinality at least two, and 0,∞ ∈ A∗. A key step is to produce
a meromorphic function g(z) whose growth also satisfies (2), with As(g) = {0,∞},
with data on the curves on which g tends to its asymptotic values. We then follow
ideas going back to Teichmüller and apply quasiconformal compositions to convert
g (via the Beltrami equation) to a meromorphic f having As(f) = A∗ with growth
(2); even here, in §5 we must reformulate the standard definition of analytic set.

This meromorphic function g arises by approximating a specific δ–subharmonic
function U(z). The general form of U is very simple, based on the fact that the
function u(z) := A+Bθ (with θ = arg z) is harmonic, and, if B 6= 0, of least growth.

In §2 we introduce a simple model (called Û here) whose inadequacies then point to
the correct form of U in §2.2. Although our final function is necessarily complicated,
the analysis in §4.3 is based on studying the elementary function w = sin z (despite
that As(sin z) = ∅).

Throughout, C is a finite positive constant which may change from line to line,
unless specified otherwise, although the constants C′ and C0 introduced in (18) and
Theorems 2 and 2′ are absolute, associated to the data {A∗, ψ} of (1) and (2). In
addition to U = {z : ℑz > 0}, S(r) = {|z| = r}, we set B(a, r) = {|z − a| < r},

B(r) = B(0, r),
◦

E the interior of E, E its closure, and a ∧ b = min(a, b).

Acknowledgments. We would like to thank the referee for helpful comments and
suggestions.

2. The function U and its Laplacian

2.1. The toy function Û . We introduce Û(z), a simplified version of U , first for
z in the upper half-plane U . Take 0 = Θ0 < Θ1 < · · · < Θk < Θk+1 = π with data

L > 0, boundary values Û(r) = Û(reiπ) = 0 (r > 0) and constant values Û(reiΘℓ)
on the system of rays arg z = Θℓ, 1 ≤ ℓ ≤ k, in U . Then for r > 0, 0 ≤ θ ≤ π,
extend Û to each sector {Θℓ < arg z < Θℓ+1}, 0 ≤ ℓ ≤ k, by

Û(reiθ) = min{Û(reiΘℓ) + L(θ − Θℓ), Û(reiΘℓ+1 ) + L(Θℓ+1 − θ)}.(3)



ASYMPTOTIC VALUES OF MEROMORPHIC FUNCTIONS OF FINITE ORDER 3

In what follows it will be assumed that data Û(reiθ) are chosen so that (3) defines
Ψℓ+1 ∈ [Θℓ,Θℓ+1], (0 ≤ ℓ ≤ k) as the θ–value at which each pair of linear functions

coincide, and Û has a local maximum in θ at each Ψℓ+1. Thus Û is piecewise-linear
function in θ, vanishes on the real axis (other that at z = 0 where it is not defined),
and monotonic on each θ-interval {Θℓ < θ < Ψℓ+1}, {Ψℓ+1 < θ < Θℓ+1}, 0 ≤ ℓ ≤ k.
Figure 1 shows one possible graph on [0, π] with k = 3.

Ψ
Ψ Ψ1 3 4

2 Θ2 Θ3Θ1
π0

. . . ..
Ψ
. .

Figure 1. Graph of Û(reiθ) for fixed r.

The function Û of (3) is δ–subharmonic in U (i. e., ∆Û is a signed measure
(charge)), zero on ∂U \ {0}, and harmonic off the rays {arg z = Θℓ,Ψℓ}, and so
may be extended to be δ–subharmonic on C \ {0} by

Û(−z) = −Û(z) (z ∈ U),(4)

a rigidity we use henceforth, and without which the approximation arguments (§4)
would collapse ((4) is the key to (37)). It also produces respectively k + 1 and k

rays in the lower half plane on which Û has local minima and maxima (in θ) on

S(r). For any function Û considered here (or, later, U), let Γ0 be the curves which

are the locus of local minima in θ of Û(reiθ) for fixed r > 0, Γ∗ those which are the
locus of local maxima, and

Γ♯ := Γ0 ∪ Γ∗.

Thus for Û , Γ♯ is a network of 4k + 2 rays, with Γ♯ ∩ (R \ {0}) = ∅.

The Laplacian of Û has a special nature (at least if z 6= 0): ∆Û(z) = 0 when
z = reiθ /∈ Γ♯, whereas if z ∈ Γ♯ ∪ S(r), the formula ∆u = urr + r−1ur + r−2uθθ

shows that if z = reiθ, then

∆Û(reiθ) = ±2Lr−2δϕ(θ),

where δϕ(θ) is the Dirac function; the plus sign is used when z ∈ Γ0, and the minus
sign when z ∈ Γ∗ (much as |x|′′ = 2δ0). In summary,

∆Û(reiθ) = 2r−2L

[

∑

θ0∈Γ0

δθ0(θ) −
∑

θ∗∈Γ∗

δθ∗(θ)

]

.(5)

To obtain a meromorphic function ĝ such that log |ĝ(z)| mimics Û(z), we approx-

imate ∆Û by a measure composed of (positive and negative) unit masses, the
principle being that (a) if ∆v is a Borel measure consisting exclusively of unit
point masses, then v = log |ĝ| for some meromorphic function ĝ, and (b) we can
recover the asymptotic behavior of ĝ from graphs as in Figure 1 at points at which
|Û(z) − log |ĝ(z)|| is small. We see later (Lemma 9) that g attains its asymptotic
values on curves in Γ♯, but probably not on all curves.
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2.2. What is wrong with Û? Suppose ĝ is meromorphic with log |ĝ| modelled on

Û using (3) in U and (4) in C \ U . For r > 0, each S(r) ∩ Γ♯ has 2(2k + 1) points,
so a straight forward computation in §7.1 (based on (5)) will show that

T (r, ĝ) = (4k + 2 + o(1)) log2 r (r → ∞).

Thus T (r, ĝ)/ log2 r is bounded and in fact since Û is bounded, we could not expect
0 or ∞ to be asymptotic values of g. To circumvent this, our function U is a ‘limit’
of functions Û as k, L ↑ ∞. Then on each S(r) ∩ U , the graph of U(reiθ) will be as
in Figure 1, but with complexity increasing with r, in a manner that

lim
r→∞

inf
S(r)

U(z) = −∞, lim
r→∞

sup
S(r)

U(z) = +∞.

The meromorphic function g for which log |g| approximates U is obtained by ‘at-

omizing’ ∆U exactly as described in §2.1 for Û .
We partition C into the disk A0 = {|z| < r0} and annuli Ak,

Ak := {rk−1 ≤ |z| < rk} (k ≥ 1),(6)

for a rapidly-increasing sequence {rk} with r0 > 1. The function U is defined on C

so that relative to each Ak it mimics a toy function Û of increasing complexity.
Thus, in place of the constant L in (3), let L(r) ↑ ∞ be a smooth function with

L(r) = 0 on [0, 1], and for is some fixed constant C′, say C′ = 20, suppose that

(7)
limr→∞ r−1L(r) + rL′(r) + r2|L′′(r)| = 0

supr>0 r
−1L(r) + rL′(r) + r2|L′′(r)| ≤ C′.

To satisfy (2), suppose that

(8) L2(r21) = o(ψ(r)) (r → ∞)

(any large number would work in place of 21), and impose the compatability con-
ditions

(9) log(rk+1/rk) > (k + L0)L(rk+1) and L(rk) > (k + 1)3 (k ≥ 0),

for some value L0 large enough (for example taking L0 > ((5/4)2/3 − 1)−1 gives
constant 10 in (31))
Comment. Conditions such as (7) and, later, (15) play an important role. A helpful
way to visualize them is to choose, for each k, suitable numbers Lk and δk > 0.
Then we may arrange that L(rk) − L(rk−1) = Lk with sup[rk−1,rk] rL

′(r) < δk by

increasing the ratio rk/rk−1 as needed. In turn, these conditions are compatible
with sup[rk−1,rk] r

2|L′′(r)| being small, increasing rk/rk−1 if necessary.
Other restrictions will be given later. They will be of two types. Often the ratios

{rk/rk−1} will increase, but not the values {L(rk)}, so that (7) – (9) remain valid.
In addition, §2.5 introduces additional conditions, many of which might be avoided
at the expense of complicating several arguments.

2.3. Graph of U. Our fundamental function U is modelled on (3) in each Ak. For
z ∈ U ∩ A0, first set

U(reiθ) = L(r)min{θ, π − θ} (0 ≤ r ≤ r0, 0 ≤ θ ≤ π),(10)

and then use (4) on A0 \U . Since L(r) ≡ 0 on [0, 1], U(z) ≡ 0 for z ∈ B(1). Define,

U(r0e
iθ) = L(r0)(min{θ, π − θ}) (0 ≤ θ ≤ π)
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on B(r0) ∩ U = ∂A0 ∩ U . When θ = π/2, θ = π − θ so that Γ♯ ∩ (U ∩ B(r0)) =
Γ∗ ∩ (U ∩ B(r0)) = {reiπ/2, 1 ≤ r ≤ r0}, and z0 = ir0 will be the initial point of
Γ0 ∩ U .

Since U = 0 on R, and U is odd (see (4)) we need only define U on U∩{|z| ≥ r0}.
In fact, relative to Ak, k ≥ 1, U will depend on how it is specified on the arcs of
Γ0 ∩ (Ak ∩U). Hence (see Figure 1 or Figure 2), for each k ≥ 1, mark k arguments
Θℓ on each of the two arcs of ∂Ak ∩ U augmented by Θ0 = 0,Θk+1 = π, with

(11)
0 = Θ−

0 (k) < Θ−
1 (k) ≤ · · · ≤ Θ−

k (k) < Θ−
k+1(k) = π ∈ S(rk−1),

0 = Θ+
0 (k) < Θ+

1 (k) < · · · < Θ+
k (k) < Θ+

k+1(k) = π ∈ S(rk).

Relative to Ak ∩ U , the k arcs of Γ0 joining its boundary components connect

rk−1e
iΘ−

ℓ
(k) to rke

iΘ+
ℓ

(k), 1 ≤ ℓ ≤ k. Since S(rk) = ∂Ak ∩ ∂Ak+1, we require for
k ≥ 2 that the sets

{Θ−
ℓ (k)} = {Θ+

ℓ (k − 1)},(12)

which with the second line of (11) forces Θ−
ℓ (k) = Θ−

ℓ+1(k) for (at least) one 1 ≤
ℓ = ℓ(k) ≤ k; see (26) and Figure 2. (Notice the strict inequalities of the first line
of (11)).

Now suppose some given values are assigned to each of the points

U(rpe
iΘ+

ℓ
(k)), U(rpe

iΘ−

ℓ
(k)) (p ∈ {k − 1, k}, 0 ≤ ℓ ≤ k + 1)(13)

in ∂Ak ∩ U so that whenever z ∈ S(rk) has representations z = rke
iΘ+

ℓ
(k) and

z = rke
iΘ−

ℓ′
(k+1) from (11), then

U(rke
iΘ+

ℓ
(k)) = U(rke

iΘ−

ℓ′
(k+1)),

thus defining U unambiguously on Γ0 ∩ (S(rk) ∩ U).
These boundary values (13) will be made explicit in §5, (59)–(61), and depend

only on the data A (the analytic set) and ψ (see (1), (2) and Theorem 1). This
means that we may choose {Λk} ↑ ∞ depending only on data A and ψ, and arrange
ab initio that

(14)

maxℓ |U(rke
iΘℓ)| <

7

k
L(rk) (k ≥ 1),

maxℓ

∣

∣U(rke
iΘℓ(rk)) − U(rk−1e

iΘℓ(rk−1))
∣

∣ < Λk,

Λk

log(rk/rk−1)
ց 0, (k → ∞)

if the ratios rk/rk−1 (k ≥ 1) are chosen large enough.
To extend U to Ak given its boundary values on Γ0 ∩ (Ak ∩ U), for each r ∈

(rk−1, rk) set Θ0(r) = 0, Θk+1(r) = π, and if 1 ≤ ℓ ≤ k, select arguments Θℓ(r)
with Θℓ(r) < Θℓ+1(r), so that as r ↓ rk−1, Θℓ(r) → Θ−

ℓ (k) and as r ↑ rk, Θℓ(r) →
Θ+

ℓ (k), while uniformly in ℓ

r|Θ′
ℓ(r)| + r2|Θ′′

ℓ (r)| < 2L(rk)−7/6 (rk−1 ≤ r ≤ rk),(15)

so that Θℓ(r) is continuous at r ∈ [rk−1, rk]. The estimate (15) can be guaranteed
if the ratios rk/rk−1 (k ≥ 1) are sufficiently large. Then, (recall (13)), we define U
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on each {reiΘℓ(r), rk−1 < r < rk} as

(16)
U(reiΘℓ(r)) = U(rk−1e

iΘℓ(rk−1))

+
log(r/rk−1)

log(rk/rk−1)

(

U(rke
iΘℓ(rk)) − U(rk−1e

iΘℓ(rk−1))
)

,

and use (3), (4) to extend U to all of Ak (note from (12) that U is continuous). We

have already set z0 = ir0 = r0e
iΘ−

1 (1), now viewing z0 as a point of Γ0 ∩ ∂A1.
As noted in §2.1, (3) also yields functions Ψℓ(r), rk−1 ≤ r ≤ rk, 1 ≤ ℓ ≤ k + 2

with U(reiΨℓ(r)) a local maximum in each S(r) ∩ U .

2.4. On ∆U . Further progress depends on analyzing the charge ∆U .

Lemma 1. Let U be continuous in C and |∂U/∂θ| = L(r) when z ∈ (S(r)∩Ak)\Γ♯

for k ≥ 0.
Let the arcs of each Ak ∩ Γ♯ := {reiΘℓ(r), reiΨℓ(r)}, rk−1 ≤ r ≤ rk satisfy (15)

and U be assigned on Ak using its values on Γ0 ∩ (∂Ak ∩ U) as in (3), (4), (13)
and (16). Finally, let δa(θ) be the Dirac function (point mass) supported at θ = a.

Then if k ≥ 0 and z ∈ Ak, ∆U(z) may be represented

(17) ∆U(reiθ) = 2r−2L(r)





∑

θ0∈Γ0

δθ0(θ) −
∑

θ∗∈Γ∗

δθ∗(θ)



 +H(r, θ) +HA(r, θ).

In (17), H is differentiable,

(18) r2|H(r, θ)| ≤ C′, lim
r→∞

sup
θ
{r2|H(r, θ)|} = 0.

In addition, HA(r, θ) has support on ∪∂Ak, with HA(rk, θ) = εk(θ) its density
with respect to the Lebesgue measure on S(rk), where

sup
rkeiθ∈S(rk)

|εk(θ)| = o(1) (k → ∞).(19)

Proof. Since U = 0 for {|z| < 1}, (3) and (4) show that ∆U = 0 on the real axis
(including at z = 0). When z ∈ Γ♯ ∩ Ak, (5) produces the bracketed term on the
right side of (17) which is the main contribution to ∆U .

We first study the primary error termH(r, θ) in (17). Thus suppose that z ∈ (U∩
◦

Ak) \Γ♯. As in §2.1, we compute using polar coordinates. Assume for concreteness
that

U(reiθ) = U(reiΘℓ(r)) + L(r)(θ − Θℓ(r)),(20)

(see (3)). Then ∆U(reiΘℓ(r)) = 0 (recall (16)). Hence

∆U(reiΘℓ(r)) = L′′(r)(θ − Θℓ(r)) − 2L′(r)Θ′
ℓ(r) − L(r)Θ′′

ℓ (r)
+r−1[L′(r)(θ − Θℓ(r)) − L(r)Θ′

ℓ(r)] := H(r, θ).

(with a change of sign when U(reiθ) = U(reiΘℓ(r)) − L(r)(θ − Θℓ(r))). Moreover,
since |θ−Θℓ(r)| < π, we obtain (18) for z ∈ U by estimating r2H(r, θ) using (7), (9)
and (15). For example, if rk−1 < r < rk then r2(r−1L(r)|Θ′

ℓ(r)|) = L(r)r|Θ′
ℓ(r)| ≤

L(rk)−1/6 = o(1) and r2L′(r)Θ′
ℓ(r) = O(rL′(r)L(r

−7/6
k )) = o(1) as k → ∞. The

second item of (18) follows again from (4), (7), (9) and (15).
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It remains to consider (19), so let A(k, η) = {z : ||z|− rk| < η}. Let ρ < η/2 and
for z ∈ A(k, η/2) we compute the Laplacian using the formula

∆U(z) = lim
ρ→0

1

4πρ2

[

1

2π

∫ 2π

0

(U(z + ρeiφ) − U(z)) dφ

]

:= lim
ρ→0

1

4πρ2
Uρ(z),

with (for the moment) z /∈ Γ♯. Since Uρ is a Lipschitz function for each ρ > 0, (19)
is a consequence of the estimate (uniform in ρ for z ∈ A(k, η/2))

lim
ρ→0

∣

∣

∣

∣

∣

ρ−2

∫

A(k,η)

Uρ(z) rdrdθ

∣

∣

∣

∣

∣

= o(1), (k → ∞).(21)

To show (21), we follow Baernstein [2] and write, for z = reiθ, |z + ρeiφ| =
r(φ), arg(z + ρeiφ) = α(φ), so that reiθ + ρei(θ+φ) = r(φ)ei(θ+α(φ)). Since z0 /∈
Γ♯, we may assume that U is given by (20) near z. Note that r(φ) = r(−φ),
(α(φ) + α(−φ)) = 0, so on collecting φ,−φ, the integrand in this computation of
∆U becomes

(22)

U(r(φ)ei(θ+α(φ))) + U(r(φ)ei(θ−α(φ))) − 2U(reiθ)

= 2
[

U(r(φ)eiΘℓ(r(φ))) + L(r(φ))(θ + ((α(φ) + α(−φ))/2) − Θℓ(r(φ)))
−U(reiθ)

]

= 2
[

(U(r(φ)eiΘℓ(r(φ))) − U(reiΘℓ(r))) + (U(reiΘℓ(r)) − U(reiθ))
+(L(r(φ))(θ − Θℓ(r(φ)))] := I1 + I2 + I3.

For concreteness take r = |z| > rk, z ∈ A(k, η/2). Then if |φ| < π/2, both z
and r(φ)ei(θ+α(φ)) are in Ak+1, and so (16) applies. The main contribution to (22)
will be from I1. Our assumptions on z and α(φ) with (16) imply that

1
2 |I1| = |U(r(φ)eiΘℓ(r(φ))) − U(reiΘℓ(r))|

=

∣

∣

∣

∣

log(r(φ)/r)

log(rk+1/rk)

∣

∣

∣

∣

(

U(rk+1e
iΘℓ(rk+1)) − U(rke

iΘℓ(rk))
)

.

Hence by (14)

|I1| ≤ 2
Λk+1

log(rk+1/rk)
log(r(φ)/r) ≤ C

Λk+1

log(rk+1/rk)
·
ρ

rk
,

where we have used that z ∈ A(k, η/2), r(φ) > rk and |r − r(φ)| < ρ to obtain the
last inequality. If |φ− π| < π/2 and rk + ρ < r, the same estimate holds for I1.

When rk < r < rk + ρ, the point r(φ)ei(θ+α(φ)) will be either in Ak or Ak−1.
In the former case, we repeat what was just done. Otherwise, the index ℓ may
change in the sense that U(r(φ)ei(θ+α(φ))) may be given by (20) using Θℓ′(r(φ))
with (perhaps) ℓ′ 6= ℓ if r(φ)ei(θ+α(φ)) ∈ Ak−1. However, since

U(r(φ)eiΘℓ′ (r(φ))) − U(reiΘℓ(r)) = (U(r(φ)eiΘℓ′ (r(φ))) − U(rke
iΘℓ(rk)))

+(U(rke
iΘℓ(rk)) − U(reiΘℓ(r))),

we still may arrange that

1

2
|I1| ≤

Λk

log(rk/rk−1)
log(rk/r(φ)) +

Λk+1

log(rk+1/rk)
log(r/rk) ≤ C

Λk

log(rk/rk−1)
·
ρ

rk
,

since r(φ) < rk < r, r − r(φ) < ρ, and (14).
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Analogous estimates apply when rk−η < r < rk. We integrate this over A(k, η),
whose area is O(rkη), and recall that ρ < η/2. Hence

∫

A(k,η)

ρ−2|I1|rdrdθ ≤ C
Λk

log(rk/rk−1)
·
η

ρ
.

As for I2 and I3 from (22), (16) and (20) show that

1
2 (I2 + I3) = U(rke

iΘℓ(rk)) − U(reiθ) + L(r(φ))(θ − Θℓ(r(φ)))
= −L(r)(θ − Θℓ(r)) + L(r(φ))(θ − Θℓ(r(φ))
= (L(r(φ)) − L(r))(θ − Θℓ(r(φ)) + L(r)(Θℓ(r) − Θℓ(r(φ)).

The estimates of the first derivatives of L(r), Θℓ(r) from (7) and (15) are exploited
in a manner similar to that used in estimating I1, and so

∫

A(k,η)

ρ−2(|I2| + |I3|) rdrdθ =
η

ρ
o(1), (k → ∞)

yielding the first estimate of (19).
(This argument also shows that the contribution to (19) from the O(k) points

of S(r) ∩ Γ♯ can also be absorbed in this type of estimate.) �

2.5. Refined properties of U . That w = a be an asymptotic value of f on a
curve γ requires information for all large r = |z| ∈ γ, and one needs equally precise
information on a significant portion of the plane to ensure that if a /∈ A∗, then a
cannot be an asymptotic value. To surmount problems arising from the inevitable
exceptional sets which arise in approximation theory, we impose conditions on the
functions {Θℓ} of (15). Some of these might be weakened or perhaps avoided at
the price of complicating the proofs of the key Theorem 3 (§3.6) and Lemma 8.

For each k ≥ 1, define ρk−1 by

log(ρk−1/rk−1) = L1/4(rk−1),(23)

so that S(ρk−1) ⊂ Ak, while (9) shows that ρk−1/rk−1 = o(rk/rk−1). Note from
the first term in (7) and (23) that L(rk−1) ≍ L(ρk−1) :

L(rk−1) ≤ L(ρk−1) = L(rk−1) + o(1) log(ρk−1/rk−1) = (1 + o(1))L(rk−1).

In addition, we define r′k, r
′′
k , where ρk−1 < r′k < r′′k < rk so that

ρk−1 = o(r′k); r′k = o(r′′k ) r′′k = o(rk).

In particular, let

log(r′k/ρk−1) = L1/3(rk−1),

and set

K =
⋃

k

{r′k ≤ |z| ≤ r′′k},(24)

the core of ∪Ak.
Note from (10) that U is known on A0, and by (11) and (4)

card
(

S(rk) ∩ Ak+1 ∩ Γ0
)

= card
(

S(rk) ∩ Ak ∩ Γ0
)

+ 2 (k ≥ 1).

Thus the condition (12) will be satisfied by requiring that two arcs {Θℓ(r)} in
Ak emerge from a common point of S(rk) ∩ U (k ≥ 2). Hence {Γ0} undergoes a
bifurcation on S(rk) ∩ U (in turn creating another bifurcation of Γ∗ on S(rk) \ U).
The bifurcation points ±zk ∈ S(rk) are called nodes of Γ0, so that Γ0 ∩ U is a
dyadic tree. In §5 we identify the branches of Γ0 ∩ U in terms of the nodes {zk}
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through which they pass. As an arc γ ⊂ Γ0 recedes, its index Θℓ relative to Ak will
also depend on k (see Figure 2 which represents Γ♯ in U ∩ {r4 < |z| < r8}) . On
the outer boundary S(rk) of each ∂Ak ∩ U , the arguments Θ+

ℓ in (11) are chosen
to have the form

Θ+
ℓ (k) =

ℓ

k + 1
π (0 ≤ ℓ ≤ k + 1).(25)

We then locate the bifurcation node zk ∈ S(rk), now viewed as the inner bound-
ary of Ak+1 ∩ U so that if k = 2n + p, 0 ≤ p ≤ 2n − 1, then

(26)

Θ−
ℓ (k) =

ℓ

k + 1
π for 1 ≤ ℓ ≤ 2p+ 1,

Θ−
ℓ (k) =

ℓ− 1

k + 1
π for 2p+ 2 ≤ ℓ ≤ k + 2;

thus Θ−
2p+1(k) = Θ−

2p+2(k), guaranteeing (11) and (12). We then use (13)–(16) with

(3) and (4) to extend U to C ∩ {|z| > r0} = ∪k≥1Ak.

In Figure 2 (not to scale) Γ0 is indicated with solid lines and Γ∗ with dashed
lines. The symbols Θℓ(k) are labeling the nodes with argument Θℓ(k).

.

.

.
.

                                                                    

                                          

5A

θ7
(8)

7z

8S(r )

θ (7)
5

6z θ5
(6)

(6)
4θ

z5θ
3
(5)

θ(5)
1

z4

S(r )4

.z7

Figure 2. The trace of Γ♯.

With ρk−1 from (23), construct Γ0 ∩Ak with initial conditions (26) and (consis-
tent with (7))

(27)

rΘ′
2p+1(r) = −rΘ′

2p+2(r) = L−3/4(rk−1) (rk−1 ≤ r ≤ ρk−1)

and if ℓ 6= 2p+ 1, 2p+ 2,

Θ′
ℓ = 0 (rk−1 < r < ρk−1),

(where ′ is differentiation with respect to r) as illustrated in Figure 2.
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It follows using (27), (23) and the first condition of (9) that

|Θ2p+1(ρk−1) − Θ2p+1(rk−1)| = L−3/4(rk−1) log

(

ρk−1

rk−1

)

= (1 + o(1))L−1/2(ρk−1).

Moreover, since (25) and the second property of (7) guarantee that on S(rk) distinct
points of Γ0 have angular separation

π/(k + 1) > πL(rk)−1/3 > π(1 + o(1))L(ρk)−1/3,

the second line of (27) will show that if reiτ(r), reiτ ′(r) ∈ Γ0 ∩ (S(r) ∩ U) then

(28) |τ(r) − τ ′(r)| > L−2/9(r) (ρk < r < rk+1).

On recalling (3) and (15), it is not difficult to see that (28) then holds as well on
Γ♯ ∩ S(r) when rk ≤ r ≤ rk+1 except for Θ2p and Θ2p+1.

Finally, in the core {r′k < |z| < r′′k} of each Ak (recall (24)) we require that

Θ′
ℓ(r) = 0 (1 ≤ ℓ ≤ k + 1, r′k < r < rk).(29)

3. Approximation by a meromorphic function

The idea that the behaviour of a general δ-subharmonic function U can be cap-
tured by another of the special form log |g| with g meromorphic goes back several
decades (a survey is in [6], additional interesting references are [18], [12], [9], among
others).

In our situation the error | log |g(z)| − U(z)| must be carefully controlled which
is formalized in the next theorem.

Theorem 2. Let L(r) be a function which satisfies (7), let the system {Ak}k≥0

satisfy (6) and (9), where (increasing each of the ratios rk+1/rk if necessary)
∫ rk+1

rk

L(t)t−1dt is an integer,(30)

and let U be constructed relative to the system {Ak} so that U(z) = 0 for z real and
z ∈ B(0, 1), U is assigned to the network Γ0 ∩U as in (16) so that U is continuous
relative to Γ0 ∩ U , and then extended to each Ak using (3) and (4).

Then there is a meromorphic function g(z) and an absolute constant C0 > 0
such that if

(31) E =
⋃

B(ζp, |ζp|/10L(|ζp|))

with {ζp} the zeros and poles of g, then

(a) meas(E ∩ S(r)) = o(r) (r → ∞);
(b) if z /∈ E then

∣

∣ log |g(z)| − U(z)
∣

∣ < C0;
(c) if E′ is a component which contains one point-mass ζp, then for sufficiently

large r

log |g(z)| ≤ U(z) + C0, z ∈ E′, ζp zero of g,

log |g(z)| ≥ U(z) − C0, z ∈ E′, ζp pole of g.

The behavior of g on components E′ of E which are not disks is more delicate,
and requires the additional structure introduced in §2.5: see §3.6.
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Results such as Theorem 2 depend on analysis of the (signed) measure ∆U , so
we prove Theorem 2 as formulated in Theorem 2′. Write ∆U from Lemma 1 as

(32) ∆U = µ− µ∗ + µe,

with support on {|z| ≥ 1}, where where µ ≥ 0 is supported on Γ0, µ∗ ≥ 0 on Γ∗

and dµe(z) = H(r, θ) rdrdθ +HA(r, θ) dθ, with HA supported on ∪kAk. Since g is
meromorphic, ∆ log |g| is a network of unit masses, so that ∆ log |g| = σ− σ∗ + σe,
each summand corresponding to a term of ∆U .

By construction, each component of Γ♯ ∩ Ak is an arc joining the boundary
components of Ak, relative to which ∆U becomes one of the terms in the first two
summands of (17). Using (30), each component γ is the union of mutually disjoint
arcs {J} of ‘measure’ ±1. Since L vanishes on [0, 1], µ+µ∗+µe vanishes on B(0, 1),
and (4) shows that

(33) µ(S) = µ∗(−S) for all measureable setsS.

Let J ⊂ Γ0 such that µ(J) = 1 and recall that the density dµ is given by (17), that
is dµ ∼ (2L(r)/r)dr. Then conditions (7), (9) on the growth of L(r) and (15), (27)
and (29) (that show that J is almost a radial segment) imply that

(34) J ⊂

{

r ≤ |z| ≤ r

(

1 +
1

L(r)

)}

and
r

3L(r)
≤ |J | ≤

3r

2L(r)
,

for some r = r(J) > r0. The same estimates hold when J ∈ Γ∗ with µ∗(J) = 1.

3.1. A reformulation. The logarithmic potential of a signed measure Σ of com-
pact support is defined as

P (z,Σ) =

∫

C

log |1 − z/ζ|dΣ(ζ),

which is δ-subharmonic (subharmonic when Σ ≥ 0). Our measures do not have
compact support which means the formula has to be carefully interpreted, which
we achieve by appropriate pairing of measures. We recall measures µ, µ∗ and (the
signed measure) µe in (32) and follow a standard procedure (c.f. [6]) to “atomize”
the first two measures obtaining σ and σ∗. This leads to the expressions:

G(z) := U(z) + V (z),

where
V (z) := VΓ♯(z) + Ve(z),
VΓ♯(z) := P (z, σ − µ) − P (z, σ∗ − µ∗),
Ve(z) := −P (z, µe).

We will show directly that V is well-defined: each of the two summands defining
VΓ♯ converges, while not only does Ve converge, but Ve(z) = o(1). Thus there is
a meromorphic function in the plane g with G(z) = log |g(z)|. Our estimates will
show that for most z, |G(z)| is small, where we apply techniques such as in [12],
[14] or [6].

Recall that Γ♯ ∩ Ak is a union of intervals J and J∗ so that |µ(J)| = 1 and
µ∗(J∗) = 1. To construct σ we consider an interval J ⊂ γ ⊂ Γ0∩Ak, with µ(J) = 1.
Following [18] we place the associated point mass at its centroid ζJ ,

(35)

∫

J

(ζ − ζJ )dµ(ζ) = 0,
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so that δζJ
is a term of σ. The same principle yields {ζJ∗} ⊂ Γ∗ ∩ Ak using µ∗.

Notice from (33) and (35) that the {ζJ , ζJ∗} may be put into correspondence with

(36) ζJ∗ = −ζJ , when J∗ = −J.

The measure µe does not need atomization since it is very small. The analysis of
Ve is presented in §3.3.

We thus restate the assertions of Theorem 2 in terms of these approximating
measures. To simplify notation, we often let I be a generic choice of J or J∗.
In Theorem 2′, the centers {ζp} of (31) are the {ζJ , ζJ∗}. Assertion (a) in these
theorems is equivalent, but assertions (b) and (d) of Theorem 2′ correspond to (b)
in Theorem 2, and (c) and (d) in Theorem 2′ to (c) in Theorem 2.

Theorem 2′. Under the assumptions of Theorem 2, let {ζI} be the centroids of
the intervals I, where I ∈ Γ0 or Γ∗. Let E be as in (31) and ζp = ζI . Then

(a) meas(E ∩ S(r)) = o(r), as r → ∞,
(b) |VΓ♯(z)| < C0 (z /∈ E),
(c) if z ∈ B(ζI , |ζI |/5L(|ζI |)) and B(ζI , |ζI |/5L(|ζI |)) is a component of E, then

VΓ♯(z) ≤ C0, if ζI a zero of g,
VΓ♯(z) ≥ −C0 if ζI a pole of g,

(d) |Ve(z)| = o(1) (z → ∞).

Note, since L(r) ↑ ∞, that (28) and (34) imply that all ballsB(zp, |zp|/5L(|zp|) ⊂
K (from (24)) are disjoint, and so (23) implies that (d) holds in most of C. The
situation in C \ K is settled in Theorem 3 in §3.6.

3.2. Proof of Theorem 2′(a). The description of Γ♯ in §2 implies that the num-
ber of points in S(r) ∩ Γ♯ for r ∈ Ak is at most 4k + 2, and the angular measure
of each ball in E is O(1/L(r)). Thus the total angular measure of E ∩ S(r) for
rk ≤ r ≤ rk+1 is O(k/L(r)), so (9) gives

meas(E ∩ S(r)) = O
(

rL−1+1/3(r)
)

= o(r) r → ∞.

3.3. Proof of Theorem 2′(d). It is simple to estimate Ve from (3.1). That µe is
uniformly small follows from (18) and the first of (19). Hence assertion (d) follows
from the next lemma.

Lemma 2. The function Ve(z) satisfies

|Ve(z)| =

∣

∣

∣

∣

∫

C

log |1 − z/ζ|dµe(ζ)

∣

∣

∣

∣

= o(1) (|z| → ∞).

Proof. First consider the contribution to dµe from dµ1
e := H(r, θ) rdrdθ. Since (4)

implies that H(r, θ) = −H(r, θ + π) (0 ≤ θ < π).
∫

C

log |1 − z/ζ|dµ1
e(ζ) =

∫

C

(log |1 − z/ζ| − log |1 + z/ζ|)d(µ1
e)

+(ζ),
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where (µ1
e)

+(ζ) is the positive part of µ1
e(ζ). Standard estimates then yield that

(37)

∣

∣

∣

∣

log

∣

∣

∣

∣

1 − z/ζ

1 + z/ζ

∣

∣

∣

∣

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

z

ζ

∣

∣

∣

∣

= C
r

|ζ|
(2r < |ζ|),

∣

∣

∣

∣

log

∣

∣

∣

∣

1 − z/ζ

1 + z/ζ

∣

∣

∣

∣

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

ζ

z

∣

∣

∣

∣

= C
|ζ|

r
(2|ζ| < r).

By (18), given ǫ > 0 there exists rǫ with r2H < ǫ for r > rǫ. Then when r > rǫ/ǫ,
∫

{|ζ|>2r}

∣

∣

∣

∣

log

∣

∣

∣

∣

1 − z/ζ

1 + z/ζ

∣

∣

∣

∣

∣

∣

∣

∣

d(µ1
e)

+(ζ) +

∫

{|ζ|<r/2}

∣

∣

∣

∣

log

∣

∣

∣

∣

1 − z/ζ

1 + z/ζ

∣

∣

∣

∣

∣

∣

∣

∣

d(µ1
e)

+(ζ)

≤ Cǫr

∫ ∞

2r

1

t2
dt+

C

r

∫ r(ǫ)

0

dt+ C
ǫ

r

∫ r/2

r(ǫ)

dt ≤ Cǫ.

Now dµe is smooth and satisfies (18), and so
∫

{| log |ζ/z||<log 2}

log |1 − z/ζ| d(µ1
e)

+(ζ) = o(1) (r → ∞).

Estimate (19) and the fact that the sequence {rk}k≥0 is rapidly increasing give
the same bound for the contribution to dµe from HA(r, θ), with HA from Lemma
1. �

3.4. Proof of Theorem 2′(b). Controlling VΓ♯ is more complicated and needs
several lemmas. The first estimates a single term, with z not too near the centroid,
based on work from [7].

Lemma 3. Let J ∈ Γ0 be an interval of µ-measure one. Let J∗ = −J ∈ Γ∗ and ζJ
and ζJ∗ the associated centroids as in (35). Denote by J the ordered pair J = (J, J∗)
and define

(38) hJ(z) :=

∫

J

log

∣

∣

∣

∣

1 − z/ζJ
1 − z/ζ

∣

∣

∣

∣

dµ(ζ) −

∫

J∗

log

∣

∣

∣

∣

1 − z/ζJ∗

1 − z/ζ

∣

∣

∣

∣

dµ∗(ζ).

Then if

(39) d(z, ζJ ∪ ζJ∗) ≥ 3
|ζJ |

L(|ζJ |)
,

there exists an absolute constant C > 0 with

|hJ(z)| ≤ C

(

|J |

|z − ζJ | ∧ |z − ζJ∗ |

)2

.

Proof. Let B = B(ζJ , δ/2) be the smallest disk centered at ζJ which contains J ,
so that by (34), δ ≤ 2|ζJ |/L(|ζJ |). Then, by (39), z /∈ B(ζJ , δ), so we expand
the function log((ζ − z)/(ζ + z)) about ζJ , with remainder of second order. The
first-order term drops out due to (35), and thus

|hJ(z)| =

∣

∣

∣

∣

∫

J

log

∣

∣

∣

∣

ζ − z

ζ + z

∣

∣

∣

∣

− log

∣

∣

∣

∣

ζJ − z

ζJ + z

∣

∣

∣

∣

dµ(ζ)

∣

∣

∣

∣

≤ CmaxB

∣

∣

∣

∣

1

(ζ + z)2
−

1

(ζ − z)2

∣

∣

∣

∣

∫

J

|ζ − ζJ |
2dµ(ζ).

However |ζ − ζJ | ≤ |J |, µ(J) = 1 and the factor with the max is comparable to
(|z − ζJ | ∧ |z − ζJ∗|)

−2. This proves the lemma. �



14 A. CANTÓN, D. DRASIN AND A. GRANADOS

Lemma 3 leads to the main estimate.

Lemma 4. Let z ∈ C satisfy (39) for all intervals J , J∗ in Γ♯ (so by (31) z /∈ E),
let J = (J, J∗) and, using the notation in (38), write

VΓ♯(z) =
∑

J

hJ(z).

Then there exists an absolute constant C so that

|VΓ♯(z)| ≤
∑

J

|hJ(z)| ≤ C.

Proof. Since we are assuming (39) holds for all J, J∗, let J = (J, J∗) and apply
Lemma 3 to each term in the sum. Given r = |z|, divide the sum into three groups:
I1 contains the pairs of intervals that are in B(rL−3(r)), I2 those pairs of intervals
with null intersection with B(rL3(r)), and I3 the others.

The estimate for I1 follows routinely from grouping the pairs of intervals as in
the proof of Lemma 3 and using (37) combined with (17), (36) and the fact (cf.
(9)) that O(L1/3(r)) points of Γ♯ meet each S(r):

∑

J⊂I1

|hJ(z)| =
∑

J⊂B(rL−3(r))

∣

∣

∣

∣

∫

J

log

∣

∣

∣

∣

1 − z/ζJ
1 + z/ζJ

∣

∣

∣

∣

− log

∣

∣

∣

∣

1 − z/ζ

1 + z/ζ

∣

∣

∣

∣

dµ(ζ)

∣

∣

∣

∣

≤ C

∫ 2rL−3(r)

0

t

r
L1/3(t)

L(t)

t
dt < CL−8/3(r) = o(1) (r → ∞).

Next, consider the pairs of intervals in I2, and choose m ∈ N with 2m ≤ L3(r) <
2m+1: m ∼ C logL3(r). For n ≥ m, (9) shows that the annulus A(n) := {2nr ≤

|ζ| < 2n+1r} has O(L1/3(2nr)) arcs of Γ♯ joining its boundary components, each arc
of which is the union of O(L(2nL(r))) intervals of unit µ-mass. The first estimate
(37) gives for each term

∣

∣

∣

∣

∫

J

log

∣

∣

∣

∣

ζ − z

ζ + z

∣

∣

∣

∣

− log

∣

∣

∣

∣

ζJ − z

ζJ + z

∣

∣

∣

∣

dµ(ζ)

∣

∣

∣

∣

≤ Cr

∫

J

1

|ζ|
dµ(ζ),

C > 0 an absolute constant and J ⊂ {z : |z| > rL3(r)}. The essential condition (7)
yields that

L(2nr) = L(r) + o(n).

Since µ(J) = 1, (9) and 2m > CL3(r), we have

∑

J⊂{|z|>rL3(r)}

r

∫

J

1

|ζ|
dµ(ζ) ≤ C

∑

n≥m

L1/3(2nr)L(2nr)

2n
< C

L4/3(2mr)

2m

≤ C
(L(r) + o(m))4/3

2m
≤

C

L(r)
= o(1) (r → ∞)

(the ratio of successive terms in the series is 1
2 + o(1)).

Consider now the pairs of intervals in I3. All these intervals intersect the annulus
{rL−3(r) < |ζ| < rL3(r)}, and (39) holds for each of them. These pairs of intervals
are apportioned into two groups. Take as I ′

3 those pairs such that both intervals
are in the core B := {r/2 < |ζ| < 2r}; those pairs remaining are in I∗

3 .
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First consider the contribution from I∗
3 , intervals in annuli A(n) with n ≤ −1

or 1 ≤ n < C logL3(r) = C logL(r). When n < −1 and J ⊂ A(n), then |J | <
C2nr/L(2nr) and |z − ζJ | ∧ |z − ζJ∗ | > (1/2 + o(1))r > r/4, so that

|J |

|z − ζJ | ∧ |z − ζJ∗ |
≤

C2nr

rL(2nr)
=

C2n

L(2nr)
.

There are O(L(2nr)) intervals J on each component of Γ♯ ∩ A(n) with n ≤ −1,

and (9) again shows there are most CL1/3(2nr) branches in A(n). Thus

∑

n<−1

∑

J⊂A(n)

(

|J |

|z − ζJ | ∧ |z − ζJ∗ |

)2

≤ C
∑

n<−1

22n

L(2nr)
L1/3(2nr)

< C
∑

n<−1

L−2/3(2nr)22n = o(1) (r → ∞).

When 1 ≤ n ≤ C logL(r) and J ⊂ A(n), |z − ζJ | ∧ |z − ζJ∗ | ≥ C2nr, and so

|J |

|z − ζJ | ∧ |z − ζJ∗ |
≤

C2nr

2nrL(2nr)
=

C

L(2nr)
.

There are O(L(2nr)) intervals J in each component of A(n) ∩ Γ♯ and O(L1/3(2nr))
such components with n < C logL(r). Hence

C log L(r)
∑

n=1

∑

J⊂A(n)

(

|J |

|z − ζJ | ∧ |z − ζJ∗|

)2

≤ C

C log L(r)
∑

n=1

L1/3(2nr)

L(2nr)

≤ C
logL(r)

L2/3(r)
= o(1) (r → ∞).

To complete the proof, we estimate the contribution from pairs of intervals
J ∈ I′

3; each of those intervals have nonempty intersection with B. We recall
(9) once again and divide this annulus into congruent regions (wedges) obtained
by intersecting B with sectors of angular opening O(L−1/3(r)), oriented so that z
itself lies on the bisector of one of these regions (wedges). As before, the number of
intervals of Γ♯ in each sector is O(L(r)). Let Ω(z) be the wedge which contains z.

If (J ∪ J∗) ∩ Ω(z) = ∅, so z is separated from J and J∗ by 1 ≤ ℓ ≤ O(L1/3(r))
sectors, then

|J |

|z − ζJ | ∧ |z − ζJ∗ |
≤ C

r/L(r)

ℓrL−1/3(r)
=

C

ℓL2/3(r)
,

and each sector contains O(L(r)) intervals of Γ♯. For simplicity write J ⊂ Ω(z) if
J = (J, J∗) and either J or J∗ intersects Ω(z). Then summing for J ⊂ I ′

3 \ Ω(z),
we have

∑

J⊂I′

3\Ω(z)

(

|J |

|z − ζJ | ∧ |z − ζJ∗ |

)2

≤ C
L(r)

L4/3(r)

∞
∑

1

1

ℓ2
= o(1) (z → ∞).

Next, consider the sum over pairs of intervals such that one member of the pair
intersects Ω(z). Divide Ω(z) into disjoint subregions Ωℓ(z) using circles centered at
z of radius ℓr/L(r), ℓ ∈ N. Now since µ(J) = 1 (or µ∗(J∗) = 1) then |J | = |J∗| =
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cr/L(r) and therefore the number of intervals in each Ωℓ(z) is uniformly bounded.
Since (39) holds, we have ℓ ≥ 2, and so

(40)
∑

ℓ≥2

∑

J⊂Ωℓ(z)

(

|J |

|z − ζJ | ∧ |z − ζJ∗ |

)2

≤ C
∑

ℓ≥2

(

r/L(r)

ℓr/L(r)

)2

= C
∑

ℓ≥2

1

ℓ2
<∞.

where again we write J ⊂ Ωℓ(z) if J = (J, J∗) and (J ∪ J∗) ∩ Ωℓ(z) 6= ∅. �

That the estimate of Lemma 4 is not o(1) is due to the term (40), but if (39) is
replaced by the stronger (44) we get the more flexible (43), which is the key to §4.

Corollary 1. For fixed K ≥ 15 and fixed z0, with |z0| so large that

2K < L1/3(|z0|),(41)

let

(42)
D(z0) = {ζ : |ζ − z0| < 5|z0|/L(|z0|)},
D

′(z0) = {ζ : |ζ − z0| < 10K|z0|/L(|z0|)},

and let
I⋆ = {J = (J, J∗) : D

′(z0) ∩ (J ∪ J∗) 6= ∅}.

Then, with hJ from (38),
∣

∣

∣

∣

∣

log |g(z)| − U(z) −
∑

J∈I⋆

hJ(z)

∣

∣

∣

∣

∣

≤ CK−1 + o(1), z ∈ D(z0).(43)

Proof. The only term in Lemma 4 not o(1) is (40), so by increasing the radius of
the ball in (39) one gets a better estimate. Concretely, if |z0| is large enough and
(J, J∗) /∈ I⋆ then d(z0, ζJ ∪ ζJ∗) ≥ 5K|ζJ |/L(|ζJ |) and therefore

(44) d(z, ζJ ∪ ζJ∗) ≥
5K|ζJ |

2L(|ζJ |)
(z ∈ D(z0)).

For z ∈ D(z0), follow the proof of Lemma 4 but now summing over intervals that
are not in I⋆. According to (44), ℓ > K in (40) so the sum over the J ⊂ Ω(z), where
Ω(z) is the wedge introduced in the lemma, is bounded by C

∑

ℓ>K ℓ−2 = O(K−1)
while the sums over all the intervals not in Ω(z) remain the same. Therefore

∑

J/∈I⋆

|hJ(z)| ≤ CK−1 + o(1), z ∈ D(z0).

Since
∣

∣

∣

∣

∣

log |g(z)| − U(z) −
∑

J∈I⋆

hJ(z)

∣

∣

∣

∣

∣

≤
∑

J/∈I⋆

|hJ(z)| + |Ve(z)|,

lemma 2 and the estimation above give (43). �

3.5. Estimates near the exceptional set E: Proof of Theorem 2′(c). Lemma
5 below complements Lemma 3 when (39) fails. For now we still assume that the
component of E ∋ z is a single disk, as in hypothesis (c). Together, the two lemmas
of this section imply assertion (c) of Theorem 2′.

Lemma 5. Let z ∈ Ω := B(ζJ , 3|ζJ |/L(|ζJ |)) where J is an interval of Γ0 ⊂ Γ♯ of
µ-measure one. Let J∗ = −J and J = (J, J∗). Then, with hJ from (38), hJ(z) < C,
C an absolute constant.

Equivalently, if z ∈ B(ζJ∗ , 3|ζJ∗ |/L(|ζJ∗ |), with J∗ ∈ Γ∗ ⊂ Γ♯ let J = −J∗ and
J = (J, J∗). Then hJ(z) > −C.
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Note that the disk Ω = Ω(ζJ ) is somewhat larger than those in E (31); the disks
Ω(ζJ ) are no longer disjoint.

Proof. We consider only the first assertion, and note that there can only be an
upper bound, since hJ(ζJ ) = −∞.

Let |z| = r. It is elementary, from (34) and the fact that z, ζ ∈ Ω, that

(45)
hJ(z) = log |z − ζJ | −

∫

J log |z − ζ| dµ(ζ) + o(1)

≤ log
r

L(r)
−

∫

J

log |z − ζ| dµ(ζ) +O(1) (z ∈ Ω),

and since
∫

J
log |z− ζ| dµ(ζ) is harmonic in Ω \ J , Lemma 3 applies for z ∈ ∂Ω. By

the maximum principle, we need only bound the integral when z ∈ J .
We suppose that J ⊂ R+, and let t ∈ J . Set I = Jr−1 (where |z| = r) and

choose s ∈ I with s = tr−1. According to (17), dµ = 2r−1L(r) dr on J , and so
∫

J

log |z − ζ| dµ(ζ) = log r + 2

∫

I

L(rs) log |s− 1|s−1ds+ o(1).(46)

By (7) and (33), L(rs) = L(r) + o(1) log(s/r) = L(r) + o(1)L(r)−1, the o(1)
uniform in s ∈ I. If I = [1 − c1/L(r), 1 + c2/L(r)], the condition µ(J) = 1 implies
that c1 + c2 = 1/2 +O(L−1(r)). Since u logu decreases for u < e−1, we have

0 ≥

∫

I

L(rs) log |s− 1|s−1 ds =
(

L(r) + o(1)L−1(r)
)

∫

I

log |s− 1|s−1 ds

=
(

L(r) + o(1)L−1(r)
) (

1 +O(L−1(r))
)

∫

I

log |s− 1| ds

= (L(r) +O(1))

∫

I

log |s− 1| ds

= (L(r) +O(1))
1

2

(

L−1(r) log(L−1(r)) +O(L−1(r))
)

= (c1 + c2) logL−1(r) +O(1) = −
1

2
logL(r) +O(1),

which we then insert in (46) and then (45). �

Finally we consider the situation that z ∈ Ω, but not too near ζJ .

Lemma 6. For λ > 0, let z ∈ Ω as in Lemma 5 with

(47) λ
|ζJ |

L(|ζJ |)
≤ |z − ζJ | ∧ |z − ζJ∗ | ≤ 3

|ζJ |

L(|ζJ |)

Then |hJ(z)| < C = C(λ).

Proof. Let |z| = r and note that (47) shows that z ∈ B(ζJ , 10r/L(r)). Thus

log
r

L(r)
− C(λ) ≤ log |z − ζJ | ≤ log

r

L(r)
+ C,

so the proof of Lemma 5 shows the expression in the first line of (45) is uniformly
bounded. �
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3.6. Statement and proof of Theorem 3: controlling behavior on E. We
exploit the special forms of U and Γ0 near the inner boundaries of each Ak, as

described in §2.5, to give bounds for V ♯
Γ on E for the situations not settled in

Theorem 2. The proofs rely on techniques used in Theorem 2 (Theorem 2′).

Theorem 3. Let the assumptions and notations of Theorem 2 remain in force,
augmented by (25)-(28). Then we also have

(a) the components E′ of E are either single disks or the union of three disks. In
the latter case, E′ contains three point masses, one of which is a zero and one
a pole of g,

(b) if z ∈ E′ where E′ is a component of E containing centroids ζI , ζJ , ζK , atoms
of the approximating measure σ − σ∗, with ζI a zero of g and ζJ a pole, then
with C0 the constant of Theorems 2 or 2′

VΓ♯(z) ≤ C0 if |ζI − z| ≤ |ζJ − z| and ζK is a zero of g,

VΓ♯(z) ≥ −C0 if |ζI − z| ≤ |ζJ − z| and ζK is a pole of g.

Proof. Since (28) holds when z ∈ K (K from (24)), if a component of E′ consists
of more than one disc, it must intersect {rk ≤ |z| ≤ ρk} for some (large) k. For
convenience, let us assume that E′ ⊂ U . According to (17), the centers {ζp} of all
disks contained in E′ have the same modulus, and since (34) holds, (31) shows that
disks corresponding to point measures which intersect a single arc γ ∩Ak, γ ⊂ Γ∗,
are disjoint. By (27), three branches of Γ♯ ∩ Ao

k emerge from each bifurcation
node ±zk ∈ S(rk) (since E′ ⊂ U , there are two in Γ0 and one in Γ∗) and separate
uniformly as r increases. Hence components E′ associated to these branches consist
of one ball or three balls, in the latter case two associated to a zero of g, and the
other to a pole. This proves claim (a).

In considering (b). Let E′ be the component of E containing centroids ζI , ζJ , ζK ,
where ζI is a zero of g (i.e. I ∈ Γ0 where ζI centroid of I) and ζJ a pole (i.e. J ∈ Γ∗).
Let K be the interval in Γ♯ with centroid ζK , and finally consider the sets of pair of
intervals I, J and K formed by the intervals I, J , K and their negative counterparts
−I, −J , −K ordered as in Lemma 3. When E′ ⊂ U , g(ζK) = 0. Using the notation
in (38) we show for some absolute constant C that if z ∈ E′ then

hI(z) + hJ(z) + hK(z) ≤ C, (z ∈ E′, |ζI − z| ≤ |ζJ − z|)(48)

with the opposite estimate when g(ζK) = ∞. Once (48) is proved, the estimate
in (b) follows from Lemma 4 together with (48) applied to the terms which fail to
satisfy (39), as we did at the beginning of §3.5 in Lemma 5.

Let r = |z|, γ be the arc of Γ0 associated to ζK , and let ζ ∈ γ, |ζ| = t. Then
S(t) meets arcs γ′ ⊂ Γ0 ∩ E (associated to ζI) and γ∗ ⊂ Γ∗ ∩ E (corresponding to
ζJ) at ζ′, ζ∗, and γ, γ′ and γ∗ meet at a bifurcation node zk of Γ♯. Since we have
assumed that |ζI − z| ≤ |ζJ − z|, the strict condition (27) near the bifurcation node
zk ensures that

∣

∣

∣

∣

log

∣

∣

∣

∣

z − ζJ
z − ζK

∣

∣

∣

∣

∣

∣

∣

∣

= O(1),

∣

∣

∣

∣

log

∣

∣

∣

∣

z − ζ∗

z − ζ

∣

∣

∣

∣

∣

∣

∣

∣

= O(1).

Hence |ζI − z| < |ζJ − z|(< |ζK − z||) and so hI(z)+ hJ(z)+ hK(z) = hI(z)+O(1).
The result now follows from Lemma 5. �
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4. On the imaginary parts

4.1. Two key cases. To identify the possible asymptotic curves of g, it is clear
that more is needed than data on |g|. We prove

Theorem 4. The only possible asymptotic values of w = g(z) are 0 and ∞. More-
over, if η is any asymptotic path for w = 0, then there is a curve γ ⊂ Γ0 ⊂ Γ♯ on
which g → 0, such that for each ε > 0, the set {|g(z)| < ε} contains a component Ω
so that η and γ are in Ω∩ {|z| > r′} if r′ is sufficiently large. Thus η and γ belong
to the same tract corresponding to w = 0.

A similar statement holds with w = 0 replaced by w = ∞.

Thus consider a (hypothetical) curve η tending to z = ∞ on which g(z) → a,
so that |g| is nearly constant on η (if a 6= ∞). Using the notation from (42), we
consider a family of disks D

′(z0), with z0 ∈ K ∩ η (recall (24)) through which η
would have to pass. Let us denote by Dη such a family. Comment. The points z0
should not be confused with the first node z0 of the network Γ0.)

Let K be fixed (and large) with z0 ∈ S(r0)∩K, |z0| = r0 so large that (41) holds
(r0 should not be confused with the inner boundary of A0 from (6)). Since z0 ∈ K,
(28) implies that D

′(z0) intersects at most one curve from Γ♯. Thus D
′(z0) meets at

most two regions ∆ in C \Γ♯, and so for each disk D
′(z0) there are two posibilities:

(a) D(z0) ∩ Γ♯ = ∅ for D(z0) ⊂ D
′(z0) (see (42)) or,

(b) D(z0) contains an arc γ ⊂ Γ♯,

and then two situations could occur:

(i) There are infinitely many disks in Dη for which posibility (a) holds,
(ii) there are only a finite number of disks in Dη for which (a) holds.

When η is far from Γ♯ (case (i)) and z ∈ η, we may suppose that log |g(z)| is
close to the model function (cf. (20)) on S(|z|) ∩ D(z0). When η is near Γ♯ is far
more delicate; details are in §4.3. Since the curves of Γ♯ are asymptotically rays
when z ∈ K, we assume that γ is the positive real axis.

4.2. Proof of Theorem 4 (start). Let g → a on a curve η. If a = 0,∞, we will
associate a curve γ ⊂ Γ∗ ‘near’ η on which also g → a. To eliminate the possibility
a 6= 0,∞ is harder, and for that we need the rest of this section (for case (i)) and
the next (case (ii)).

Now let η be an asymptotic curve of g, so that g(z) → a as z → ∞ on η.
First suppose a = 0 or ∞; say a = 0. In case (i), choose r0 large and z0 ∈

η ∩S(r0), so that (a) holds for D
′(z0). We may assume using Theorem 2 or 2′ that

if S(r)∩D(z0) 6= ∅, then in the component Ω(z0) of C\Γ♯ which contains z0, log |g|
is close to a model function U of (20), and thus is linear in arg z. Hence we obtain
an arc of S(r0) joining z ∈ S(r0) ∩ η to Γ♯ with U(r0e

iθ) having its maximum at
z and decreasing on this arc until reaching a minimum at Γ♯ (outside D(z0)). It
follows that any component of {U < −M} which meets η on S(r0) for large r0 also
intersects some curve γ ⊂ Γ0, and so if g → 0 on η, then g → 0 on γ. Analogous
comments apply when a = ∞.

In case (ii) an even easier argument works, since η is already close to a single
arc of Γ∗.

More subtle is that 0,∞ are the only possible asymptotic values. Let η be a
curve on which g → a 6= 0,∞.
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If case (i) applies, let D
′(z0) be a disk for which (a) holds, then log |g| and

θ = arg z are harmonic in D
′(z0). We suppose that near z0, U is given by (20).

Thus given ǫ > 0, if K and |z0| are large (z0 ∈ η ∩K) then by (43), (7) and (15),

(49)
|(log |g(z)| − (A+ τL(r0)θ))| := |ǫ′(z)| < ǫ (z ∈ D

′′(z0)),
| arg g(z) − (A′ − τL(r0) log r)| := |ǫ(z)| < ǫ (z ∈ D

′′(z0))

for suitable constants A,A′, τ ∈ {±1} and D
′′(z0) the disk centered at z0 with radius

half of that of D(z0) (in fact, the first line holds in the larger D(z0)). The second
line (which restates the first for the conjugate functions) holds in D

′′(z0) since K
is large. By hypothesis, log |g| = log |a| + o(1) on η and z0 = r0e

iθ0 ∈ η. Thus (20)
and the first line of (49) show that |θ − θ0| = O(ǫL−1(r0)) in η ∩ D

′′(z0). However,
on {arg z = θ0} ∩ D

′′(z0), the function log r increases by more than 2/L(r0). The
second estimate of (49) with ǫ small and K large but fixed then implies that arg g(z)
varies by at least π/2 on η ∩ D

′′(z0). In other words, if a 6= 0,∞, η will contain
points in D

′′(z0) whose g-images are well-separated on {|w| = a}, and so g cannot
be uniformly close to a on η ∩ D

′′(z0).

4.3. Case (ii). This situation is more difficult. Again g(z) → a 6= 0,∞ on η, but
we assume that whenever z0 ∈ η ∩ K with |z0| sufficiently large, D(z0) ∩ Γ♯ 6= ∅.
By (28) and (41) D(z0) ∩ Γ♯ consists of portions of one arc γ; for specificity, take
γ ⊂ Γ0. Due to (29), γ ∩ D

′(z0) is a ray which contains the centroids ζI ∈ D
′(z0)

(see Figure 3, where γ is shown horizontal).
In contrast to case (i), the geometry of η is not apparent. An insightful example

is w = sin z, where Γ♯ = R. The level-set {| sin z| = 1} = {π/2 ± kπ, k ∈ Z}, is
a ‘necklace’ of topological circles meeting tangentially at the critical points. Thus,
by moving alternately in the upper and lower half-planes, we find a curve η which
| sin z| = 1, but arg(sin z) never varies more than π.

ζI ζI

ζI

ζI ζI
ζIζI

o

z0.
oooo o o

k−4 k−3

k−2

k−1 k+1 k+2k

γ

η

Figure 3. Intersection of D
′(z0) with γ and η.

Write γ ∩ D
′(z0) = ∪II, where each I has mass one (this may require slightly

modifying ∂D
′(z0)). Since dµ = 2r−1L(r) on γ, there are at most O(K) centroids

ζI with I ∈ I.
It is also useful to extend γ in both directions to separate C (as well as D

′(z0)
and D(z0)) into two components: γ an interval on R.

Let D
′+(z0), D

′−(z0) be the two components of D
′(z0)\γ, and in each of D

′±(z0)
take branches of arg(z − ζ) (ζ ∈ γ), arg(z − ζI) (I ∈ I). Similarly let D

±(z0) ⊂
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D
′±(z0) be the components of D(z0) \ γ. Using notation from Corollary 1 (§3.4),

consider I⋆ = {I = (I,−I) : I ∈ I} and write H(z) =
∑

I⋆ hI(z) for z ∈ D(z0) and
hI from (38). One utility of assumption (29) is that we have explicit expressions

for H and its conjugate H̃, the latter defined in each component of D
′(z0):

H(z) =
∑

I⋆

hI(z) =
∑

I

log |1 − z/ζI | − 2

∫

γ∩D′(z0)

log |1 − z/t| t−1L(t) dt+ o(1),

H̃(z) =
∑

I⋆

h̃I(z) =
∑

I

arg(1 − z/ζI) − 2

∫

γ∩D′(z0)

arg(1 − z/t) t−1L(t) dt+ o(1),

where o(1) accounts for the contribution from −(γ ∩D
′(z0)), which lies far from z0.

Lemma 7. Let H̃± be a suitable branch in each component of D
′(z0) \ γ, and let

p, q ∈ γ ∩ ∂D
′(z0). Then

(50)
‖H̃±‖∞ ≤ π/2,

H̃+(q + i0) − H̃+(p+ i0) = −
[

H̃−(q − i0) − H̃−(p− i0)
]

.

Proof. This is straightforward. Each function H̃± is a sum of a finite number of
terms hI from (38). If ζ ∈ γ (possibly ζ = ζI , I ∈ I), then arg(z − ζ) = 0
when z ∈ γ, z > ζ (using language inherited from viewing γ ⊂ {ℜz > 0}), while

arg(z − ζ) = ±π when z ∈ γ, z < ζ; the sign depending on the function H̃±

under scrutiny. Thus, the boundary values of the conjugate h̃I of any single term
log |z − ζI | −

∫

I log |z − ζ|dµ(ζ) are zero for z ∈ γ \ {I}. This remark also justifies
the other assertion. �

To adapt (49) to the situation (ii), let K, z0 be large, z0 ∈ η, subject to (41).
The left side of (43) is harmonic in D

′(z0), since H cancels the Riesz mass. Hence
we make take conjugates, with constant A in D

′(z0) and constants A′ in D
′±(z0):

(51)
|(log |g| − (A+ τL(r0)|θ|) + H(z))| := |ǫ′(z)| < ǫ (z ∈ D(z0)),
∣

∣

∣
arg g(z)−

(

A′ ∓ τL(r0) log r + H̃±(z)
)∣

∣

∣
:= |ǫ(z)| < ǫ (z ∈ D

±(z0)).

Lemma 8. Let η be a curve on which g(z) → a such that η passes through the
center z0 of D(z0) with Γ♯ ∩ D(z0) 6= ∅. Then η contains an arc η′ on which
arg g(z) varies by at least π/2. Hence if a 6= 0,∞, g cannot be uniformly close to a
on all of η.

Proof. Recall that we are in case (ii). We consider two possibilities.
First, suppose there is a subarc η1 ⊂ η, with η1 ∩ γ = ∅ which is not insignif-

icant, in the sense that its extremes are points ζ1, ζ2 in D(z0) with log(|ζ2/ζ1|) >
4π(L(r0))

−1. We then consider the second estimate of (51) at each ζ ∈ η′ relative
to D

±(z0) as appropriate, using some branch of arg g(ζ1). We reach a contradiction

since L(r0) log r has changed by at least 3π while (by (50)) ‖H̃‖∞ ≤ π/2. Once
again, arg g(z) cannot be nearly constant on η′.

The more subtle case is when there is no significant subarc of η in any D
′(z0) \ γ

(as with w = sin z). Let

P (η) = η
⋂

(γ ∩ D(z0)).

With s > 0 small but fixed, we have that P (η) ∩ (∪IB(ζI , s)) = ∅, and may
assume that P (η) is discrete in γ. Suppose η contains a subarc η′ having only its
endpoints ξ, ξ′ (|ξ′| > |ξ|) in P (η), such that the (closure of the) domain (in one of
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D
+(z0) or D

−(z0)) bounded by η′ and a subarc γ̂ ⊂ γ contains at least one ζI , say
{ζI : I ∈ I ′}.

We claim that η′ contains a subarc on which arg g(ζ) varies by more than a fixed
amount. Thus, we compute arg g(ξ′) − arg g(ξ) in the second formula of (51) in
each of D

±(z0) \ γ, since one of these computations is with the change of arg g on
η′.

Lemma 7 shows that the change, on [ξ, ξ′] relative to D
+(z0), of the sum

−L(r0) log r + H̃+

in D
+(z0) is the negative of that of the sum +L(r0) log r + H̃− in D

−(z0). But the
second line of (51) shows that each of these is (up to o(1)) the change of arg g(z).

Finally, a closed curve consisting of simple arcs from ξ to ξ′ in D
+(z0) and then

D
−(z0) form a closed curve on which the change of arg g is 2π card(I ′). That means

that | arg g(ξ′)− arg g(ξ)|, when computed relative to D
±(z0), is well-defined up to

o(1), and is at least π card(I ′). Thus arg g(z) cannot be nearly constant on all of
η′ if a 6= 0,∞.

This completes the proof of Theorem 4. �

4.4. The asymptotic values. It is easy to guarantee that As(g) = {0,∞}.

Lemma 9. Suppose there is a curve γ ⊂ Γ0 ∩ U , on which U(z) → −∞. Then
As(g) = {0,∞}.

Proof. By Theorem 2′, log |g(z)| ≤ U(z) + C0 if z ∈ γ \ E or if z ∈ γ ∩ E and the
component of E containing z consists of a single ball centered at a zero of g. So
by the construction in §2.5 we only need consider the situation that the component
E′ of E containing z consists of three balls: E′ contains two zeros and one pole of
g. Let zc ∈ E′ be the zero of g associated to γ and zp ∈ E′ a pole. Elementary
geometry shows that |zc − z| ≤ |zp − z| when z ∈ γ. Thus by Theorem 3,

log |g(z)| ≤ U(z) + C0, (z ∈ γ),

and since U → −∞ on γ,

log |g(z)| → −∞, (z → ∞, z ∈ γ).

Now with γ as above, let γ′ = −γ be a second curve on Γ∗ ⊂ Γ♯. Since U(z) =
−U(−z) ((4)), U → ∞ on γ′, and our argument shows that log |g| → ∞ on γ′. �

Let Γ be the subnetwork of Γ0 ∩ U on which U → −∞. In the next chapter, we
guarantee that Γ 6= ∅.

5. Compositions with quasiconformal transformations

In this section g will be transformed by means of compositions with quasiconfor-
mal mappings to produce a quasiregular function F with asymptotic values precisely
A∗. Recall that A = A∗ \ {∞} (1) is analytic, and until §8.2 A ⊂ B(0, 2).

An analytic set A is obtained from Lusin’s operations:

(52) A =
⋃

NN

⋂

p≥1

Sn1,...,np
,

where the sets Sn1,...,np
are closed (see [3] or [16], p. 207) and NN is the collection

of infinite sequences of (positive) natural numbers. Sierpinski calls A the nucleus

of the system Sn1,...,np
.
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We need a very precise description of the sets Sn1,...,np
, and the situation is

complicated since different authors often use different definitions. Our formulation
uses the ideas of [16, Thm. 112] but our condition 2), which is indispensable here,
is slightly different than in [16] and does not appear in [3]. For convenience, we
sketch a proof, and refer the reader to [16], §86 for full details.

Let N0 be the collection of all finite sequences (n1, . . . , np).

Theorem A. Let A ⊂ C be a nonempty analytic set in C, and let a decreasing
positive sequence {δp}, δp ↓ 0 be given. Then we may write A as in (52) where

1) each Sn1,...,np
is a closed set,

2) diam (Sn1,...,np
) < δp,

3) Sn1,...,np,np+1 ⊂ Sn1,...,np
,

4) Sn1,...,np
6= ∅ for all (n1 . . . , np) in N0.

Proof. The original definition in §82 of [16] uses only 1) and 3), and avoids 4).
However, we are considering only nonempty analytic sets A. Thus for the moment
assume that A is as in (52), where only 1) and 3) hold; we call these sets S ′

n1,...,np
,

and convert them to ones which satisfy 2) and 4) as well (in [16], δp = 1/p).
To secure 2), let the {δp} be given, and introduce for each p a countable covering

of C by closed balls {M
(p)
n } of diameter δp/2 ≤ diamM

(p)
n < δp. Then for each

n ∈ Z, take So
n = M

(2)
n , and So

n1,n2
= So

n1
= M

(2)
n1 . This is augmented for p > 1 by

So
n1,n2,...,n2p

= So
n1,n2,...,n2p−1

= S′
n2,n4,...,n2p−2

∩M (2p)
n2p−1

,

where (n1, n2, . . . , n2p) range over N0. It is clear that the sets So are closed, and
easy to check that the nucleus of So coincides with that of S′. Thus 2) is satisfied.

Property 4) may be arranged as in [16], §86. Since A 6= ∅, choose some fixed
ω0 ∈ A. Then for any combination of k indices, m(k) ∈ N0, and any sequence
(n1, n2, . . . ) of natural numbers, let So

m(k),n1,n2,... = ∩p≥1So
m(k),n1,n2,...,np

, and set

S∗
m(k) = ∪NNSo

m(k),n1,n2,....

Sets of this nature must be included in (52). Whenever S∗
m(k) 6= ∅, define Sm(k) =

S∗
m(k). However when S∗

m(1) = ∅, set Sm(1) = ω0 ∈ A (since A 6= ∅), and if k0 + 1

is the least integer with S∗
m(k) = ∅, set Sm(j) = ωm(k0) ∈ S∗

m(k0), j > k0.

�

The set of asymptotic values {0,∞} will be transformed into A∗ by successive
compositions with quasiconformal transformations. Recall that a homeomorphism
ϕ is said to be K-quasiconformal (K ≥ 1) in C if it is in the Sobolev space ϕ ∈
W 1,2

loc (C) and its (formal) derivatives satisfy |ϕ′(z)|2 ≤ KJϕ(z) a.e. z ∈ C, where
Jϕ is the Jacobian determinant (see [1] for more properties).

The sequence {δp} in Theorem A arises from repeated use of an elementary
lemma on quasiconformal mappings (known to Teichmüller and proved in [1], see
also [4]). The various choices of {R, δ} depend on the sets (52).

Lemma A. Let 2 > K > 1 and R > δ be given. Consider the (K, δ,R) problem of
finding a quasiconformal self-mapping of C, ϕ, such that

1) ϕ(w) = w if |w| ≥ R,
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2) for any given α such that |α| ≤ δ, we have ϕ(w) = w + α if |w| ≤ δ,
3) ϕ is K-quasiconformal.

Then, given either R or δ, there are choices of δ = δ(R) or R = R(δ) which solve
the problem.

We use this lemma in an iterative way. For a given K > 1, take a sequence
K0 > K1 > · · · with

∏

j

Kj < K(53)

(thus Kj ↓ 1 (very) rapidly). Apply Lemma A with δ = δ0 = 2 and K = K0, thus
obtaining R0, and for j ≥ 1 take K = Kj, Rj = δj−1 to obtain δj ↓ 0. The point
α0 and in general, αj (j ≥ 0) will be specified later in section §6. It is convenient
to assume, if necessary by decreasing δj−1 at each appearance, that

logRj + 10C0 < logRj−1 (j ≥ 1),

where C0 is from Theorem 2.
As in [5], this lemma will produce a large collection of quasiconformal mappings,

all applied to g(z) from Theorems 2 and 3. At each point z, the final quasiconformal
mapping Ψ will have at w = g(z) the form

Ψ(w) = · · ·ϕj ◦ · · ·ϕ1 ◦ ϕ0(w)(54)

where ϕj is Kj-quasiconformal mapping of C, so that

F (z) = Ψ ◦ g(z)(55)

is a continuousK-quasiregular mapping (which unlike aK-quasiconformal mapping
it need not to be a homeormorphism, see [15]). The functions {ϕj} are related to the
desired behavior of F on a given branch γ ⊂ Γ ⊂ Γ0 ⊂ Γ♯∩U (recall Figure 2), with
Γ introduced at the end of §4.4. (We are simplifying notation, since in principle
there should be different subscripts corresponding to each group of mappings in
(54) associated to different paths γ. However the data {δj , Rj ,Kj} is the same for
each choice of ϕj .)

Thus let γ ⊂ Γ ⊂ Γ0 ⊂ U be a path on which z → ∞ and g(z) → 0. We arrange
the {ϕj} and an → a, an ∈ A, so that the orbit of w = 0 under F as z passes
through γ will be

(56)
0 → ϕ0(0) → ϕ1(ϕ0(0)) → · · ·
0 → a0 → a1 → · · · ,

leading to F (z) → a = lim an as z → ∞, z ∈ γ.
There is a natural way to correspond each path γ ⊂ Γ to a point of the set A

of (1), where Γ ⊂ (Γ0 ∩ U) has been introduced at the end of §4.4. Each node of
Γ0 ∩ U will be associated to a specific point a ∈ A using Theorem A. Since Γ0 ∩ U
is combinatorially a dyadic tree, its nodes correspond in a natural way to finite
sequences of 0’s and 1’s with first entry 0. Let B be the countable collection of all
such sequences. For each m, B has 2m elements having m entries after the first
0. In turn, each such b has two successors b′ and b′′ with m + 1 entries after the
first 0: their first m entries coincide with those of b, and the final entry is 0 or 1.
This leads to the standard binary graph G associated with B. Following [16], we
associate a finite sequence (n1, n2 . . . , np) ∈ N0 to each b ∈ B \ {0}, so that each



ASYMPTOTIC VALUES OF MEROMORPHIC FUNCTIONS OF FINITE ORDER 25

node in a dyadic tree corresponds either to 0 or to a (unique) finite sequence of
natural numbers. Let b ∈ B. Then b = 0 and b = 0.0 . . . 0 correspond to the number
0. Otherwise, b = 0.ξ1 · · · ξj , where ξi ∈ {0, 1}, 1 ≤ i ≤ j, and at least one ξi 6= 0,
corresponds to (n1, . . . , nk) ∈ N0, where

j
∑

i=1

ξi
2i

=

k
∑

ℓ=1

1

2n1+···+nℓ
.(57)

This correspondence is coherent in the sense that if b′ is has the same binary expan-
sion as b through the first ℓ appearances of 1, then the first ℓ digits of {n1, . . . , nk}
and {n1, . . . , nk′} coincide.

In this way, every node of a dyadic tree is associated with a finite sequence of
natural numbers or zero, and conversely, any finite sequence of natural numbers is
associated to countably many nodes in a dyadic tree.

Once we have this correspondence, it is natural to exhaust N0 in the order
induced by the tree structure of B:

0; 0.0, 0.1; 0.00, 0.01, 0.10, 0.11; 0.000, 0.001, . . . ,(58)

which produces the ξi in (57). Thus if k ≥ 1, the k-th bifurcation node zk ∈ Γ♯ ∩U
(see §2 and Figure 2) corresponds to the k-th new element in this display of B; this
is a number from (57) with 1 as final entry. In turn, (57) associates this node to a
set Sn1,...,np

in the system (52). The specific mappings {ϕj} chosen below reflect
the data (52) as well as {Rj} from Lemma A and C0 from Theorems 2 and 3.

The connection between (58) and the evolution of Γ♯ through bifurcations can
be made concrete, in that at a bifurcation node zk ∈ S(rk) ∩ U the new branch of
Γ0 (which corresponds to an element of B with last digit one), originating at zk is
the arc of Γ0 having larger argument. The curves γ ∈ Γ ⊂ (Γ0 ∩ U) on which U
tends to −∞ will be paths which have infinitely many segments corresponding to
elements in B of (58) having terminal digit one (see (61), which then applies for
infinitely many p). On these curves on which g → 0 (see proof of Lemma 9) are
where F (and later f) attains asymptotic values a ∈ A.

We now define U at the {zk} and use the procedure (16) to extend U to the arcs
of Γ0 and then (3) and (4) to define U on all of C.

Start with z0 = ir0 (recall (10)), the first node corresponding to 0 ∈ B and define

U(z0) = logR0 + 4C0.(59)

Note that other nodes zp that correspond to 0.0 . . .0 ∈ B will appear on each S(rk),
k ≥ 1 as in (58).

In fact once an arc of Γ♯∩U is assigned to Γ∗, the locus of local maxima, it never
is subject to bifurcation as |z| → ∞. To complete the definition of U on these ‘free
arcs’ γ♯ ⊂ Γ∗ ∩ U , we observe that its initial point lies at some bifurcation node
zk (k > 0), where U will be defined in a moment (see (61)). As we follow along γ♯

and encounter zkℓ = γ♯ ∩ S(rk+ℓ) (ℓ ≥ 1), we require that

U(zkℓ) ≥ U(zk) + ℓ,(60)

and so we obtain infinitely many curves γ♯ ⊂ U on which U → ∞.
In general, if the node zk (k ≥ 1) corresponds to bk ∈ B and n(p) = (n1, . . . , np)

is the sequence of natural numbers associated to bk by (57), we define

U(zk) = logRp + 2C0,(61)
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which we copy at any successor z′, which corresponds to b′ (itself a successor of
bk) associated to the same sequence n(p) = (n1, . . . , np) ∈ N0. In this way we also
obtain countably many curves in Γ0 on which |U | does not have ∞ as an asymptotic
value; on these g will have no asymptotic value, as suggested at the end of §2.1. On
the other hand, the curves for which (61) for an increasing sequence of infinitely
many p’s are the ones that conform Γ, where U → −∞.

6. The families of quasiconformal mappings.

It follows from (52) that to any a ∈ A corresponds a sequence (n1, n2, n3, . . . ) so
that a = ∩∞

p=1Sn1,...,np
. We have already selected the {Rp, δp} in Lemma A.

Next, we identify the specific quasiconformal compositions {ϕj} and the domains
in which they act, all of which are in U .

For each n consider Ωn, the unbounded components of {|g(z)| < Rn} that inter-
sect Γ♯ ∩ U . Then each path γ ⊂ Γ (on which g → 0) passes through components
Dn of Ωn for each n ≥ 0. Theorems 2 and 3 with (59) show that |g(z)| > R0 on the
arcs of Γ∗ contained in {|z| > r0} which meet at the node z0: thus Ω0 ⊂ U , and Ω0

is separated from ∂U by arcs of Γ∗.
Similar considerations show that two components Di

n and Dj
n are separated by

arcs of Γ♯.
In general each component Dm

n of Ωn will contain countably many components

Dj
n+1 of Ωn+1, each of which will contain countably many disjoint components Dℓ

n+2

of Ωn+2, . . . , imitating the process (52).
It is in these domains Dn that we introduce the mappings ϕn. Consider a nested

chain of sets

Dn1
0 ⊃ Dn2

1 ⊃ Dn3
2 ⊃ · · · ;

these sets will then contain the asymptotic path γ at which the asymptotic value
a = ∩∞

k=1Sn1,...,nk
will be attained.

The quasiregular mapping F is defined on each chain D
np+1
p inductively in the

domains Ωp \ Ωp+1. First, take F (z) = g(z) if z ∈ C \ Ω0, observing from (59) and
the role of C0 in Theorem 2 that since |g(z0)| > logR0 + 2C0, z0 is not in Ω0. Fix
n ∈ N and consider a domain Dn

0 ⊂ Ω0. We set

F (z) = ϕ0 ◦ g(z), z ∈ Dn
0 \ Ω1,

where ϕ0 is the K0-quasiconformal map given by Lemma A (which produced the
original R0), so that ϕ0(w) = w if |w| ≥ R0 and ϕ0(w) = w + a1 if |w| ≤ δ0, where
a1 ∈ A∩Sn as in (52), with (cf. Theorem A) diam Sn < δ1. Thus, if z ∈ ∂Ω1 ⊂ Dn

0

then |g(z)| = R1 = δ0 and therefore F (z) = g(z) + a1 (so by means of ϕ0, g(z) has
been translated to g(z)+a1, the first step of the chain (56)). More important, since
a1 ∈ A∩Sn, properties 2) and 3) of Theorem A ensure that when ϕ1 is introduced
as in (54), all possible choices a2 ∈ Sn,m ⊂ Sn satisfy

|a2 − a1| < δ1.

Notice that F is well-defined and continuous in C \ Ω1. Indeed, for m 6= n, let
Dm

0 be another component of Ω0. Then

F (z) = ϕ′
0 ◦ g(z), z ∈ Dm

0 \ Ω1,

where ϕ′
0 is the K0-quasiconformal map given by Lemma A with ϕ′

0(w) = w if
|w| ≥ R0 and ϕ0(w) = w + a′1 if |w| ≤ δ0, where a′1 ∈ A ∩ Sm. We have already
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checked that Dm
0 ∩ Dn

0 = ∅. Thus F is well-defined in C \ Ω1 and continuous on
∂Dn

0 since if z ∈ ∂Dn
0 then |g(z)| = R0 and therefore F (z) = g(z).

Suppose that F is defined in C \Ωp, now we show how to extend it to C \Ωp+1.
Let D

np

p−1 ⊂ Ωp−1 be given and consider a domain Dn
p ⊂ D

np

p−1. Assume that

F (z) = Φp−1 ◦ g(z), z ∈ D
np

p−1 \ Ωp,

where Φp−1 = ϕp−1 ◦ · · · ◦ϕ0 is Kp−1-quasiconformal mapping chosen from Lemma
A with data Rp−1, δp−1, such that in particular

(62) F (z) = g(z) + ap, z ∈ ∂Ωp ⊂ D
np

p−1,

and ap is in Sn1,...,np
, a set of diameter less than δp. In Dn

p define

F (z) = Φp ◦ g(z), z ∈ Dn
p \ Ωp+1,

where Φp is a quasiconformal mapping defined by Φp = ϕp ◦ Φp−1 and ϕp is a
function given by Lemma A with K = Kp,

ϕp(w) = w, when |w − ap| ≥ Rp,

and

ϕp(w) = w + ap+1 − ap, when |w − ap| ≤ δp,

ap+1 ∈ Sn1,...,np,n and ϕp is well defined since ap+1 and ap lie in Sn1,...,np
, a set of

diameter less than δp.
The function F is well-defined in C \ Ωp+1 since the domains Dk

p and Dn
p k 6= n

are disjoint, again using an appeal to (60).
Moreover, F is continuous on ∂Ωp. Let z ∈ ∂Dn

p ⊂ D
np

p−1, then |g(z)| = Rp =

δp−1 and by (62) and the definition of the function ϕp,

F (z) = Φp−1(g(z)) = g(z) + ap = Φp(g(z)).

Finally, to verify (62) in these domains, consider a domain Dℓ
p+1 contained in

Dn
p and let z ∈ ∂Dℓ

p+1 ⊂ Dn
p . Then |g(z)| = Rp+1 = δp and

F (z) = ϕp(g(z) + ap) = g(z) + ap+1.

Thus a = ∩p≥1Sn1,...,np
is an asymptotic value of F , obtained on the path γ passing

through the domains Dn1
0 ⊃ Dn2

1 ⊃ Dn3
2 ⊃ · · · .

7. Solution of Theorem 1

7.1. Nevanlinna Characteristic of g.

Theorem 5. The meromorphic function g has order zero. Indeed,

T (r, g) = o
(

ψ(r) log2 r
)

(r → ∞).

The Nevanlinna theory for subharmonic functions is discussed in [10] and adapts
readily to δ-subharmonic functions. We first estimate the counting-function for the
‘poles’ in B(r), n(r, u). Formula (17) shows that the number of poles on any branch
of Γ♯ ∩ B(r) is at most L(r) log r, and (9) asserts that the number of branches in
B(r) is O(L1/3(r)). This means that

n(r, g) = O(L4/3(r) log r).

Since L increases and E has density zero, we may integrate:

N(r, g) = O(L4/3(r) log2 r).
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To estimate T (r, g) = m(r, g) +N(r, g) we consider the proximity function,

m(r, g) =
1

2π

∫ 2π

0

log+ |g(reiθ)|dθ.

By Theorem 2, log+ |g(z)| = O(L(|z|)) when |z| → ∞ and z /∈ E, so it is enough
to check the contribution to m(r, g) from integration over the exceptional set E.

However the estimate is then routine given the representation (38) of each hJ,
since we may perform an explicit integration over each of the of disks of E ∩ S(r)
for each r with S(r) ∩ E 6= ∅ : m(r, g) = O(L(r)). Thus (on recalling (8))

T (r) = (1 + o(1))N(r, g) = O(L4/3(r) log2 r) = o(ψ(r) log2 r) (r → ∞).

(Alternatively, since T (r) = o(ψ(r) log2 r) when S(r) ∩ E = ∅, we obtain it for
the remaining r since T increases.)

7.2. Asymptotic values of F . We return to the function F which was obtained
in §5. Recall that we still assume that A = A∗ \ {∞} and A ⊂ B(0, 2).

Lemma 10. The asymptotic values of F are w = 0, w = ∞ and values a which
are limits of g(z) on curves γ ⊂ Γ0 ∩ U . In particular, As(F ) = A ∪ {∞} = A∗.

Proof. This depends on the form of the compositions (54) and (55) along with
Theorem 4. Note that {0,∞} ⊂ As(F ) since there are many curves in Γ♯ in the
lower half-plane on which F → 0,∞, with no other asymptotic values.

We first show that only asymptotic values associated by the procedure of §5 are
asymptotic values of F . Let F (z) → a on η. Once we show that g(z) itself has a
limit a′ on η, Theorem 4 shows that a′ = 0 or a′ = ∞. Since all compositions Ψ
are the identity outside B(R0), we certainly have a′ = ∞ when a = ∞.

Thus suppose |a| < R0. Given δ > 0, choose r′ > 0 so that |F (z) − a| < δ for
z ∈ η(r′) with η(r′) the unbounded component of η ∩ {|z| > r′}.

The family of K-quasiconformal homeomorphisms of the sphere which fix B(R0)
are uniformly Hölder continuous. Hence if Ψ is any fixed function of the class (54),
any Ψ−1 image of B(a, δ) is contained in B(Ψ−1(a), C′δα), with α = α(K).

It follows that if Ψ′ is a choice of Ψ at g(z′), with z′ ∈ η ∩ S(r′), then g(z) ∈
B(Ψ′−1(F (z′)), C′δα). Since δ → 0 as r′ → ∞ and the family of functions {Ψ}
is normal, g itself must have a limit on η. As we showed in §4.2, this means
that η is contained in a tract on which g → 0, so this tract also contains a curve
γ ⊂ Γ ⊂ Γ0. If γ ⊂ Γ0 ∩ U then the choice of compositions in (54) was made so
that F (z) → a ∈ A in γ, and so in η. If, on the other hand, γ ⊂ Γ0 in the lower
half plane, then F (z) = g(z) on γ and so F (z) → 0 ∈ A in γ, and therefore on η.

�

7.3. Construction of f ; completion of proof. Let F be from (55). The mero-
morphic function f of Theorem 1 is obtained using standard techniques. Let
σ(z) = (Fz̄/Fz)(z) and f := F ◦ τ−1 where τ is the homeomorphic solution to

τz̄(z) = σ(z)τz(z) (Beltrami equation),

normalized to fix 0, 1 and ∞. Then f is meromorphic in the plane.
Obviously As(f) = A∗, so we need only check (2).
We may avoid delicate distortion theorems on solutions to the Beltrami equation,

since g is of slow growth (cf. (2)). A standard distortion theorem [1] (Hölder
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continuity) gives that if w = τ(z) satisfies this equation with ‖σ‖∞ < κ < 1, then
there are A = A(κ),M = M(κ) with

|τ(z)| < A|z|M (z ∈ C).(63)

Lemma 11. The characteristic of the meromorphic function f satisfies (2).

Proof. Since all quasiconformal compositions used in the previous section fix a
neighborhood of w = ∞, we have n(r,∞, F ) ≡ n(r,∞, g) (r > 0). We may suppose
that K in (53) has been taken so that (63) holds with M ≤ 20, and so n(r, f) ≤
n(Cr20, g) = O(CL4/3(r20)) log2 r. Using (8), we find

N(r, f) :=

∫ r

t−1n(t, f) dt ≤ N(21CL4/3(r21)) = o(ψ(r) log2 r).

Similarly, m(r, f) = O(L(ArMg)), and since T (r, f) = m(r, f) + N(r, f), a final
appeal to (8) gives (2). �

8. Concluding remarks

In this section, we settle some loose ends.

8.1. Functions of given order λ. To construct functions of order λ 6= 0 requires a
simple trick (we thank A. Eremenko for this suggestion). Let g be the meromorphic
function (of order zero) just constructed, with As(g) = {0,∞}. Let W be an
unbounded open set with d(W,Γ♯) > 1. Choose a sequence {wn} tending to ∞ in
W whose exponent of convergence is λ (for example, let the number of wn in B(r)
be asymptotic to rλ).

Next, for each wn choose bn with wn − bn tending so rapidly to zero that

Π(z) =
1 − z/wn

1 − z/bn

is so close to one outside W that if g1(z) = g(z)Π(z), then g − g1 = o(1) and
arg g(z) − arg g1(z) = o(1) as z → ∞ in a neighborhood of Γ♯. Then g1 has order
λ, and we may perform the compositions of §5 on g1, yielding f1 of order λ with
A∗ its asymptotic set.

8.2. General analytic sets A∗. To remove the assumption that the set A of (1)
be contained in B(0, 2), we construct a ‘forest’ of trees in U . Thus, instead of
Γ0 ⊂ Γ♯ being a single tree beginning on the positive imaginary axis (cf §2.3), there
will be a countable collection of trees Γm,n ⊂ U , Γm,n ⊂ Γ♯ with asymptotic values
being those of A ∩B(m+ ni, 2).

Since the each of the compositions in (54) operates in disjoint regions of the
plane, the proofs of Lemma 10 and Lemma 11 apply as before.
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