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1. Introduction.

In this note we study the asymptotic boundary behaviour of harmonic and p-harmonic functions (1 <

p <∞) on trees.

1.1. Vector calculus and trees.

By a tree T we mean a connected graph such that every subgraph obtained from T by removing any of

its edges is not connected. In what follows we will only consider trees in which we distinguish a vertex v0 as

an origin. As usual we denote by V and E the set of vertices and the set of edges (respectively) of the tree.

If v and w are the boundary vertices of an edge, we say that they are neighbours and we write v ∼ w; we

denote by [v, w] the edge that joins the vertices v and w. We assume (except for sections 2 and 5) that the

set of edges E is symmetric, i.e. [v, w] ∈ E if and only if [w, v] ∈ E.

By a function on T we mean a function with real values defined on the set V of vertices of T and by a

vector field we mean a function with real values defined on the set E of edges of T .

If u is a function on T , its gradient ∇u is the vector field defined by the formula

∇u(v, w) = ∇u([v, w]) = u(w) − u(v) .

If U is a vector field on T , its divergence, denoted by div U , is the function on T defined by the formula

div U(v) =
∑

w∼v

U([v, w]) .

The Laplacian and the p-Laplacian of a function u on T (1 < p < ∞) are the functions on T defined

respectively as

∆u = −div (∇u) , ∆pu = −div (∇u |∇u|p−2) .

Notice that ∆2 = ∆.

We say that a function u defined on T is p-subharmonic, p-superharmonic or p-harmonic if ∆pu ≤ 0,

∆pu ≥ 0 or ∆pu = 0, respectively. When p = 2, these functions will be called simply subharmonic,

superharmonic and harmonic functions.

A good reference for the study of p-harmonic functions in RN is the book [HKM].

NOTATION. In the following, for simplicity, we will use the expression

(1.1) tα = t|t|α−1 , for α > 0 , t ∈ R .

We mean that 0α = 0. Observe that (tα)β = tαβ , for any α, β > 0 and t ∈ R. In particular, t2 = t|t| is

negative if t is negative, and so it is different from the usual notion. Everywhere in the paper we shall use

tα only with the meaning (1.1) and no other.

With this notation the p-Laplacian of a function u at a vertex v is

(1.2) ∆pu(v) = −
∑

w∼v

(u(w) − u(v))p−1 .

2



1.2. Fatou’s and Bourgain’s theorems.

The classical Fatou’s Theorem asserts that any bounded holomorphic function in the unit disk D of the

complex plane has radial limits except at most for a set of directions with zero length. The analogue of this

result for bounded harmonic functions in a tree is a well known result.

The radial variation of a function f holomorphic in D at a point eiθ ∈ ∂D is defined as

Vf (eiθ) =

∫ 1

0

|f ′(reiθ)| dr .

Thus Vf (eiθ) is simply the euclidean length of the image under f of the radius ending at eiθ. If at eiθ we

have Vf (eiθ) <∞, then f has a finite radial limit at eiθ.

Rudin initiated in [R] the study of the set {θ ∈ [0, 2π) : Vf (eiθ) < ∞} for functions f bounded and

holomorphic in D. He proved that there exist bounded holomorphic functions in D such that

|{θ ∈ [0, 2π) : Vf (eiθ) <∞}| = 0 .

He raised the question whether there are f ’s as above with

{θ ∈ [0, 2π) : Vf (eiθ) <∞} = ∅ .

Recently Bourgain [B1], see also [M], proved a counterpart of Fatou’s theorem, namely:

Theorem A. Let f : D → C be a bounded holomorphic function. Then

Dim
{

θ ∈ [0, 2π) :

∫ 1

0

|f ′(reiθ)| dr <∞
}

= 1 ,

where Dim denotes Hausdorff dimension.

It should be observed that there are functions f holomorphic in D belonging to the Hardy space H2,

even to BMOA, such that

{θ ∈ [0, 2π) : Vf (eiθ) <∞} = ∅ ,

for instance,

f(z) =

∞
∑

n=1

1

n
z2n

.

In fact, as Bourgain remarks in [B1], the same argument proves Theorem A for a bounded harmonic

function u in the unit disk, if we replace the derivative of f by the gradient of u. Theorem A is also true for

positive harmonic functions in the unit disk as Bourgain has recently proved [B2].

It is an open question if the analogue of Theorem A is true for bounded or positive harmonic functions

in the unit ball of RN for N ≥ 3.

The aim of this paper is to extend Bourgain’s Theorem to trees (under certain restrictions). Our

extension works also for p-harmonic functions. Now, on the one hand, very regular trees are discrete models
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of the unit ball of RN (endowed with hyperbolic geometry) and, on the other hand, graphs have important

connections with Potential Theory on Riemannian manifolds (see for example [K1], [K2], [K3], [HS], [S1],

[S2]) and this perhaps could allow us to expect to prove Bourgain’s theorem for functions defined in the unit

ball of RN via graphs, and to give sharp estimates on the size of the Fatou set of p-harmonic functions in

the unit ball of RN , an interesting open problem.

Also, we have obtained a similar result to Rudin’s example: for each 1 < p < ∞, there exists a regular

directed tree T and a p-harmonic function u on T such that the Lebesgue measure of the set BV (u) is zero.

This proves that our results are sharp, in some sense.

1.3. The main result.

In order to formulate our extension of Bourgain’s Theorem we will need some definitions:

By a path we mean a sequence of vertices {v1, . . . , vn, . . . } (finite or infinite) such that [vi, vi+1] ∈ E for

all i ≥ 1. We can define in V a natural distance given by

d(v, w) = inf{lengthγ : γ is a path from v to w} ,

where we are assigning to all edges a length equal to one.

The degree of a vertex is the number of its neighbours, i.e. the number of vertices at distance 1 from it.

A graph has bounded degree if there is an upper bound for the degree of its vertices.

We will denote by Sn the n-sphere (with center v0) of V , i.e.

Sn = {v ∈ V : d(v, v0) = n} .

Given a vertex v ∈ Sn the children of v are the neighbours of v which are in Sn+1. The set of children of v

will be denoted by Hv.

A tree T is regular if all vertices (except at most v0) have the same degree. Following the notations of

Lyons [L] we will say that a tree is spherically symmetric if, for each n, all the vertices in Sn have the same

degree. In particular, every regular tree is spherically symmetric.

Given a tree T , we define the boundary of T , denoted by ∂T , as the set of all the paths

{v0, v1, . . . , vn, . . . }

satisfying vj+1 ∈ Hvj
for all j ≥ 0.

If u is a function on T we define the variation of u along the path γ = {v0, v1, . . . , vn, . . . } as

V (u, γ) :=

∞
∑

n=0

|∇u(vn, vn+1)| =

∞
∑

n=0

|u(vn+1) − u(vn)| .

We say that a function u on T has bounded variation along the path γ = {v0, v1, . . . , vn, . . . }, if

V (u, γ) < ∞ .
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We will denote by BV (u) the set of paths in ∂T along of which u has bounded variation. Let us observe

that if we denote by u(γ) the limit of u along γ,

u(γ) := lim
n→∞

u(vn) ,

we have that
∞
∑

n=0

(u(vn+1) − u(vn)) = u(γ) − u(v0) .

Therefore, if u has bounded variation along γ, we have that there exists the limit of u along γ.

Next we need to define the notion of Hausdorff dimension of a subset of ∂T . If T is a spherically

symmetric tree we can identify ∂T with the interval [0, 1] via the following association:

If Hv0 = {v1
1 , . . . , v

N
1 } we can identify each vj

1 with the subinterval [j/N, (j + 1)/N ] (j = 0, . . . , N − 1).

By induction, if the subinterval [a, b] has been associated to vn ∈ Sn and Hvn
= {v1

n+1, . . . , v
M
n+1}, then we

associate to each vj
n+1 the subinterval [a+ (b − a)j/M, a+ (b − a)(j + 1)/M ] (j = 0, . . . ,M − 1). Now, we

associate to a given path {v0, . . . , vn, . . . } in ∂T the unique point in [0, 1] which belongs to all the subintervals

identified with the succesive vn (for all n ≥ 0).

Now we can pull back the notion of Hausdorff dimension (initially defined for subsets of [0, 1]) for subsets

of ∂T via this identification. Therefore we have the normalization Dim (∂T ) = 1.

This definition of Hausdorff dimension coincides with the usual one in the context of stochastic processes,

see for example [B]. Observe that the definition of Hausdorff dimension in [L] although it is essentially the

same, uses a different normalization.

Our main result is an extension of Bourgain’s Theorem to bounded harmonic functions on trees.

Theorem 1. Let T be a regular tree. Let u be a positive superharmonic function on T . Then,

Dim (BV (u)) = Dim (∂T ) = 1 .

In fact, we can prove a more general result.

Theorem 2. Let T be a spherically symmetric tree with bounded degree. For 1 < p < ∞, there exists

a constant φ(p) > 0, satisfying φ(2) = 1, such that for any bounded above p-subharmonic function u (or

bounded below p-superharmonic function), we have that

Dim (BV (u)) ≥ φ(p) .

Recall that if u has bounded variation along a path γ, then u has also limit along γ. Therefore we have

Corollary. Let T be a spherically symmetric tree with bounded degree. For 1 < p < ∞, there exists a

constant φ(p) > 0, satisfying φ(2) = 1, such that for any bounded above p-subharmonic function u (or
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bounded below p-superharmonic function), we have that the Hausdorff dimension of the set F (u) of paths

along which u has limit is greater or equal than φ(p).

Let us recall that the precise dimension of F (u) for a p-harmonic function u in the unit ball of Rn

(p 6= 2) is a very interesting problem. See [FGMS] for some bounds.

We want to remark that the hypothesis of bounded degree appearing in Theorem 2 is usual in the

context of Potential Theory on graphs (see for example, [K1], [K2], [K3], [HS], [S1], [S2]).

The outline of the paper is as follows: In Section 2, we consider a simpler version of Theorem 2; it

will serve the purpose, we hope, of exhibiting the main ideas. In Section 3 we collect some technical results

used in Section 4 where we will prove Theorem 2. Finally, in Section 5 we construct an anologue to Rudin’s

example in this setting, proving that there exist p-harmonic functions u so that the Lebesgue measure of

BV (u) is zero.

2. A simple case.

Let T = TD be a directed regular tree (i.e. its vertices have the same number of children). The term

directed means that we have chosen a direction in each edge. Therefore, if [v, w] ∈ E, we have that [w, v] /∈ E.

We choose the direction in the following way: [v, w] ∈ E if and only if w ∈ Hv. This fact has the consequence

that the p-Laplacian of a function u on TD (in a vertex v) is equal to

∆pu(v) = −
∑

w∈Hv

(u(w) − u(v))p−1 .

Recall that we are using here the notation in (1.1). Observe that in this definition we do not take into

account the edge that ends at v.

It is worth to mention that solving the Laplace equation for a directed tree is equivalent to solving the

heat equation on Z. Namely, let u be a harmonic function in a directed tree T , (we will assume T to be a

2-regular tree for simplicity), for v1 ∈ Sn−1 and v0, v2 ∈ Sn so that, v0, v1 ∈ Hv1 we have

4u = 0 ⇔
u(v0) + u(v2)

2
= u(v1).

Now if we consider j as the space variable and n as the time variable, the above equation becomes,

u(0, n) + u(2, n)

2
= u(1, n− 1).

Or equivalently,
u(0, n) + u(2, n)− 2u(1, n)

2
= u(1, n+ 1) − u(1, n).

That is, we are solving the discrete version of the heat equation

−
∂2u

∂x2
=
∂u

∂t
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Notice the sign.

Now we can prove the following discrete extension of Bourgain’s theorem.

Theorem 3. Let TD be a directed regular tree. For 1 < p <∞, there exists a constant ψ(p) > 0, satisfying

ψ(2) = 1, such that for any upper bounded p-harmonic function u on TD we have that

Dim (BV (u)) ≥ ψ(p) .

In what follows, in order to work with Hausdorff dimension, we need to talk about measures in the

boundary of a tree T . Let us consider a function m : V −→ [0,∞) with the property that for each vertex v

in V the following holds:
∑

w∈Hv

m(w) = 1 .

To each such m we may associate a consistent sequence of measures µn in Sn, for all n ≥ 0, in the following

way: If Pn = {v0, v1, . . . , vn} is the path beginning at v0 and ending at Sn we define

µ0(v0) = 1 , µn(vn) = m(v1) · · ·m(vn) .

It is clear that

µn−1(v) = µn(v1) + · · · + µn(vk) , for all v ∈ Sn−1 , with Hv = {v1, . . . , vk} .

Therefore, if we identify the set of all paths in ∂T containing a vertex vn ∈ Sn with the vertex vn, we can

define a measure µ in ∂T by the formula

µ(vn) = µn(vn) .

The set of measures defined in this way will be denoted by MT . In what follows we will use these identifi-

cations between paths and vertices, and between µ and µn.

Now, given a function u on T , let d : V \{v0} −→ R be the function defined by

d(w) = ∇u(v, w) = u(w) − u(v) , if w ∈ Hv .

Also, we will denote by un and dn the functions given by

un =

{

u , on Sn ,

0 , elsewhere ,
dn =

{

d , on Sn ,

0 , elsewhere .

Proof of Theorem 3. Let v be a vertex of TD and Hv = {v1, . . . , vk} be the set of its children. Let us

observe that the number k is the same for any vertex of TD. The p-harmonicity of u in v means that

d(v1)p−1 + · · · + d(vk)p−1 = 0 .
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Consider the closed sets

Ω :=
{

x ∈ Rk : ‖x‖1 = 1 ,

k
∑

j=1

xp−1
j = 0 , x1 ≥ x2 ≥ · · · ≥ xk

}

,

Ω0 :=
{

x ∈ Rk :

k
∑

j=1

xp−1
j = 0 , x1 ≥ x2 ≥ · · · ≥ xk

}

,

where ‖x‖1 is the usual `1-norm in Rk, ‖x‖1 =
∑k

j=1 |xj |.

Let us observe that if x ∈ Ω we have that x1 > 0. In other case, the conditions

xp−1
1 + xp−1

2 + · · · + xp−1
k = 0 , x1 ≥ x2 ≥ · · · ≥ xk ,

would imply that x1 = x2 = · · · = xk = 0 in Ω, which contradicts ‖x‖1 = 1.

Let us consider a positive number q such that

q > Λp := max
x∈Ω

x2 + · · · + xk

(xp−1
2 + · · · + xp−1

k )1/(p−1)
= max

x∈Ω

−x2 − · · · − xk

x1
.

It is clear that we always have Λp ≥ 1 (to see this, it is enough to take x = (1/2, 0, . . . , 0,−1/2) ∈ Ω).

Therefore we have in Ω

q x1 + x2 + · · · + xk > 0 ,

and this implies that there exists a positive number δ such that

(2.1)
q

q + k − 1
x1 +

1

q + k − 1
x2 + · · · +

1

q + k − 1
xk ≥ δ , for x ∈ Ω,

since Ω is a compact set. We have that

(2.2)
q

q + k − 1
x1 +

1

q + k − 1
x2 + · · · +

1

q + k − 1
xk ≥ δ ‖x‖1 , for x ∈ Ω0.

The statement (2.2) is trivial for x = 0 and for x 6= 0 it is a consequence of (2.1).

We now construct a measure µ ∈ MTD
and the corresponding function m, in the following inductive

way: Let v be any vertex of TD and Hv = {v1, . . . , vk}. Fix a child vi verifying

d(vi) = max{d(v1), . . . , d(vk)} .

We define m|Hv
as the function

m(vj) :=











q

q + k − 1
, for j = i,

1

q + k − 1
, for j 6= i.

Let us recall that we always have q > Λp ≥ 1. This fact implies that the measure µ gives more mass to the

vertex maximizing (in Hv) the function d.

Let us observe that there is a rearrangement of the vector (d(v1), . . . , d(vk)) which belongs to Ω0.

Therefore, if v ∈ Sn−1, (2.2) implies that

∫

Hv

dn dµ ≥ δ ‖dn|Hv
‖1 µ(v) ≥ δ

∫

Hv

|dn| dµ ,
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and consequently

(2.3)

∫

dn dµ ≥ δ

∫

|dn| dµ .

Let us observe that the constant δ > 0 depends on q and k, but neither on u nor n.

Lemma 4.1 (see Section 4 below) and (2.3) give that

∫

um dµ = u(v0) +

m
∑

n=1

∫

dn dµ ≥ u(v0) + δ

m
∑

n=1

∫

|dn| dµ .

If M is an upper bound of the function u, this inequality implies that

∫ m
∑

n=1

|dn| dµ ≤ δ−1(M − u(v0)) ,

and then
∫ ∞
∑

n=1

|dn| dµ ≤ δ−1(M − u(v0)) .

Therefore
∞
∑

n=1

|dn| <∞

almost everywhere with respect to µ and consequently µ(BV (u)) = 1.

On the other hand, since q > 1, if v ∈ Sn,

µ(v) ≤
( q

q + k − 1

)n

=
(1

k

)n(log(q+k−1)−log q)/ log k

= |v|(log(q+k−1)−log q)/ log k ,

where |v| = k−n is the Lebesgue measure of v in TD (which is generated by the function m0 ≡ 1/k). This

fact, µ(BV (u)) = 1 and Lemma 4.2 (see Section 4 below) give that

Dim(BV (u)) ≥
log(q + k − 1) − log q

log k
,

for any q > Λp. Consequently we deduce that

Dim(BV (u)) ≥
log(Λp + k − 1) − log Λp

log k
=: ψ(p) .

Finally, let us observe that ψ(2) = 1, since Λ2 = 1.

3. Technical results.

In what follows we will consider, for η > 0, the function

(3.1) η(t) =

{

1 , if t ≥ 0 ,

η , if t < 0 .

Observe that, with the definition of the power tα = t|t|α−1 given in the Introduction, we have that:

(tα)′ = α |t|α−1 .
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Lemma 3.1. Let α, a, b, c, d positive constants. Consider the function

F (t) = a t+
b

η(c− dtα)
(c− dtα)1/α , t ≥ t0 :=

( c

1 + d

)1/α

,

Denote by t2 the number

t2 :=

(

c

d−
( bd

aη

)α/(α−1)

)1/α

.

We have the following assertions:

(A) If 0 < α < 1, aη > bd1/α, a > bd, then F is an increasing function in the interval [t0,∞).

(B) If α > 1, aη < bd1/α, a < bd, then F is a decreasing function in the interval [t0,∞).

(C) If 0 < α < 1, aη < bd1/α, a < bd, then F attains its maximum in the interval [t0,∞) either at the

point t0 or at the point t2.

(D) If α > 1, aη > bd1/α, a > bd, then F attains its minimum in the interval [t0,∞) either at the point

t0 or at the point t2.

Besides,

F (t2) =
ac1/α

d

(

d−
( bd

aη

)α/(α−1))(α−1)/α

.

Proof. First of all observe that

lim
t→∞

F (t) =

{

∞ , if aη > bd1/α ,

−∞ , if aη < bd1/α ,

and

F ′(t) = a−
bdtα−1

η(c− dtα)
|c− dtα|(1−α)/α , if t 6= t1 := (c/d)1/α .

Therefore, F ′(t0) = a− bd and

F ′(t1) =

{

−∞ , if α > 1 ,

a , if 0 < α < 1 .

On the other hand it is easy to see that

• F ′(t) vanishes exactly once in the interval (t0, t1) if (a/(bd))α/(1−α) < 1 and F ′(t) 6= 0 for all t ∈ (t0, t1)

in other case.

• F ′(t) annihilates exactly once in the interval (t1,∞) if d > (bd/(aη))α/(α−1), and this critical point

is t2, and F ′(t) 6= 0 for all t ∈ (t1,∞) in other case.

Observe now that the condition d > (bd/(aη))α/(α−1) is equivalent to the two following ones:

aη > bd1/α , if α > 1 ,

aη < bd1/α , if 0 < α < 1 .

Collecting now all this information it is easy to see in each case that:
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(A) F ′ > 0 in the interval [t0,∞).

(B) F ′ < 0 in [t0, t1) ∪ (t1,∞) and F ′(t1) = −∞.

(C) F ′(t0) < 0, F ′(t1) > 0, F ′ annihilates exactly once in (t0, t1), and exactly once (at the point t2) in

(t1,∞), and limt→∞ F (t) = −∞.

(D) F ′(t0) > 0, F ′(t1) = −∞, F ′ annihilates exactly at two points, one of them in the interval (t0, t1)

and the other at the point t2 ∈ (t1,∞), and limt→∞ F (t) = ∞.

Finally, the expression for F (t2) follows from a straightforward computation.

Proposition 3.1. Let k = (k1, . . . , kn+1) be a vector with strictly positive integer entries, N =
∑

i ki,

0 < η < 1 and α > 0. Let η(t) be the function whose values are 1 if t ≥ 0, and the constant η elsewhere.

Given 0 < ε < 1, consider the numbers

ε1 =
N − k1

k1
ε , ε2 = · · · = εn+1 = −ε .

Then, the function defined by

f(x) =
n
∑

i=1

ki (1 + εi)
xi

η(xi)
+ kn+1 (1 + εn+1)

(

(1 − k1x
α
1 − · · · − knx

α
n)/kn+1

)1/α

η(1 − k1xα
1 − · · · − knxα

n)

satisfies

(3.2) min
x∈D

f(x) = f(N−1/α, . . . , N−1/α) = N (α−1)/α , for 1 > ε > ε(α, η,k) > 0 ,

where ε(α, η,k) decreases when η grows and

D :=
{

x ∈ Rn : x1 ≥ · · · ≥ xn ≥
(1 − k1x

α
1 − · · · − knx

α
n

kn+1

)1/α}

.

Observe that if we define xn+1 as

(3.3) xn+1 =
(1 − k1x

α
1 − · · · − knx

α
n

kn+1

)1/α

,

we have x1 ≥ · · · ≥ xn ≥ xn+1 and k1x
α
1 + · · · + knx

α
n + kn+1x

α
n+1 = 1, and therefore x1 > 0.

Remark. Although we will use this proposition in Section 4 only for the case k1 = · · · = kn+1 = 1, to prove

this particular case we will need the general one.

Proof. We will use induction in n.

If n = 1 we have

f(x) = k1(1 + ε1)x+ k2(1 − ε)

(

(1 − k1x
α)/k2

)1/α

η(1 − k1xα)
, k1 + k2 = N , ε1 =

k2

k1
ε ,
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and

x ∈ D ⇐⇒ x ≥
(1 − k1x

α

k2

)1/α

⇐⇒ x ≥ N−1/α .

Therefore, in this case D = [N−1/α,∞).

This function (and its domain) coincides with the one in Lemma 3.1, if we take

a = k1(1 + ε1) , b = k2(1 − ε) , c =
1

k2
, d =

k1

k2
,

and therefore a > bd always.

Observe now that limx→∞ f(x) = ∞ if

(3.4) k1(1 + ε1) >
k2(1 − ε)

η

(k1

k2

)1/α

.

This inequality is trivially true for ε = 1, and then a continuity argument shows that (3.4) is true for

1 > ε > ε1(α, η,k) (this condition is the same that aη > bd1/α in the notation of Lemma 3.1), where

ε1(α, η,k) decreases when η grows. Besides an easy computation gives

ε1(1, η,k) =
1 − η

1 + η k2/k1
.

We will consider now three cases:

• If 0 < α < 1 we are in the case (A) of Lemma 3.1, and therefore

(3.5) f(x) ≥ f(N−1/α) = N (α−1)/α , x ≥ N−1/α .

• If α = 1, (3.5) is also true since f is an increasing function by (3.4).

• If α > 1, we are in the case (D) of Lemma 3.1. A continuity argument gives f(t2) > N (α−1)/α =

f(N−1/α) = f(t0) if 1 > ε > ε2(α, η,k), where ε2(α, η,k) decreases when η grows. Hence, (3.5) is also true

in this case.

This ends the proof of the case n = 1.

Suppose now that the proposition is true for the case n− 1. We will prove it for the case n.

First, we will see that f attains a minimum in the domain D. We have

x1 ≥ · · · ≥ xn ≥
(1 − k1x

α
1 − · · · − knx

α
n

kn+1

)1/α

≥ −
(k1x

α
1 + · · · + knx

α
n

kn+1

)1/α

.

Then, for i = 1, . . . , n, we can write xi = mix1, where m = (m1, . . . ,mn) is in the compact set

M :=
{

m ∈ Rn : m1 = 1 ≥ m2 ≥ · · · ≥ mn ≥ −
(k1m

α
1 + · · · + knm

α
n

kn+1

)1/α}

.

Observe now that

f(x) =

n
∑

i=1

ki (1 + εi)
mix1

η(mi)
+ kn+1 (1 + εn+1)

(

(1 − k1m
α
1x

α
1 − · · · − knm

α
nx

α
1 )/kn+1

)1/α

η(1 − k1mα
1 x

α
1 − · · · − knmα

nx
α
1 )

≥ um(ε)x1 ,

12



where

um(ε) =
n
∑

i=1

ki (1 + εi)
mi

η(mi)
− kn+1 (1 + εn+1)

(

(k1m
α
1 + · · · + knm

α
n)/kn+1

)1/α

η(−k1mα
1 − · · · − knmα

n)
.

As M is compact the function u(ε) := minm∈M um(ε) is continuous in ε. Since um(1) = N , we have

u(1) = N , and a continuity argument gives

u(ε) > 0 if 1 > ε > ε3(α, η,k) ,

where ε3(α, η,k) decreases when η grows. Hence

um(ε) ≥ u(ε) > 0 , for all m ∈M .

It follows that f(x) ≥ u(ε)x1 and therefore f(x) → ∞ “uniformly” as x → ∞.

This implies that there exists the minimum of f in the domain D and that this minimum is attained

either on the boundary ofD, either on the critical points of f , or on the points in which f is not differentiable.

We will study each of this cases separately:

1) f can not attain its minimum in the interior points of D in which f is not differentiable. To prove

this observe that, for i = 1, . . . , n,

∂f

∂xi
(x) = ki (1 + εi)

1

η(xi)
− ki (1 + εn+1)

∣

∣(1 − k1x
α
1 − · · · − knx

α
n)/kn+1

∣

∣

(1−α)/α

η(1 − k1xα
1 − · · · − knxα

n)
|xi|

α−1 .

We need to distinguish several cases:

• If xi = 0 for some i ∈ {2, . . . , n}, we have (see (3.3)) xn+1 < 0 and then

∂f

∂xi
(x)
∣

∣

∣

xi=0
= −∞ , if 0 < α < 1 ,











∂f

∂xi
(x)
∣

∣

∣

xi=0+
= ki(1 + εi) > 0 ,

∂f

∂xi
(x)
∣

∣

∣

xi=0−

= ki(1 + εi)/η > 0 ,

if α > 1 .

If α 6= 1, this implies that, in this case, f can not attain its minimum in the interior points of D where f is

not differentiable.

• If xn+1 = 0, then xi > 0 for all i ≤ n and

∂f

∂xi
(x)
∣

∣

∣

xn+1=0
= −∞ , if α > 1 ,

∂f

∂xi
(x)
∣

∣

∣

xn+1=0
= ki(1 + εi) > 0 , if 0 < α < 1 ,

for all i ≤ n. If α 6= 1, this implies again that, also in this case, f can not attain its minimum in the interior

points of D where f is not differentiable.

• If α = 1 and xi = 0 for some 1 < i ≤ n, then xn+1 < 0 and we have, for all these x in the interior of

D, that
∂f

∂x1
(x) = k1(1 + ε1) − k1(1 − ε)/η > 0

13



if 1 > ε > ε4(1, η,k), where

ε4(1, η,k) =
1 − η

1 + (N − k1) η/k1
.

• If α = 1 and xn+1 = 0, then xi > 0 for all i ≤ n, and

∂f

∂x1
(x)
∣

∣

∣

xn+1=0+
= k1(1 + ε1) − k1(1 − ε) > 0 ,

∂f

∂x1
(x)
∣

∣

∣

xn+1=0−

= k1(1 + ε1) − k1(1 − ε)/η > 0 ,

if 1 > ε > ε4(1, η,k).

This implies that, also in the two last cases, f can not attain its minimum in the interior points of D

where f is not differentiable.

2) f can not attain its minimum in the critical points belonging to the interior of D. It is easy to see

that a interior point x is a critical point of f if and only if xi 6= 0 for all i ∈ {1, . . . , n+ 1} and

(3.6) (1 + ε1)x
1−α
1 = (1 − ε)

|x2|1−α

η(x2)
= · · · = (1 − ε)

|xn|1−α

η(xn)
= (1 − ε)

|xn+1|1−α

η(xn+1)
.

We need again to distinguish several cases:

• If α = 1, then (3.6) implies that x2, . . . , xn+1 < 0, since 1 + ε1 > 1 − ε, and therefore a fortiori we

must have 1 + ε1 = (1 − ε)/η, but this is a contradiction with 1 > ε > ε4(1, η,k). Therefore, in this case, f

can not attain its minimum on the critical points.

• If α 6= 1 and n ≥ 3, there are not critical points in the interior of D since we have

|x2|1−α

η(x2)
=

|x3|1−α

η(x3)
=

|x4|1−α

η(x4)
.

But this implies that xi = xi+1 for some i, i.e. that x ∈ ∂D.

• If α 6= 1 and n = 2, a critical point must verify x1 > x2 > 0 > x3 since if sgnx2 = sgnx3, arguing as

in the last case it is easy to see that then x2 = x3. On the other hand, if x is a critical point of f , then

x2 =
( 1 − ε

1 + ε1

)1/(α−1)

x1 .

Therefore, x1 > x2 if and only if α > 1 and so there are not critical points when 0 < α < 1.

If x1 > x2 and α > 1, we have

x2 =
( 1 − ε

1 + ε1

)1/(α−1)

x1 , x3 = −
(1

η

1 − ε

1 + ε1

)1/(α−1)

x1 ,

and then

x1 =

(

1

k1 + k2

( 1 − ε

1 + ε1

)α/(α−1)

− k3

(1

η

1 − ε

1 + ε1

)α/(α−1)

)1/α

,

and, if x0 is this critical point,

f(x0) =
(

1 +
k2 + k3

k1
ε
)(

k1 + k2

( 1 − ε

1 + ε1

)α/(α−1)

− k3

(1

η

1 − ε

1 + ε1

)α/(α−1))(α−1)/α

.
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We can assure that f(x0) > N (α−1)/α if 1 > ε > ε5(α, η,k) by a continuity argument, where ε5(α, η,k)

decreases when η grows.

This implies that the mimimum of f in D can not be attained at x0.

3) Therefore the minimum of f is attained in ∂D. The point where this minimum is attained must

verify xj = xj+1 for some j ∈ {1, . . . , n}. If we substitute this relation in the function f and in the domain

D, we obtain a function and a domain of the same type, but now with n− 1 variables, and with a different

k′ also satisfying
∑

i k
′
i = N .

Hence, the induction hypothesis gives that

min
x∈∂D

f(x) = N (α−1)/α for 1 > ε > ε6(α, η,k
′) ,

where ε6(α, η,k
′) decreases when η grows by the induction hypothesis. As we have used along the induction

process only a finite number of functions εi(α, η, ·), the proof is finished.

Proposition 3.2. Let k = (k1, . . . , kn+1) be a vector with strictly positive integer entries, N =
∑

i ki,

0 < η < 1 and α > 0. Let η(t) be the function whose values are 1 if t ≥ 0, and the constant η elsewhere.

Given 0 < ε < 1, consider the number

εn+1 =
N − kn+1

kn+1
ε ,

Then, the function defined by

g(x) =

n
∑

i=1

ki (1 − ε)xi η(xi) + kn+1 (1 + εn+1)
(1 − k1x

α
1 − · · · − knx

α
n

kn+1

)1/α

η(1 − k1x
α
1 − · · · − knx

α
n)

satisfies

(3.7) max
x∈D

g(x) = g(N−1/α, . . . , N−1/α) = N (α−1)/α , for 1 > ε > ε′(α, η,k) > 0 ,

where ε′(α, η,k) decreases when η grows and

D :=
{

x ∈ Rn : x1 ≥ · · · ≥ xn ≥
(1 − k1x

α
1 − · · · − knx

α
n

kn+1

)1/α}

.

Recall that if we define xn+1 as

xn+1 =
(1 − k1x

α
1 − · · · − knx

α
n

kn+1

)1/α

,

we have x1 ≥ · · · ≥ xn ≥ xn+1 and k1x
α
1 + · · · + knx

α
n + kn+1x

α
n+1 = 1, and therefore x1 > 0.

Proof. We will use induction in n.

If n = 1 we have

g(x) = k1(1 − ε)x+ k2(1 + ε2)
(1 − k1x

α

k2

)1/α

η(1 − k1x
α) , k1 + k2 = N , ε2 =

k1

k2
ε ,
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and

x ∈ D ⇐⇒ x ≥
(1 − k1x

α

k2

)1/α

⇐⇒ x ≥ N−1/α .

Therefore, in this case D = [N−1/α,∞).

This function (and its domain) coincides with the one in Lemma 3.1, if we take

a = k1(1 − ε) , b = k2(1 + ε2) , c =
1

k2
, d =

k1

k2
,

and we consider η−1 instead of η.

Observe that we have a < bd always.

On the other hand we have that limx→∞ g(x) = −∞ if

(3.8) k1(1 − ε) < k2(1 + ε2)
(k1

k2

)1/α

η

and we can assure this for 1 > ε > ε′1(α, η,k) by a continuity argument (this condition is the same that

a < bd1/αη in the notation of Lemma 3.1), where ε′1(α, η,k) decreases when η grows. Besides an easy

computation gives

ε′1(1, η,k) =
1 − η

1 + η k1/k2
.

We will consider now three cases:

• If α > 1 we are in the case (B) of Lemma 3.1, and therefore

(3.9) g(x) ≤ g(N−1/α) = N (α−1)/α , x ≥ N−1/α .

• If α = 1, (3.9) is also true since g is a decreasing function by (3.8).

• If 0 < α < 1, we are in the case (C) of Lemma 3.1. A continuity argument gives g(t2) < N (α−1)/α =

g(N−1/α) = g(t0) if 1 > ε > ε′2(α, η,k), where ε′2(α, η,k) decreases when η grows. Hence, (3.9) is also true

in this case.

This ends the proof of the case n = 1.

Suppose now that the proposition is true for the case n− 1. We will prove it for the case n.

First, we will see that g attains a maximum in the domain D. We have, as in Proposition 3.1,

x1 ≥ · · · ≥ xn ≥
(1 − k1x

α
1 − · · · − knx

α
n

kn+1

)1/α

≥ −
(k1x

α
1 + · · · + knx

α
n

kn+1

)1/α

.

Then, for i = 1, . . . , n, we can write xi = mix1, where m = (m1, . . . ,mn) is in the compact set

M :=
{

m ∈ Rn : m1 = 1 ≥ m2 ≥ · · · ≥ mn ≥ −
(k1m

α
1 + · · · + knm

α
n

kn+1

)1/α}

.

We will consider the auxiliary function

g̃(x1) =

( n
∑

i=1

ki (1 − ε)mi η(mi) − η kn+1 (1 + εn+1)
(k1m

α
1 + · · · + knm

α
n

kn+1

)1/α

η(−k1m
α
1 − · · · − knm

α
n)

)

x1

:= vm(ε)x1 .
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Now observe that

η ≤
(Axα

1 − 1)1/α

A1/αx1
, if A1/αx1 ≥ c1(α, η) > 0 ,

where c1(α, η) is an increasing function in η. This implies that

(1 −Axα
1 )1/α η(1 −Axα

1 ) ≤ −A1/αx1η
2 , if A1/αx1 ≥ c1(α, η) > 0 .

Taking A = k1m
α
1 + · · · + knm

α
n, we obtain that

g(x) ≤ g̃(x1) , if (k1m
α
1 + · · · + knm

α
n)1/αx1 ≥ c1(α, η) > 0 .

Now let be mn+1 := −(A/kn+1)
1/α. Then

1 = m1 ≥ m2 ≥ · · · ≥ mn ≥ mn+1 ,

k1m
α
1 + · · · + knm

α
n + kn+1m

α
n+1 = 0 .

These conditions imply that mn+1 < 0 in the compact set M . Therefore mn+1 ≤ −c2(α,k) < 0 in M . This

means that

A1/α ≥ c3(α,k) := c2(α,k) k
1/α
n+1 .

Hence,

g(x) ≤ g̃(x1) , if x1 ≥
c1(α, η)

c3(α,k)
.

As M is compact the function v(ε) := maxm∈M vm(ε) is continuous in ε. Since vm(1) = η2Nmn+1 ≤

−η2Nc2(α,k) < 0 we have v(1) ≤ −η2Nc2(α,k) < 0, and a continuity argument gives

v(ε) < 0 , if 1 > ε > ε′3(α, η,k) ,

where ε′3(α, η,k) decreases when η grows. Hence

vm(ε) ≤ v(ε) < 0 , for all m ∈M .

It follows that g(x) ≤ g̃(x1) = vm(ε)x1 ≤ v(ε)x1, if x1 ≥ c1(α, η)/c3(α,k) and therefore g(x) → −∞

“uniformly” as x → ∞.

This implies that there exists the maximum of g in the domain D and that this maximum is attained

either on the boundary of D, either on the critical points of g, or on the points in which g is not differentiable.

We will study each of this cases separately:

1) g can not attain its maximum in the interior points of D in which g is not differentiable. To prove

this observe that

∂g

∂xi
(x) = ki (1 − ε) η(xi) − ki (1 + εn+1)

∣

∣

∣

1 − k1x
α
1 − · · · − knx

α
n

kn+1

∣

∣

∣

(1−α)/α

η(1 − k1x
α
1 − · · · − knx

α
n) |xi|

α−1 .

We need to distinguish several cases:

• If xi = 0 for some i ∈ {2, . . . , n}, we have (see (3.3)) xn+1 < 0 and then

∂g

∂xi
(x)
∣

∣

∣

xi=0
= −∞ , if 0 < α < 1 ,











∂g

∂xi
(x)
∣

∣

∣

xi=0+
= ki(1 − ε) > 0 ,

∂g

∂xi
(x)
∣

∣

∣

xi=0−

= ki(1 − ε)η > 0 ,

if α > 1 .
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If α 6= 1, this implies that, in this case, g can not attain its maximum in the interior points of D where g is

not differentiable.

• If xn+1 = 0, then xi > 0 for all i ≤ n and

∂g

∂xi
(x)
∣

∣

∣

xn+1=0
= −∞ , if α > 1 ,

∂g

∂xi
(x)
∣

∣

∣

xn+1=0
= ki(1 − ε) > 0 , if 0 < α < 1 ,

for all i ≤ n. If α 6= 1, this implies again that, also in this case, g can not attain its maximum in the interior

points of D where g is not differentiable.

• If α = 1 and xi = 0 for some 1 < i ≤ n, then xn+1 < 0 and we have, for all these x in the interior of

D, that
∂g

∂x1
(x) = k1(1 − ε) − k1(1 + εn+1)η < 0

if 1 > ε > ε′4(1, η,k), where

ε′4(1, η,k) =
1 − η

1 + (N − kn+1) η/kn+1
.

• If α = 1 and xn+1 = 0, then xi > 0 for all i ≤ n, and

∂g

∂x1
(x)
∣

∣

∣

xn+1=0+
= k1(1 − ε) − k1(1 + εn+1) < 0 ,

∂g

∂x1
(x)
∣

∣

∣

xn+1=0−

= k1(1 − ε) − k1(1 + εn+1) η < 0 ,

if 1 > ε > ε′4(1, η,k).

This implies again that, also in the two last cases, g can not attain its maximum in the interior points

of D where g is not differentiable.

2) g have not critical points in the interior of D. It is easy to see that x is a critical point of g if and

only if xi 6= 0 for all i ∈ {1, . . . , n+ 1} and

(3.10) (1 − ε)x1−α
1 = (1 − ε) |x2|

1−αη(x2) = · · · = (1 − ε) |xn|
1−αη(xn) = (1 + εn+1) |xn+1|

1−αη(xn+1) .

We need again to distinguish several cases:

• If α = 1, then (3.10) implies that x1, x2, . . . , xn > 0 and xn+1 < 0, since 1 + εn+1 > 1 − ε, and

therefore a fortiori we must have (1 + εn+1) η = (1 − ε), but this is a contradiction with 1 > ε > ε′4(1, η,k).

Therefore, in this case, g can not have critical points.

• If α 6= 1 and n ≥ 3, there are not critical points in the interior of D since we have

x1−α
1 = |x2|

1−αη(x2) = |x3|
1−αη(x3) .

But this implies that xi = xi+1 for some i, i.e. that x ∈ ∂D.
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• If α 6= 1 and n = 2, we must have x1 > 0 > x2 > x3 in order to x be in the interior of D, since if

x2 > 0, arguing as in the last case it is easy to see that x1 = x2. On the other hand, if x is a critical point

of g, then

x2 =
(1 + ε3

1 − ε

)1/(1−α)

x3 .

Therefore, 0 > x2 > x3 if and only if α > 1 and so there are not critical points when 0 < α < 1.

If 0 > x2 > x3 and α > 1, we have L(ε)x1 = 1, where

L(ε) = k1 − k2 η
1/(α−1) − k3

(

η
1 + ε3
1 − ε

)1/(α−1)

.

We can assure that L(ε) < 0 if 1 > ε > ε′5(α, η,k) by a continuity argument, where ε′5(α, η,k) decreases

when η grows.

This and the fact that x1 > 0 imply that, also in this last case, there are not critical points of g in the

interior of D.

3) Therefore the maximum of g is attained in ∂D. The point where the maximum is attained must

verify xj = xj+1 for some j ∈ {1, . . . , n}. If we substitute this relation in the function g and in the domain

D, we obtain a function and a domain of the same type, but now with n− 1 variables, and with a different

k′ also satisfying
∑

i k
′
i = N .

The induction hypothesis gives that

max
x∈∂D

g(x) = N (α−1)/α for 1 > ε > ε′6(α, η,k
′) ,

where ε′6(α, η,k
′) decreases when η grows. As we have used along the induction hypothesis only a finite

number of functions ε′i(α, η, ·), the proof is finished.

Proposition 3.3. Let k = (k1, . . . , kn+1) be a vector with strictly positive integer entries, N =
∑

i ki,

0 < η < 1 and α > 0. Let η(t) be the function whose values are 1 if t ≥ 0, and the constant η elsewhere.

Given 0 < ε < 1, consider the numbers

ε1 =
N − k1

k1
ε , ε2 = · · · = εn+1 = −ε .

Then, the function defined by

h(x) =
n
∑

i=1

ki (1 + εi)
xi

η(xi)
− kn+1 (1 + εn+1)

((k1x
α
1 + · · · + knx

α
n)/kn+1)

1/α

η(−k1xα
1 − · · · − knxα

n)

satisfies

(3.11) min
x∈D0

h(x) = h(0) = 0 , for 1 > ε > ε′′(α, η,k) > 0 ,

where ε′′(α, η,k) decreases when η grows and

D0 :=
{

x ∈ Rn : x1 ≥ · · · ≥ xn ≥ −
(k1x

α
1 + · · · + knx

α
n

kn+1

)1/α}

.
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Remark. Observe that in fact ε′′(α, η,k) = ε3(α, η,k) (see the proof of Proposition 3.1). This implies that

(3.11) is true for 1 > ε > ε(α, η,k) where this last function is the one appearing in Proposition 3.1.

Proof. If we define now

xn+1 := −
(k1x

α
1 + · · · + knx

α
n

kn+1

)1/α

,

we have

x1 ≥ · · · ≥ xn ≥ xn+1 and k1x
α
1 + · · · + knx

α
n + kn+1x

α
n+1 = 0 .

This implies that x1 ≥ 0.

Then, for i = 1, . . . , n, we can write xi = mix1, where m = (m1, . . . ,mn) is in the compact set

M :=
{

m ∈ Rn : m1 = 1 ≥ m2 ≥ · · · ≥ mn ≥ −
(k1m

α
1 + · · · + knm

α
n

kn+1

)1/α}

.

Observe now that

h(x) =

( n
∑

i=1

ki (1 + εi)
mi

η(mi)
− kn+1 (1 + εn+1)

((k1m
α
1 + · · · + knm

α
n)/kn+1)

1/α

η(−k1mα
1 − · · · − knmα

n)

)

x1 := um(ε)x1 .

Observe that this function um is the same function that appears in the proof of Proposition 3.1.

As M is compact the function u(ε) := minm∈M um(ε) is continuous in ε. Since um(1) = N we have

u(1) = N > 0, and a continuity argument gives

u(ε) > 0 if 1 > ε > ε′′(α, η,k) ,

where ε′′(α, η,k) = ε3(α, η,k) decreases when η grows. Hence

um(ε) ≥ u(ε) > 0 , for all m ∈M .

Therefore,

h(x) ≥ u(ε)x1 ≥ 0 , if 1 > ε > ε′′(α, η,k) .

4. Proof of Theorem 2.

Recall that in Section 2, we defined the set of measures MT and the functions d, un, dn. We will use

these definitions in what follows.

Lemma 4.1. If T is a tree, µ ∈ MT and u is a function on T , then

∫

un dµ = u(v0) +

n
∑

j=1

∫

dj dµ .
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Proof. We will use induction in n. If n = 1 and Hv0 = {v1, . . . , vk} the lemma follows from

u(v0) +

∫

d1 dµ = u(v0) + (u(v1) − u(v0))µ(v1) + · · · + (u(vk) − u(v0))µ(vk) =

∫

u1 dµ .

Finally, if we assume that the lemma is true for n then, if vn ∈ Sn and Hvn
= {v1, . . . , vr}, we have

u(v1)µ(v1) + · · · + u(vr)µ(vr) − u(vn)µ(vn) = (u(v1) − u(vn))µ(v1) + · · · + (u(vr) − u(vn))µ(vr) .

Summing this equalities for all vertices in Sn we obtain

∫

un+1 dµ−

∫

un dµ =

∫

dn+1 dµ .

This formula and the induction hypothesis give the case n+ 1.

Proposition 4.1. Let T be a spherically symmetric tree with bounded degree. Given a p-subharmonic

function u on T (1 < p < ∞) and a constant 0 < η < 1, there exist a function ε(p, η) independent of u,

which decreases when η grows, and a measure µε ∈ MT for each 1 > ε > ε(p, η), such that

(4.1)

∫

dn dµε ≥
1 − η

1 + η

∫

|dn| dµε

for all n.

Proof. Given 1 > ε > 0 we will define the measure µε in the following way: µε(v0) = 1 and, if v ∈ V and

Hv = {v1, . . . , vN} is indexed such that

d(v1) ≥ · · · ≥ d(vN ) ,

we define

µε(v
1) = µε(v)

1 + (N − 1)ε

N
, µε(v

2) = · · · = µε(v
N ) = µε(v)

1 − ε

N
.

With this definition of µε, we have as a consequence of Proposition 3.3 with ki = 1 for all i (see Section 3;

see also (4.6) below) that for n = 1

(4.2) η

∫

(d1)+ dµε −

∫

(d1)− dµε ≥ 0 ,

where h+ and h− are the usual positive and negative parts of the function h. This inequality is true since u

is a p-subharmonic function at the point v0, i.e.

d(v1)p−1 + · · · + d(vk)p−1 ≥ 0 ,

where Hv0 = {v1, . . . , vk}.

We will prove by induction that the condition (4.2) is true for all n and 1 > ε > ε(p, η), i.e. that

(4.3) η

∫

(dn)+ dµε −

∫

(dn)− dµε ≥ 0 .
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If we suppose that (4.3) is true, we have that

∫

(dn)+ dµε +

∫

(dn)− dµε − η

∫

(dn)+ dµε − η

∫

(dn)− dµε

≤

∫

(dn)+ dµε −

∫

(dn)− dµε + η

∫

(dn)+ dµε − η

∫

(dn)− dµε ,

i.e. that

(1 − η)

∫

|dn| dµε ≤ (1 + η)

∫

dn dµε ,

and then the proposition will be proved.

Therefore to finish the proof we can suppose that (4.3) is true for n. If Sn = {v1, . . . , vm}, we consider

Hvj
= {v1

j , . . . , v
N
j } (where N = N(n) is independent of j since T is spherically symmetric), ordered such

that dn+1(v
1
j ) ≥ · · · ≥ dn+1(v

N
j ). If we define yk := dn+1(v

k
j ), then

∆pu(vj) = −yp−1
1 − · · · − yp−1

N + dn(vj)
p−1 ≤ 0 .

• If dn(vj) > 0, the numbers zk := yk/dn(vj) satisfy

zp−1
1 + · · · + zp−1

N ≥ 1 and z1 ≥ · · · ≥ zN .

Defining now xk := zk for k < N , and xN = (1 − zp−1
1 − · · · − zp−1

N−1)
1/(p−1) ≤ zN , we have that

xp−1
1 + · · · + xp−1

N = 1 and x1 ≥ · · · ≥ xN .

We will be interested in the expression

A := Nη
(

dn+1(v
1
j )µε(v

1
j ) +

dn+1(v
2
j )

η(dn+1(v2
j ))

µε(v
2
j ) · · · +

dn+1(v
N
j )

η(dn+1(vN
j ))

µε(v
N
j )
)

= η dn(vj)µε(vj)
(

(1 + ε1) z1 + (1 − ε)
z2
η(z2)

+ · · · + (1 − ε)
zN

η(zN )

)

≥ η dn(vj)µε(vj)
(

(1 + ε1)x1 + (1 − ε)
x2

η(x2)
+ · · · + (1 − ε)

xN

η(xN )

)

= η dn(vj)µε(vj) f(x) ,

where x = (x1, . . . , xN−1) ∈ D (see Proposition 3.1 for the definition of D; we are using here the case ki = 1

for all i and α = p− 1).

Proposition 3.1 gives

(4.4) A ≥ η dn(vj)µε(vj)N
(p−2)/(p−1) ,

if 1 > ε > ε1(p, η).

• If dn(vj) < 0, the numbers zk := yk/dn(vj) satisfy

zp−1
1 + · · · + zp−1

N ≤ 1 and z1 ≤ · · · ≤ zN .

Defining now xk := zN−k+1 for k ≥ 2, and x1 = (1 − zp−1
1 − · · · − zp−1

N−1)
1/(p−1) ≥ z1, we have that

xp−1
1 + · · · + xp−1

N = 1 and x1 ≥ · · · ≥ xN .
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We will be interested in the expression

B := N
(

dn+1(v
1
j )µε(v

1
j ) η(−dn+1(v

1
j )) + · · · + dn+1(v

N
j )µε(v

N
j ) η(−dn+1(v

N
j ))
)

= dn(vj)µε(vj)
(

(1 + ε1) z1 η(z1) + (1 − ε) z2 η(z2) + · · · + (1 − ε) zN η(zN )
)

≥ dn(vj)µε(vj) g(x) ,

where x = (x1, . . . , xN−1) ∈ D (see Proposition 3.2 for the definition of D; we are using here the case ki = 1

for all i and α = p− 1).

Proposition 3.2 gives

(4.5) B ≥ dn(vj)µε(vj)N
(p−2)/(p−1) ,

if 1 > ε > ε2(p, η).

• If dn(vj) = 0, the numbers yk satisfy

yp−1
1 + · · · + yp−1

N ≥ 0 and y1 ≥ · · · ≥ yN .

Defining now xk := yk for k < N , and xN = −(yp−1
1 + · · · + yp−1

N−1)
1/(p−1) ≤ yN , we have that

xp−1
1 + · · · + xp−1

N = 0 and x1 ≥ · · · ≥ xN .

We are interested now in the expression

C := (1 + ε1)
y1
η(y1)

+ (1 − ε)
y2
η(y2)

+ · · · + (1 − ε)
yN

η(yN )

≥ (1 + ε1)
x1

η(x1)
+ (1 − ε)

x2

η(x2)
+ · · · + (1 − ε)

xN

η(xN )
= h(x) ,

where x = (x1, . . . , xN−1) ∈ D0 (see Proposition 3.3 for the definition of D0; we are using here the case

ki = 1 for all i and α = p− 1).

Proposition 3.3 gives

(4.6) C ≥ 0 ,

if 1 > ε > ε1(p, η).

Recall that the vertices v1, . . . , vm have the same number of children since T is spherically symmetric.

Therefore, summing the expressions A, B and C, for all vertices v1, . . . , vm in Sn and using (4.4), (4.5) and

(4.6), we obtain that

N
(

η

∫

(dn+1)+ dµε −

∫

(dn+1)− dµε

)

≥ N (p−2)/(p−1)
(

η

∫

(dn)+ dµε −

∫

(dn)− dµε

)

,

and

η

∫

(dn+1)+ dµε −

∫

(dn+1)− dµε ≥ N−1/(p−1)
(

η

∫

(dn)+ dµε −

∫

(dn)− dµε

)

≥ 0 ,

by the induction hypothesis. This finishes the proof of Proposition 4.1.

23



Proof of Theorem 2. Without loss of generality we can assume that u is an bounded above p-subharmonic

function.

Let 0 < η < 1 and µε the measure of Proposition 4.1 with 1 > ε > ε(p, η). Proposition 4.1 and Lemma

4.1 give
∫

um dµε = u(v0) +

m
∑

n=1

∫

dn dµε ≥ u(v0) +
1 − η

1 + η

m
∑

n=1

∫

|dn| dµε .

If M is an upper bound of the function u, this inequality implies

m
∑

n=1

∫

|dn| dµε ≤
1 + η

1 − η
(M − u(v0)) ,

and then
∫

(

∞
∑

n=1

|dn|
)

dµε ≤
1 + η

1 − η
(M − u(v0)) .

Therefore

(4.7)

∞
∑

n=1

|dn| < ∞ ,

almost everywhere with respect to µε and consequently µε(BV (u)) = 1.

It is well known the following fact

Lemma 4.2. If µ is a Borel measure over R and there are positive constants c, d such that for all interval

I, µ(I) ≤ c|I|d, and H is a set with µ(H) > 0, we have Dim (H) ≥ d.

Let {v0, v1, . . . } ∈ ∂T be an infinite path. If we prove

µε(vn) ≤ c |vn|
d ,

with constants c, d independent of the vertices, then Lemma 4.2 gives Dim (BV (u)) ≥ d. Here we are using

the identification between ∂T and [0, 1). More concretely, if we denote by Nk+1 the cardinal of the set Hvk

and by | · | the “Lebesgue measure” in ∂T , then

|v1| =
1

N1
,

|vk|

|vk−1|
=

1

Nk
,

and

|vn| =
1

N1
· · ·

1

Nn
.

On the other hand, for the measure µε we have

µε(vk)

µε(vk−1)
=



















1 + (Nk − 1) ε

Nk
or

1 − ε

Nk

for k ≥ 1 ,

and

µε(vn) =
a(1, ε)

N1

a(2, ε)

N2
· · ·

a(n, ε)

Nn
,
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where

a(k, ε) =











1 + (Nk − 1) ε

or

1 − ε

for k ≥ 1 .

Therefore,

µε(vn) ≤
1 + (N1 − 1) ε

N1
· · ·

1 + (Nn − 1) ε

Nn
.

Let now N be the number defined by

N = lim sup
k→∞

Nk .

Then, Nk ≤ N if k ≥ k0 and therefore, if n ≥ k0, we have that

µε(vn) ≤
1 + (Nk0 − 1) ε

Nk0

· · ·
1 + (Nn − 1) ε

Nn
.

On the other hand if we take

d := 1 −
log (1 + (N − 1) ε)

logN
,

it is not difficult to see that

(4.8) d ≤ 1 −
log (1 + (Nk − 1) ε)

logNk
, for k ≥ k0 ,

by using the fact that, for each integer m ≥ 2, the function

A(ε) := logm log (1 +mε) − log (m+ 1) log (1 + (m− 1) ε)

satisfies A(ε) ≥ 0 for all ε ∈ [0, 1].

Then, (4.8) implies
1 + (Nk − 1) ε

Nk
≤
( 1

Nk

)d

, for k ≥ k0 .

This gives

µε(vn) ≤
(

N1N2 · · ·Nk0−1

)d ( 1

N1

1

N2
· · ·

1

Nn

)d

= C |vn|
d ,

for all n ≥ 1. Hence

Dim (BV (u)) ≥ 1 −
log (1 + (N − 1) ε)

logN
, for 1 > ε > ε(p, η) ,

and consequently

Dim (BV (u)) ≥ 1 −
log (1 + (N − 1) ε(p, η))

logN
.

If we choose φ(p) as the function defined by

(4.9) φ(p) := lim
η→1

(

1 −
log (1 + (N − 1) ε(p, η))

logN

)

,

the Theorem is proved unless we need yet to show that φ(2) = 1.

Observe that the function ε(2, η) appearing in Proposition 4.1 (and (4.9)) tends to zero as η → 1 since

the functions ε1(1, η,k), ε3(1, η,k), ε4(1, η,k) (appearing in the proof of Proposition 3.1), and ε′1(1, η,k),
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ε′3(1, η,k), ε′4(1, η,k) (appearing in the proof of Proposition 3.2) tend also to zero as η → 1. In fact, remember

that

ε1(1, η,k) =
1 − η

1 + η k2/k1
, ε4(1, η,k) =

1 − η

1 + (N − k1) η/k1
,

ε′1(1, η,k) =
1 − η

1 + η k1/k2
, ε′4(1, η,k) =

1 − η

1 + (N − kn+1) η/kn+1
.

Therefore it only remains to find good upper bounds of ε3(1, η,k) and ε′3(1, η,k).

We have seen that

um(ε) =
n
∑

i=1

ki (1 + εi)
mi

η(mi)
− kn+1 (1 + εn+1)

(

(k1m
α
1 + · · · + knm

α
n)/kn+1

)1/α

η(−k1mα
1 − · · · − knmα

n)
,

and that ε3(α, η,k) is defined by

um(ε) > 0 , for all m ∈M ,

if 1 > ε > ε3(α, η,k).

Observe that, if α = 1 and mr ≥ 0 > mr+1, we have

um(ε) = k1 (1 + ε1) − k1
1 − ε

η
+

r
∑

i=2

ki (1 − ε)mi

(

1 −
1

η

)

,

and then

um(ε) ≥ k1 (1 + ε1) − k1
1 − ε

η
− (N − k1) (1 − ε)

1 − η

η
.

An easy computation gives that the last right hand is positive if and only if ε > 1 − η, and therefore

ε3(1, η,k) ≤ 1 − η .

Also, we have seen that

vm(ε) =

n
∑

i=1

ki (1 − ε)mi η(mi) − η kn+1 (1 + εn+1)
(k1m

α
1 + · · · + knm

α
n

kn+1

)1/α

η(−k1m
α
1 − · · · − knm

α
n) ,

and that ε′3(α, η,k) is defined by

vm(ε) < 0 , for all m ∈M ,

if 1 > ε > ε′3(α, η,k).

Observe that, if α = 1 and mr ≥ 0 > mr+1, we have

vm(ε) = (1 − ε− η2(1 + εn+1))

n
∑

i=1

kimi − (1 − ε)(1 − η)

n
∑

i=r+1

ki mi .

In order to obtain the inequality 1 − ε− η2(1 + εn+1) < 0, we impose the condition

(4.10) ε >
1 − η2

1 + (N − kn+1)η2/kn+1
,

and then

vm(ε) ≤ (1 − ε− η2(1 + εn+1))A+ (1 − ε)(1 − η)B ,
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where A > 0 and B ≥ 0 are constants which are independent of m and whose existence we can assure since

M is a compact set. An easy computation gives that the last right hand is negative if and only if

ε >
B(1 − η) +A(1 − η2)

B(1 − η) +A(1 + (N − kn+1)η2/kn+1)
.

This condition implies, in particular, (4.10), and therefore

ε3(1, η,k) ≤
B(1 − η) +A(1 − η2)

B(1 − η) +A(1 + (N − kn+1)η2/kn+1)
.

Remark. If p 6= 2, we have φ(p) < 1. This can be deduced by considering ε2(p − 1, η,k) (if p > 2) and

ε′2(p− 1, η,k) (if 1 < p < 2).
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5. Some examples.

In this section we are going to prove an analogue to Rudin’s result for a tree. Precisely, we construct a

bounded harmonic function on a directed tree with infinite variation along almost every path in ∂T . Rudin’s

example is based on lacunary series while our construction will be based on a probabilistic approach.

We shall be able to find also, examples of bounded p-harmonic functions of infinite variation along

almost every path.

In order to make the exposition clearer we are going to introduce some concepts that we will need trough

out this section.

5.1. A general one-dimensional random walk.

In this section we are going to deal with a general notion of one-dimensional random walk. We are going

to consider the path described by a particle that starting from a position α0k, has probability pj to move at

time n from x to x+αnj for each integer j. The number |αn| will be the step of the random walk at time n.

In other words, the position of the particle following the n-th trial is the point,

Sn = α0k + α1X1 + ...+ αnXn ,

where {Xk} are mutually independent random variables identically distributed such that P (Xk = j) = pj ,

j ∈ Z. Here P (A) denotes the probability of the event A.

Note that if α0 = α1 = . . . , then Sn is the traditionally called generalized random walk (see [F, p.363]).

If moreover pj = 0 for all j 6= −1, 1, that is, if the particle can only jump one unit up or one unit down, then

Sn is the usual random walk, which is termed symmetric whenever p−1 = p1 = 1/2.

Troughout this section we are always going to refer to this notion of random walk where only a finite

number of probabilities pj are different from zero.

5.2. Sequence of temporary absorbing barriers.

Let us consider the random walk as described in Section 5.1. Suppose that at certain time n0 the

position of the random walk is between two levels M and N , that is, M < Sn0 < N . Then we can stop when

the particle reaches the positions M or N for the first time after n0, that is, we stop the process whenever,

Sn = α0k + α1X1 + · · · + αnXn ≤M , or,

Sn = α0k + α1X1 + · · · + αnXn ≥ N ,

for n ≥ n0. In such a case we say that the particle performs a random walk with absorbing barriers at M

and N (usually n0 is zero).
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Now we can also let the barriers act for a while, that is, we can stop the process only for n with

n0 ≤ n ≤ n1, and let it start again after time n1. In this case we say that the particle performs a random

walk with temporary absorbing barriers. This allows us to confine the random walk in a band during a

while, and change the band afterwards if it is necessary. In this way we could also construct a sequence of

temporary absorbing barriers.

The period of time in which the barriers are active either could be given a priori, that is, we could fix

a sequence of times nk’s, or could be chosen by a stopping time argument, that is, given nk−1, and barriers

Mk−1, Nk−1 we let the process to evolve and wait until something has happened. We take the time nk to be

the one in which it has occured what we have been waiting for. To give an example, nk could be the time

at which the probability that the particle has reached a barrier is big enough.

For convenience we will consider that Xn ≡ 0 if the process stops at time n. Note that in spite {Xn}

will not be identically distributed any more it make sense to refer to the position of the particle at any time

n ∈ N by Sn = α0k + α1X1 + · · · + αnXn.

5.3. Existence theorem and general ideas of the proof.

We can now state the main theorem of this section.

Theorem 4. For 1 < p <∞, there exists a process Sn, such that

i)
∑

j∈Z

jp−1pj = 0, where only a finite number of pj’s are different from zero.

ii) It is bounded.

iii) For 4Sn = Sn − Sn−1 = αnXn, we have that,

P ({
∞
∑

n=1

|4Sn| = ∞}) = 1 .

The behaviour of the random walk depends very strongly on the expectation of Xn, E(Xn). If E(Xn) =

0, the random walk has no “preference” for any direction, the particle will move “equally” up or down.

Nevertheless if E(Xn) > 0 (or E(Xn) < 0) the random walk will have a drift towards the top barrier (or the

bottom barrier).

When p = 2, i) implies that E(Xn) = 0. A random walk without barriers will oscilate infinitely often

around its initial position. We are going to take the advantage of this fact, but since we require it to be

bounded we need to put some barriers. Nevertheless once the process reaches a barrier is “trapped”and

then |4Sn| = 0. So the idea is to put the barriers further and further away by making the step smaller and

smaller with respect to them.
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In the case when p 6= 2, we will take the advantage of the drift to force the random walk to oscillate

infinitely often. Note that since it oscillates it will not escape to infinity (will be bounded) and will be

running all the time and so,
∑∞

n=1 |4Sn| will have more chances to diverge.

5.4. Proof for p = 2.

To prove Theorem 4 in this special case we need the following well-known lemma due to Kolmogorov,

see [W, p.138].

Lemma 5.1. Let {Xn} be a sequence of zero mean random variables in L2. Define σ2
k = V ar(Xk). Write

Sn := a+X1 +X2 + · · · +Xn. Then for C > 0,

P

({

sup
k≤n

|Sk| ≥ C

})

≤

n
∑

k=1

σ2
k

(C − a)2
.

Now we are going to construct a process with decreasing step {αn}. The particle starts at position 0

and has probability 1/2 to jump one unit up or down, and has absorbing barriers at M1 and −M1. At time

n1 we change the barriers to M2 and −M2 with M2 > M1. n1 is chosen so that the barriers M2,−M2 appear

further away with step αn2 than the barriers M1,−M1 with step α1. Again we let the particle to move freely

until time n2 when we change the barriers once more. We continue the process in this way indefinitely.

In other words, we are going to construct a symmetric random walk that starts at position 0 with steps

αn and temporary absorbing barriers Mk,−Mk for nk−1 < n ≤ nk. So the position of the particle at time

n is given by,

Sn = α1X1 + · · · + αnXn ,

where Xj is either a Bernoulli trial so P (Xj = 1) = 1/2 = P (Xj = −1), or Xj ≡ 0 and then P (Xj = 0) = 1.

In any case, E(Xj) = 0, and therefore the process is a martingale and property i) holds for p = 2.

Now we are going to choose the steps, the barriers and the time intervals in which they are active.

First the steps are a decreasing sequence of positive numbers {αn} such that,

(1)

∞
∑

n=1

αn = ∞, α1 < 1 and,

(2)

∞
∑

n=1

α2
n <∞.

For technical reasons we will also require that αn/αn+1 ∈ N.
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Next, we are going to choose the barriers. Take {νj} a sequence of natural numbers so that
∑∞

j=1 ανj
≤ 1

and ν1 = 0. Let M much bigger than 1
α1

and define

mj = ανj
M and Mk =

k
∑

j=1

mj .

And finally, to define the interval of time in which the barriers will be active, take a subsequence of νj ,

nk = νjk
such that for a fixed ε ∈ (0, 1),

(3)

nk+1
∑

n=1+nk

αn > 1, for all k ∈ N and,

(4)
∞
∑

n=nk

α2
n ≤ ε(mk+1)

2 for all k ∈ N.

Note that we can always choose such a sequence by properties (1) and (2).

Clearly with this choice of the barriers the process is bounded since given n ∈ N take k so that n ≤ nk

and then |Sn| ≤Mk < M .

So we are left to show that

P

({

∞
∑

n=1

|4Sn| <∞

})

= 0 .

For simplicity and only throghout this proof, we say that a process reaches a barrier Mj if it reaches

either Mj or −Mj, that is, Sn = Mj or Sn = −Mj for nj−1 < n ≤ nj .

The path described by the particle in its evolution can either avoid infinitely many barriers or only avoid

a finite number of them (and cannot do anything else).

Suppose that it avoids infinitely many barriers, say {Mkj
}, then,

|Sn| < Mkj
, for nkj−1 < n ≤ nkj

,

and then

4Sn = αnXn, Xn 6= 0, for nkj−1 < n ≤ nkj
.

So,
∞
∑

n=1

|4Sn| ≥
∞
∑

j=1

nkj
∑

n=nkj−1

αn ≥
∞
∑

j=1

1 = ∞ ,

where the last inequality follows from the condition (3).

Therefore, a necessary condition for
∑∞

n=1 |4Sn| <∞ to hold is that the particle avoids a finite number

of barriers. So it is enough to show that

P (a finite number of barriers is avoided) = 0 .
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Notice that,

P (a finite number of barriers is avoided)

≤
∞
∑

k=1

P (the particle reaches all the barriers after Mk).

Denote the event “the particle reaches all barriers after Mk” by Bk, and the event “the particle reaches

the barrier Mk” by Ck. Then,

Bk =
∞
⋂

j=k+1

Cj .

Notice that the events Cj are independent since the process is markovian and nk > nk−1 + 1 (due to α1 < 1

and by property (3)). Therefore,

P (Bk) =

∞
∏

j=k+1

P (Cj |Cj−1) .

Now, observe that,

Cj = {particle reaches the barrier Mj}

= {|Sn| = Mj for some n, nj−1 < n ≤ nj}

= { sup
nj−1<n≤nj

|Sn| ≥Mj},

where the second equality holds because the random walk cannot “trespass” the barrier Mj for time n ≤ nj

since αn

αn+1
∈ N. On the other hand, observe that for n > nj−1,

Sn = Snj−1 + αn(j−1)+1Xn(j−1)+1 + · · · + αnXn

Sn ≤Mj−1 + αn(j−1)+1Xn(j−1)+1 + · · · + αnXn

Sn ≥ −Mj−1 + αn(j−1)+1Xn(j−1)+1 + · · · + αnXn,

thus, by Lemma 5.1,

P (Cj |Cj−1) = P ({ sup
nj−1<n≤nj

|Sn| ≥Mj})

≤

nj
∑

i=nj−1

α2
i

(Mj −Mj−1)2
<

∞
∑

i=nj−1

α2
i

(mj)2
.

Therefore by property (4),

P (Cj |Cj−1) < ε.

So we have,

P (Bk) =
∞
∏

j=k+1

P (Cj |Cj−1) ≤
∞
∏

j=k+1

ε = 0 ,

and then Theorem 4 is proved for p = 2.
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5.5. Proof for p 6= 2.

As we have mentioned above, in this case the expectation of Xn could be positive or negative and it

determinates a drift towards the top barrier or the bottom barrier. To make more precise this fact we need

the following lemma, (see [F, p. 366]).

Lemma 5.2. Let Sn be a random walk of constant step α > 0, that starts at position k, that is, Sn =

k + α(X1 + · · · +Xn). Suppose further that p−a = p and pb = 1 − p for a, b integers such that a, b > 0 and

a < k −M, b < N − k. Let uk be the probability that the particle reaches a position ≤ M before a position

≥ N . Then,

uk ≥
σ

N−M
α − σ

k−M
α

σ
N−M

α − σ−a+1
,

where σ 6= 1 is the positive root of the equation

p−ax
−a + pbx

b = 1 .

Corollary 5.1. Let M, N, k, α and σ be as in Lemma 5.2. Let vn
k denote the probability that a particle

that starts at position k reaches a position ≤ M before reaching a position ≥ N , before time n. If σ > 1

there exists ñ ∈ N such that

vñ
k ≥

σ
N−M

α − σ
k−M

α

σ
N−M

α

.

To prove the case p 6= 2, the idea is to construct a process with steps αn and temporarily absorbing

barriers Mk and −Mk for nk−1 < n ≤ nk. The step will be constant for nk−1 < n ≤ nk, let us denote the

step by αk. We will choose the signs of αk so that E(α2kXn) > 0 for n2k−1 < n ≤ n2k and E(α2k+1Xn) < 0

for n2k < n ≤ n2k+1. Therefore the process will have a drift towards the top barrier and the bottom barrier

alternately, that will make it oscillate and therefore will keep it bounded and
∑

|4Sn| will have more chances

to diverge.

Suppose first that p > 2.

The position of the particle at time n, for nk−1 < n ≤ nk is given by,

Sn = α1X1 + · · · + αkXn ,

where, as we have mentioned above, the step αk is constant during the time the barriers −Mk and Mk are

active, that is, for nk−1 < n ≤ nk. Moreover we choose αk so that sgn(αk) = (−1)k−1, k ≥ 1 and |αk| ↘ 0

as k → ∞, and also we choose the sequence {Mk} to be increasing and 0 < Mk < M for every k and some

number M .

For nk−1 < n ≤ nk, we take Xn be a random variable so that,
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• if |Sn−1| < Mk then,

P (Xn = −1) =
2p−1

2p−1 + 1

P (Xn = 2) =
1

2p−1 + 1
,

• and if |Sn−1| = Mk then, Xn ≡ 0.

Notice that with this choice of {αn} and {Xn} it is easy to see that i) and ii) hold.

First,
∑

j j
p−1pj = 0, since

∑

j

jp−1pj = 2p−1 1

2p−1 + 1
−

2p−1

2p−1 + 1
= 0 .

Also, Sn is bounded. Take n ∈ N and let k be so that nk−1 < n ≤ nk, then

|Sn| ≤Mk < M .

We are left to show that,

P
({

∑

|4Sn| <∞
})

= 0.

Here it will be crucial the alternance of the signs of the αk’s. They have been chosen so that E(αkXnk
) >

0 if k is even and E(αkXnk
) < 0 if k is odd. This fact will allow us to make the process fluctuate.

Now we are going to choose the steps {αk} and the barriers {Mk}. Take {αk} such that

(1)
∞
∑

k=1

|αk| ≤ 1.

As above, we will require that |αk/αk+1| ∈ N for technical reasons.

Let σ > 1 be the root of
2p−1

2p−1 + 1
x−1 +

1

2p−1 + 1
x2 = 1 ,

notice that σ > 1 since p > 2. Take M ∈ N, M > 1/α1 so that,

(2)
σM − 1

σM
> 1/2.

We choose,

(3) Mk = M

k
∑

j=1

|αk|.

The period of time in which the barriers are active is a sequence of natural numbers {nk} so that,

(4) |αk|(nk − nk−1) ≥ 1, and

(5) nk ≥ ñk + nk−1, where ñk ∈ N is given by Corollary 5.1, and the process we are considering starts

at Mk−1 and reaches the barrier −Mk before the barrier Mk. That is, we are chosing the nk’s by a stopping
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time argument, we wait until the probability that the process is in the bottom barrier (−Mk) is high enough

even though the process has started very close to the top barrier. We can get such a “high” probability

because E(Xn) < 0 (since p > 2) and therefore there is a drift towards the bottom barrier.

To evaluate P (
∑

|4Sn| <∞) observe that the particle in its evolution can:

(a) avoid infinitely many top and bottom barriers at the same time, that is there exist infinitely many

j’s so that neither Mj nor −Mj are reached for nj−1 < n ≤ nj,

(b) reach infinitely many top barriers and reach also infinitely many bottom barriers,

(c) avoid at most a finite number of top barriers,

(d) avoid at most a finite number of bottom barriers,

and there are not other posibilities.

Suppose first, that we are in the case (a), that is, the particle avoids infinitely many top and bottom

barriers at the same time. Then there exists a sequence {kj} so that the particle does not reach the barrier

Mkj
nor the barrier −Mkj

, that is,

|Sn| < Mkj
, for nkj−1 < n ≤ nkj

,

and then,

|4Sn| = |αkj
Xn| ≥ |αkj

|, for nkj−1 < n ≤ nkj
.

So we have,

∞
∑

n=1

|4Sn| ≥
∞
∑

j=1

nkj
∑

n=1+nkj−1

|αkj
|

=

∞
∑

j=1

|αkj
|(nkj

− nkj−1)

≥
∞
∑

j=1

1 = ∞,

where the last inequality follows from property (4).

Let us assume now that the particle reaches infinitely many top barriers and infinitely many bottom

barriers, that is we are in the case (b). We define,

N0 := inf{n : Sn ≥ 1},

Nk := inf{n > Nk−1 : |Sn| ≥ 1 and sgn(SNk
) 6= sgn(SNk−1

)} .

Observe that,
Nk
∑

n=Nk−1

|4Sn| ≥ |SNk
− SNk−1

| ≥ 2 .

We have that Mk > 1 since M > 1
α1

.
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Since Sn reaches infinitely many top barriers and infinitely many bottom barriers, Sn ≥ 1 and Sn ≤ −1

infinitely often and therefore {Nk} is an infinite sequence so we have,

∞
∑

n=1

|4Sn| ≥
∞
∑

k=1

Nk
∑

n=Nk−1

|4Sn| ≥
∞
∑

k=1

2 = ∞ .

Thus the only chance for the particle to perform a process so that
∑

|4Sn| < ∞ is either to avoid a

finite number of top barriers or to avoid a finite number of bottom barriers. That is to be either in the case

(c) or the case (d), then,

P
({

∑

|4Sn| <∞
})

≤ P ( avoiding a finite number of top barriers )

+P ( avoiding a finite number of bottom barriers ).

And by symmetry, it is enough to prove,

P ( avoiding a finite number of top barriers ) = 0.

Notice that,

P ( avoiding a finite number of top barriers )

≤
∞
∑

k=1

P ( reaching all top barriers after Mk ).

Let us denote the event “reaching all top barriers after Mk” by Ak, the event “reaching the top barrier

Mk” by Bk and the event “reaching the bottom barrier −Mk” by Ck. Then,

Ak =

∞
⋂

j=k+1

Bj and Bc
j ⊃ Cj ,

where Ac denotes the complementary set of A.

Using the fact that the events Bj are independent (the process is markovian and nk > 1 + nk−1) and

by elementary properties of the probability, we obtain,

P (Ak) =
∏

j≥k+1

P (Bj |Bj−1) and P (Bj |Bj−1) ≤ 1 − P (Cj |Bj−1).

Notice also that,

Cj = { reaching the bottom barrier −Mj}

= { reaching the bottom barrier −Mj before the barrier Mj for n ≤ nj}

Observe that the position of the particle at time n is bounded by,

Sn ≤Mj−1 + αjXnj−1 + ...+ αjXn for nj−1 < n ≤ nj .
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Then by property (5) of nk’s and applying Corollary 5.1 with M = −M2j+1, N = M2j+1, k = M2j and

α = α2j+1 (recall that α2j+1 > 0), we obtain,

P (C2j+1|B2j) ≥
σ

2M(2j+1)
α(2j+1) − σ

M(2j+1)+M(2j)
α(2j+1)

σ
2M(2j+1)
α(2j+1)

=
σM − 1

σM
> 1/2,

where the equality and the last inequality follow from properties (3) and (2) respectively. That is, there is a

probability greater than 1/2 of reaching the bottom barrier −M2j+1 before time n2j+1, and therefore there

is probabilty less than 1/2 of reaching the top barrier M2j+1 before time n2j+1, that is,

P (B2j+1) ≤ 1 − P (C2j+1) < 1/2 .

Then,

P (Ak) =
∏

j≥k+1

P (Bj |Bj−1) ≤
∏

j≥k+1

P (B2j+1|B2j) ≤
∏

j≥k+1

1/2 = 0 .

So we obtain,

P ( avoiding a finite number of top barriers ) ≤
∞
∑

k=1

P (Ak) = 0.

And then Theorem 4 is proved for p > 2.

Suppose now that p < 2.

Take {αn} and {Xn} those chosen in the case p > 2.

Let γ > 1 be the root of,
2p−1

2p−1 + 1
x+

1

2p−1 + 1
x−2 = 1,

notice that γ > 1 since p < 2.

Take M ′ ∈ N, M ′ > 1/α1 so that,

(2’)
γM ′

− 1

γM ′
> 1/2.

Define Mk = M ′
∑

j≤k

|αj | and mj = |αj |M ′.

And now take nk’s so that (4) and (5) hold for the corresponding steps and for the corresponding

barriers.

The rest of the proof follows in the same way that the case p > 2 but with the roles of the top barriers

and the bottom barriers interchanged (notice that E(Xn) > 0 unlike the case p > 2 where E(Xn) < 0).
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5.6. Theorem 4 stated for a tree.

In this section we are going to state Theorem 4 for a tree, namely,

Theorem 5. For p ∈ (1,∞) there exist a directed regular tree T , and u : T → R a function on the tree,

such that,

(1) u is p-harmonic,

(2) u is bounded,

(3) |BV (u)| = 0.

Proof. We are going to divide the proof into two cases. Both are essentially the same but in the second

one there are minor technical dificulties that do not appear in the first case.

Case 1: 2p−1 ∈ N.

Let N be the degree of T and take N := 2p−1 + 1. From now on, given n ∈ N , k(n) will denote the

integer so that,

nk(n)−1 < n ≤ nk(n) ,

where nk’s are given in Section 5.4 for p = 2 and in Section 5.5 for p 6= 2.

We are going to define the function u recursively:

-For v = v0, we define u(v0) = 0.

-Assume now that u is defined for all vertices in Sn−1. Take v ∈ Sn−1 and let vj ∈ Hv for j = 1, . . . , N .

Then,

• If |u(v)| < Mk(n), we define,

u(vj) = u(v) + αk(n)Zn(vj), j = 1, . . . , N,

where αk and Mk are given in Section 5.4 for p = 2 and in Section 5.5 for p 6= 2; and Zn(vj) is so that,

Zn(vj) =

{

− 1, for j = 1, . . . , N − 1

2, for j = N .

• If |u(v)| = Mk(n) we define,

u(vj) = u(v), for j = 1, . . . , N,

that is, Zn(vj) ≡ 0.

Notice that Zn : Sn → R is only defined for vertices in Sn and that |u(v)| ≤Mk(n) for all v ∈ Sn.

With this definition the function u has the following properties.

(1) u is p-harmonic. Given v ∈ Sn,

4pu(v) = −
N
∑

j=1

(u(vj) − u(v))p−1 .
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(i) If |u(v)| < Mk(n) then,

u(vj) − u(v) = αk(n) ·

{

− 1, if j = 1, . . . , N − 1,

2, if j = N,

and so,

4pu(v) = αp−1
k(n)(−(N − 1) + 2p−1) = 0 .

Recall that N = 2p−1 + 1.

(ii) If |u(v)| = Mk(n), then u(v) = u(vj) and trivially, 4pu(v) = 0.

(2) u is bounded. Given v ∈ T let n be so that v ∈ Sn. Clearly,

|u(v)| ≤Mk(n) < M .

(3) |BV (u)| = 0.

We define in ∂T the random variables {Xn} such that,

P (Xn = a) = |{γ ∈ ∂T : Zn(vn) = a, vn ∈ Sn and vn ∈ γ}| ,

for a = −1, 2, 0. Then,

u(γ) =

∞
∑

n=1

αk(n)Zn(vn) =

∞
∑

n=1

αk(n)Xn = lim
n→∞

Sn ,

where Sn is the process described in Section 5.4 for p = 2 and in Section 5.5 for p 6= 2. Therefore,

V (u, γ) =
∞
∑

n=0

|∇u(vn, vn+1)| =
∞
∑

n=0

|u(vn+1) − u(vn)|

=

∞
∑

n=1

|αk(n)Zn(vn)| =

∞
∑

n=1

|αk(n)Xn| =

∞
∑

n=1

|4Sn| .

And so,

|BV (u)| = P

({

∞
∑

n=1

|4Sn| <∞

})

= 0 ,

where we have used the results obtained in previous sections.

Case 2: 2p−1 /∈ N.

In this case 2p−1 + 1 is not a natural number, and so we cannot use the stochastic proof of the theorem

in an inmediate way, as we have done for 2p−1 ∈ N. Nevertheless the changes required are only technical.

Choose N ∈ N, N > 2 and so that p < N . Let us denote,

s(p) := sgn(p− 2) =

{

− 1, p < 2

1, p > 2 .
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We take σ > 1 the root of
N − 1

N
x−s(p) +

1

N
xs(p)(N−1)β

= 1,

where β =
1

p− 1
.

Let M > 0 be so that,
σM − 1

σM
> 1/2.

And take {αk}, {Mk} and {nk} with properties (1), (3), (4) and (5) described in Section 5.5. Note that we

do not require now that | αk

αk+1
| ∈ N.

As above we will define u recursively,

For v0, define u(v0) = 0.

Suppose that u is defined for all vertices in Sn−1. Take v ∈ Sn−1 and let vj ∈ Hv for j = 1, . . . , N .

Then,

• If |u(v)| < Mk(n) we define,

u(vj) = u(v) + αk(n)Zn(vj), j = 1, . . . , N

where,

Zn(vj) =

{

−s(p) j = 1, . . . , N − 1

s(p)(N − 1)β , j = N.

• If |u(v)| ≥Mk(n), we define,

u(vj) = u(v), j = 1, . . . , N,

that is, Zn(vj) ≡ 0.

Notice that |u(v)| ≤Mk(n) + (N − 1)βαk(n) for all v ∈ Sn.

Following the proof above it is clear that (1), (2) and (3) hold for u defined in this way.
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Universidad Carlos III de Madrid

Butarque, 15

Leganés, 28911 Madrid, SPAIN

e-mail: domingo@dulcinea.uc3m.es
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