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Abstract. Lusin and Purves characterized those measurable functions
that map any Borel set onto a Borel set. In the present note, the theorem
of Lusin and Purves is applied to give some criteria to find examples
of analytic functions in the unit disk that preserve Borel sets on the
boundary of the disk at points where the radial limit exists. In addition,
we give a geometric characterization of plane domains whose universal
covering map preserves Borel sets. Together with the main results, some
open questions are posed.

1. Introduction

The σ-algebra B of Borel sets in Ĉ = C∪{∞} is, by definition, the smallest
σ-algebra that contains all open sets.

It is well known that the preimage of a Borel set under a continuous
mapping is again a Borel set, whereas the image of a Borel set need not to
be a Borel set. See [13], [25], [26] for a discussion from the point of view of
descriptive set theory.

We say that the mapping f preserves Borel sets on A if f is defined on
A and if

B ⊂ A, B ∈ B =⇒ f(B) ∈ B.

There seems to be no standard name for this property.
The notion of injectivity plays an important role. Lusin and Suslin showed

that any injective Borel measurable map, f : B → C, B ∈ B, preserves Borel
sets. In [7] it was shown that conformal maps of D into Ĉ preserve Borel
sets for radial limits.

Lusin and Purves have characterized the functions that preserve Borel
sets in terms of the number of preimages at the points in their domain. All
we shall prove is based on the following result ([14], p. 406; [21]).
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Theorem (Lusin-Purves). Let A ∈ B and let f : A → Ĉ have the property
that f−1(E) ∈ B for every E ∈ B. Then f preserves Borel sets on A if and
only if the set

{w : w = f(z) for uncountably many z ∈ A}

is countable.

We shall be interested in functions that are analytic (holomorphic) in the
unit disk D and are continuous in D (see section 2) or have radial limits
on subsets of T = ∂D (see sections 3 and 4). In section 5 we characterize
the plane domains whose universal covering maps preserve Borel sets. The
remarkable Lusin-Purves theorem now allows us to apply results on value
distribution to the problem of Borel images.

A Suslin set (or analytic set) is, by definition, the continuous image of
some Borel set; see e.g. [13], pp. 85-87. The images of Borel sets that we
consider are always Suslin sets ([16], Th. 7(i)).

There are several results ([11], [22], [6] among others) showing that essen-
tially any Suslin analytic set can occur as the image of a Borel set for various
classes of meromorphic functions. Robert Berman and Togo Nishiura (see
[5]) proved that, for any nowhere dense perfect set B ⊂ T and any Suslin set
A ⊂ Ĉ, there is an analytic function in D with radial limits on B such that
f(B) = A. We want to thank the two authors for their valuable information.

2. Continuous functions and lacunary series

A. S. Belov ([4], Cor. 3.1) has proved a very interesting result on lacunary
series which improves an earlier result of Kahane, Weiss and Weiss [12].

Theorem 1 (Belov). Let q = 3, 4, . . . and let

f(z) =
∞∑

k=1

akz
qk

.

If β and γ satisfy γ(1 + β) < 1 and if

(1) 2π
q − 1
q − 2

m∑
k=1

|ak|qk ≤ γ|am+1|qm+1, for m ≥ 0,

(2) |am+1| ≤ β

∞∑
k=m+2

|ak|, for m ≥ 0,

then f is continuous in D and assumes every value in some disk uncountably
often on T. Hence f does not preserve Borel sets on T.

The last statement follows from Lusin-Purves theorem.
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Example 1 (Kahane-Weiss-Weiss-Baranski). The lacunary series

f(z) =
∞∑

k=1

1
k2

zqk

is continuous in D and does not preserve Borel sets on T.

This is perhaps the simplest example of this kind. The fact that f does
not preserve Borel sets follows from [12], Th. II’ (which however only shows
this for the sum starting at some m) and more explicitely from a recent
paper of Baranski [3].

Example 2 (Belov). Let q = 5, 6, . . . and

(3) f(z) =
∞∑

k=1

q−αkzqk
.

Then ([4], Cor. 3.4) if α ∈ (0, 1/2) small enough, the conditions (1) and
(2) are satisfied so that f does not preserve Borel sets on T. Furthermore if
|z| = r → 1 then,

r|f ′(z)|
1− r

≤ 1
1− r

∞∑
k=1

q(1−α)k rqk ≤
∞∑

n=1

 ∑
qk≤n

q(1−α)k

 rn

=
∞∑

n=1

O(n1−α)rn = O((1− r)α−2).

Hence, f belongs to the class Λα of functions that are Hölder-continuous
with exponent α ([8], Th. 5.1).

In order to apply Theorem 1, we must have α ≤ 1/2 because every func-
tion with Hölder exponent greater than 1/2 maps T into a set of zero area
[24]. But we only need some uncountable set (and not a disk) to be assumed
uncountably often.

Problem 1. Does the function (3) fail to preserve Borel sets for any α < 1?

This raises to the following general question,

Problem 2. If an analytic function f preserves Borel sets, is the same true
for f + P for any polynomial P?

Suppose the answer is yes, then it would follow that any analytic function
g such that |g′(z)| < M for z ∈ D also preserves Borel sets. Indeed, let
f(z) = Mz + g(z) and observe that it satisfies Re(f ′(z)) > 0 so that f is
univalent ([9], Th. 2.16). Hence f preserves Borel sets and so would g.

Problem 3. Does f preserve Borel sets on T if f ′ is bounded?

As we have just seen, this would be true if Problem 2 has a positive
answer. Compare also Corollary 2.
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3. Radial limits and injectivity

Let f : D → Ĉ be continuous; we do not assume that f is analytic. We
consider the radial limit

(4) f(ζ) := lim
r→1

f(rζ) ∈ Ĉ, (ζ ∈ T)

wherever it exists. The set where the limit exists is a Borel set and f−1(E) ∈
B for E ⊂ B ([20], Prop. 6.5). Our positive results will be based on the
following rather technical theorem, where we make essential use of the fact
that we are working in two dimensions.

Theorem 2. Let f : D → Ĉ be continuous and let B ⊂ T be a Borel set
such that f(ζ) exists for ζ ∈ B. If there are sets Un ⊂ D (n ∈ N) such that
f is injective in each Un and

(5) [rζ, ζ) ∈ Un for some n = n(ζ), r = r(ζ) < 1 for every ζ ∈ B

then f(B) is a Borel set.

Proof. Let Z(w) = {ζ ∈ B : f(ζ) = w} and

(6) X = {w ∈ C : Z(w) uncountable}.

If w ∈ X then, by (5), there exists m ∈ N and three distinct ζk = ζk(w) ∈ B
such that f(ζk) = w and n(ζk) = m for k = 1, 2, 3. Let Xm denote the set
of these w ∈ X. Thus X ⊂ ∪∞m=1Xm.

Now let w ∈ Xm. Since f is continuous and injective in Um and since the
radial limits f(ζk(w)) = w exist, the set

T (w) := {w} ∪
3⋃

k=1

{f(ρζk(w)) : r(ζk(w)) ≤ ρ < 1}

is a triod in the sense of R. L. Moore, that is, the union of three Jordan
arcs that meet only at their junction point w. Since f is injective in Um,
we see from (5) that T (w) ∩ T (w′) = ∅ for distinct w,w′ ∈ Xm. Hence it
follows from the Moore Triod Theorem ([17]; [20], Prop. 2.18) that Xm is
countable.

Hence X is also countable. Applying the Lusin-Purves Theorem to the
restriction of f to the Borel set {ζ ∈ B : f(ζ) ∈ C}, we deduce from (6) that
f(B) is a Borel set. �

Corollary 1. Let f be a homeomorphism of D into Ĉ extended to the subset
A of T where the radial limit exists. Then f preserves Borel sets on D ∪A.

This result was essentially proved in [7]. Since f is a homeomorphism of
D, we have f(B∩D) ∈ B, and f(B∩A) ∈ B follows from Theorem 1 because
we can choose U1 = D.
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4. The angular derivative and inner functions

Let f be analytic in D. This assumption guarantees that Borel sets in
D are mapped to Borel sets. Hence only sets on T are of interest. We say
that f has the angular derivative f ′(ζ) at ζ ∈ T if the radial limit f(ζ) 6= ∞
exists and

(7)
f(z)− f(ζ)

z − ζ
→ f ′(ζ) as z → ζ, z ∈ ∆

for every Stolz angle ∆ at ζ. The function f has a finite angular derivative
if and only if ([20], Prop. 4.7),

(8) f ′(z) → f ′(ζ) as z → ζ, z ∈ ∆.

Theorem 3. Let f be analytic in D and let B ∈ T be a Borel set such that
f has a finite nonzero angular derivative for ζ ∈ B. Then f(B) is a Borel
set.

Proof. Let L be the countable collection of all oriented lines L ⊂ C that pass
through two points with rational coordinates. Since f ′(ζ) 6= 0,∞ it follows
(see e.g. [19], p. 291) from (7) and (8) that f is injective in

∆(ζ) =
{
z : | arg(1− ζz)| < 3π/4, r < |z| < 1

}
for suitable r = r(ζ) and that f is angle-preserving at ζ in ∆(ζ). Hence
there exists L ∈ L and an open isosceles triangle T (ζ) with base in L and
angle π/2 at its vertex f(ζ) to the left of L, such that f maps some domain
G(ζ) one-to-one onto T (ζ) and

(9) (rζ, ζ) ⊂ G(ζ) for some r = r(ζ) < 1.

Given L ∈ L and k ∈ N, let B(L, k) denote the set of all ζ ∈ B for which
there is such a triangle T (ζ) of height ≥ 1/k. Each of the countably many
open sets ⋃

ζ∈B(L,k)

G(ζ) (L ∈ L, k ∈ N)

has countably many components. Altogether we obtain countably many
domains in D which we arrange in a sequence (Un).

The triangles T (ζ) for ζ ∈ B(L, k) are all congruent, have their base on
L and lie to the left of L. Furthermore Un is connected. Hence Vn = f(Un)
is a Jordan domain; see ([20], p. 146) for a figure.

Fix ζn ∈ B ∩ ∂Un. Now f has an inverse function gn in T (ζn) because f
maps G(ζn) one-to-one onto T (ζn). Since f is locally univalent in Un, we
can continue gn analytically throughout Vn with values in Un. Hence we
conclude from the monodromy theorem that gn is well defined in Vn and
gn(Vn) ⊂ Un. By the identity theorem, we have g(f(z)) = z for z ∈ Un.

Hence f is injective in Un, and in view of (9) it follows from Theorem 2
that f(B) is a Borel set. �
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Corollary 2. Let f be analytic in D that has a finite angular derivative f ′

for all ζ ∈ T. If f has only countably many critical values, then f preserves
Borel sets on T.

A critical value is an angular limit f(ζ) such that f ′(ζ) = 0. If f ′ has only
countably many zeros then there are only countably many critical values.
Compare Problem 3.

Proof. Let C be the set of critical values. Then B \ f−1(C) ∈ B so that
f(B \ f−1(C)) ∈ B by Theorem 3. Since f(B ∩ f−1(C)) ⊂ C is countable
by assumption, we conclude that f(B) ∈ B. �

There exist ([20], Prop. 4.12) conformal maps of D onto a Jordan domain
that do not have a finite nonzero angular derivative at any point whereas
Borel sets are mapped onto Borel sets by [7] or Corollary 1. In this situation
the angular derivative has no bearing on the problem of Borel images.

Now we discuss a situation where the angular derivative is very important.
Let f be analytic in D and f(D) ⊂ D. Then the radial limit f(ζ) exists for
almost all ζ ∈ T. Let

(10) E = {ζ ∈ T : f(ζ) exists and f(ζ) ∈ T} .

The Julia-Wolff lemma ([20], Prop. 4.13) states that f ′(ζ) exists for ζ ∈ E
and

(11) 0 < |f ′(ζ)| = sup
z∈D

1− |z|2

|ζ − z|2
|f(ζ)− f(z)|2

1− |f(z)|2
≤ +∞.

Let mes(E) denote the Lebesgue measure of the set E. A. B. Aleksandrov
([2], Th. 2) has proved that

(12) mes {w ∈ f(E) : w = f(ζ) for uncountably many ζ} = 0

holds if and only if the set E∞ = {ζ ∈ E : |f ′(ζ)| = ∞} has measure zero.
By the Lusin-Purves Theorem, it follows that f does not preserve Borel

sets on E if mes(E∞) > 0, whereas by Theorem 3 the function preserves
Borel sets on E if E∞ is countable. There is no conclusion if E∞ is uncount-
able of measure zero.

We call f an inner function if mes(E) = 2π; see (10). Every Blaschke
product is an inner function, and if f is an inner function then (f−a)/(1−af)
is a Blaschke product for almost all a ∈ D; (see e.g [10], p. 79). If T \ E
is countable and nowhere dense on T then f is analytic on E, so that f
preserves Borel sets on T.

Example 3. We consider the Blaschke product

(13) f(z) =
∞∏

n=1

r2n

n − z2n

1− (rnz)2n , rn = 1− 1/3n.
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Given t we choose k = kn such that |t− 2πkn/2n| ≤ π/2n. Now
f(rn exp(2πik/2n)) = 0 by (13) and thus, by (11),

|f ′(eit)| ≥ 1− r2
n

(1− rn + |t− 2πkn/2n|)2
≥ const (4/3)n.

Hence |f ′(ζ)| = ∞ for all ζ ∈ T, so that (12) is false and f does not preserve
Borel sets on E.

If the inner function f satisfies (1 − |z|)f ′(z) → 0 as |z| → 1 but is not
a finite Blaschke product, then f−1(w) has Hausdorff dimension 1 for every
w ∈ D by a theorem of Rohde, [23], and is therefore uncountable. Hence f
does not preserve Borel sets on T \ E.

5. Universal covering maps

A universal covering map f from D onto the domain G ⊂ Ĉ is a locally
univalent meromorphic function with f(D) = G, such that every branch of
f−1 has an analytic continuation throughout G with values in D. For every
domain G with at least three boundary points, there are infinitely many
universal covering maps from D onto G. If G is simply connected then f is
a Riemann map, otherwise f assumes every value in G infinitely often. See
for instance [1], Th. 10.3.

Theorem 4. Let f be a universal covering map from D onto G and let E be
the set of ζ ∈ T where the radial limit f(ζ) exists. Then f preserves Borel
sets on E if and only if there are only countably many w ∈ ∂G with the
following property:

There exists an arc C ⊂ G ∪ {w} with endpoint w and furthermore
Jordan domains Hn (n ∈ N) with

(14) ∂Hn ⊂ G, Hn ∩ C 6= ∅, Hn ∩ ∂G 6= ∅, w /∈ Hn

such that Hn → {w} as n →∞
Proof. (a) We may assume that f(0) = ∞ so that ∂G is a compact subset
of C. First we prove: If there are only countably many w ∈ ∂G that satisfy
(14) then f(B) ∈ B for every Borel set B ⊂ E. We may assume that no
point w = f(ζ) (ζ ∈ B) satisfies (14) nor is an isolated point of ∂G. Indeed,
there are only countably many such points w and f−1(w) is a Borel set.

We consider the collection D of all disks D ⊂ C with rational center and
rational radius. The collection V of all components V of all D ∩G (D ∈ D)
is countable and so is the collection U of all components U of all f−1(V )
(V ∈ V).

Let ζ ∈ B. Then C = {f(ρζ) : 0 ≤ ρ < 1} is a half open arc in G
ending at w = f(ζ). For every disk D ∈ D with w ∈ D, there is a unique
component V ∈ V that contains a subarc of C ending at w. We claim: If
diam(D) is sufficiently small, then V is simply connected.

Suppose this claim is false. Then we can find Dn ∈ D with w ∈ Dn and
Dn → {w} such that Vn is multiply connected. Thus there exists a Jordan
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curve Jn with Jn ⊂ Vn ⊂ G such that the inner domain Hn of Jn contains
a point of ∂Vn ⊂ ∂Dn ∪ ∂G and therefore a point of ∂G. Since w is not
an isolated point of ∂G, we can choose Hn such that w /∈ Hn. Furthermore
we can modify Jn such that Jn ∩ C 6= ∅. Hence w satisfies (14) because
diam Hn ≤ diam Dn → 0. But this contradicts our assumption.

We have L = {f(ρζ) : r ≤ ρ < 1} ⊂ V for suitable r < 1. Let U ∈ U
be the component of f−1(V ) with [rζ, ζ) ⊂ U , and let g be the branch of
f−1 that maps L onto [rζ, ζ). Since V ⊂ G it follows from the definition
of a universal covering map that we can continue g analytically throughout
V with values in D, and since V is simply connected, it follows from the
monodromy theorem that g is well defined in V . Hence f is injective in U
by the identity theorem. Therefore we can apply Theorem 2 to the collection
U to conclude that f(B) is a Borel set.

(b) Let w ∈ ∂G have the property (14). We may assume that C begins
at a0 = f(0) = ∞. Let an and bn be the first and last points where C
intersects Hn. Replacing (Hn) by a suitable subsequence, we may assume
that Hn ∩ Hm = ∅ for n 6= m, and that bn comes before an+1. Let Bn be
an arc of C between bn and an+1 and let Ank (k = 0, 1) be the two arcs of
∂Hn \ {an, bn}.

Let x be an irrational number in (0, 1). It has a unique representation

(15) x =
∞∑

n=1

kn2−n with kn ∈ {0, 1}.

We consider the half open arc

(16) C(x) = B0 ∪A1k1 ∪B1 ∪A2k2 ∪B2 · · · ⊂ G

which begins at ∞ and satisfies C(x) \ C(x) = {w} because diam Hn → 0.
The component Γ(x) of f−1(C(x)) that begins at 0 thus satisfies Γ(x) \
Γ(x) = {ζ(x)} for some ζ(x) ∈ T. This follows ([18], Cor. 9.2) from the fact
that f omits three values and is therefore a normal function. Furthermore,
it follows ([15]; [18], Th. 9.3) that f has the radial limit f(ζ(x)) = w for
every x.

Now let x 6= x′. By (15) there exists n such that kn 6= k′n. But Hn∩∂G 6= ∅
and w /∈ Hn by (14). Since Hn ∩Hm = ∅ for n 6= m, we conclude from (16)
that C(x) and C(x′) are not homotopic in G. Hence we have ζ(x) 6= ζ(x′).

Thus there are uncountably many ζ ∈ T with f(ζ) = w for every w
satisfying (14). If f preserves Borel sets on E, then it follows from the
Lusin-Purves Theorem that there are only countably many such w. �

Example 4. Let F be a Cantor set on R and

∂G = F ∪ {x + i/n : x ∈ F, n ∈ N}.

Then every point of F satisfies (14) so that f does not preserve Borel sets.
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Example 5. Let F be a Cantor set on R and let

∂G =
⋃
x∈F

[x, x + i].

Then (14) is not satisfied by any point of ∂G because all components of F
have diameter 1 whereas diam Hn → 0 (n →∞) in (14). Hence f preserves
Borel sets on E.
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