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ABSTRACT. It is shown that the set of asymptotic values of a light continuous mapping
defined on R? is an analytic set in the sense of Suslin.

A mapping f : R® — R! is light if for every a € f(R?®) the preimage f~!(a) := {x € R®:
f(z) = a} is totally disconnected. A particular instance is a discrete mapping for which
every fiber f~!(a) is a discrete set. For example, holomorphic functions are discrete. If
f:R®* — R is a light continuous mapping then s <t (see [2] and [8]).

A point a € R is an asymptotic value of a continuous mapping f : R® — R if f(z) — a
as |r| — oo on some continuous path v C R®. The set of asymptotic values of f will be
denoted by As(f).

A Suslin analytic set in R? is a continuous image of a Borel set. There are several
equivalent definitions (see, for example, [3, Lemma 11.6]) but in this note there will be
used the characterization of analytic sets (in a complete separable metric space) in terms
of the Suslin A-operation. Concretely, A C R? is analytic if and only if

A= U ﬂ Snl,...7np7

NN p>1

where the sets Sy, .. n, C R? are closed and NV is the collection of all infinite sequences of
(positive) natural numbers (see [1], [3, Lemma 11.7] or [7, p.207]). Sierpinski calls the set
A the nucleus of the defining system {Sp, . n,}.

In [4], S. Mazurkiewicz shows that the set of asymptotic values of a holomorphic (or
meromorphic) function, f, defined in C, is an analytic set. In fact, as pointed out to the
authors by Alexandre Eremenko, Mazurkiewicz does not use the analycity of the function
f. Indeed, he defines a function py : C x C — R as the infimum of the diameters of
the f-images of curves connecting two points. When f is light ps is a distance. Let X ]’c‘
denote the completion of the metric space Xy = (C, py). Mazurkiewicz observes that the
set of asymptotic values of f is the image (under the continuous function f) of the Borel
set X }‘ \ Xf, and hence, analytic. Consequently, Mazurkiewicz’s proof and conclusion can
be extended to light mappings defined in R® (with s > 3). An important class of such
mappings are quasiregular mappings which, although in general not smooth, are discrete
and therefore light (see [6] or [9]).
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In this note, we present an alternative approach to Mazurkiewicz’s result, where we use
the characterization of analytic sets given by the Suslin A-operation, and work on the
range of f rather than on its domain.

Theorem 1. Let f : R® — R! (s < t) be a light continuous mapping. Then, the set of
asymptotic values of f is an analytic set.

It will be shown that As(f) can be written in terms of the Suslin A-operation. In order
to do this, consider a dyadic partition of R. Concretely, let {X,},>1 be the family of
closed unit cubes with vertices on the integer lattice so that Rf = Up>1X,. Each X, is
divided into 2! congruent closed cubes X, ,, with ng € {1,...,2'} having side length
1/2. In general, a dyadic cube X1 na,...n, Of side length 217 is divided into 2! congruent
closed cubes of side length 277, and each of these cubes is denoted by Xy, 5y, npmpyy With
np+1 € {1,2,...,2%}. For p > 1, let F,, be the family of all dyadic cubes of generation p,
that is, Fp = {Xpn,ng,n, 1 11 € Nyng € {1,...,2}, 2 < i < p}. For Xy, ny..m, € Fp
(p > 1), consider the set

Adj (X ma,my) = {X € Fp: XN Xy ngymy # 9,

composing the cube together with its neighbors of generation p. Clearly, Xy, n,,..n, lies
in the interior of Adj (an,nz,...,np)~

Given a light continuous mapping f : R® — R!, a dyadic cube Xy ,na,...np 18 said to
be admissible if f~1(Adj(Xn, ns,..n,)) has an unbounded connected component. For any

P

finite sequence of natural numbers, n1,...,n,, define

Xy, if Xpy . p, is admissible,
(1> Sru,ng,...,np ==

a, otherwise.

Notice that Sy, ..., is closed, with diameter diam(Sm,m,np) < 21-Py/t and Sni,np, -

Sm,,,,,np. Theorem 1 is a consequence of Proposition 1.

Tp+1

Proposition 1. Let f : R® — R (s < t) be a light continuous mapping and A the analytic
set that is the nucleus of the defining system {Sp, .. n,} given by (1). Then,

A = As(f) \ {oo}.
Remark 1. If A is analytic then AU {oo} is also analytic.

Proof. First it will be shown that A C As(f) \ {oo} or, in words, that any point a € A
is a finite asymptotic value of f. Since a € A there exists a sequence of natural numbers
{np}p>1 such that a = Np>15y,....n, With Sy, ., # @ for all p > 1. Thus for every p > 1,
Sty = Xny,...n, Whereng, ... ,n, € {1,... , 2t} and Xoni,...n, is admissible and therefore
ffl(Adj(me,np)) has an unbounded connected component. Given k € N there is p € N
such that B(a,1/k) D Adj(Xp,, . n,), where B(a,r) denotes the open ball of radius 7 > 0
centered at a. Since f _1(Adj (Xm,...,np)) has an unbounded connected component then
f~Y(B(a,1/k)) has an unbounded connected component. Therefore there exists a chain
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of nested sets where each Cj is the closure of an unbounded connected component of
ft (B(a, l/k)) The continuity of f implies that each Cj (k > 1) is path connected.

Since f is light there can be found an increasing subsequence of natural numbers,
{k;};j>1, and a strictly increasing sequence of positive real numbers, {r;};>0, with 7; 0o
(j = o0) such that for any j € N,

a) ij N B(’I"jfl) = @, and,
b) Gy NS(r;) £ 2,

(where B(r) = B(0,r), S(r) = 0B(r) and A is the closure of the set A). Otherwise, there
exists p > 0 such that C, N B(p) # @ for all k > 1. Consider Q = (),~; Ck a subset of
f~Y(a). Since {Cy}r>1 is a decreasing sequence of unbounded closed sets that intersect
S(p), N # @, and moreover, QN S(r) # @ for any r > p. Let RS = R* U {oo} be the
Alexandroff one-point compactification of R?. Since every Cy, k > 1, is an unbounded
connected closed set, then 6’; = Ck U {oo} is a connected compact set in R and {@}pl
decreases to ) = QU {oo} where € is compact and connected with more than one point.
Hence by [5, Corollaire XIII], Q can be decomposed as Q=UUV with U and V disjoint
connected sets, each containing more than one point. Let U be the set that contains oo,
then V C R? is a connected subset of f~!(a) with more than one point, which contradicts
the assumption that f is light.

Hence we can use a) and b) above to find an asymptotic path for a. Pick x; € Cy, NS(71)
and let v; be a continuous path in Cf, that joins x; with Cy, NS(r2). Let zo € Ck, N.S(72)
be the other end of v1. In general for j > 2, if z; € Cy; N S(r;) let v; be a continuous
path in Cj; that joins x; with Ck;,, N S(rj1) and define ;11 to be the other end of 7;.
Let v = Uj>1 vj. By construction, 7 is a continuous curve and v — oo. Indeed, for any
r > 0 there exists j € N such that r; > r and by condition a) above

U v cCrpr c{lzl >} c{lz] >}
i>j+1
Finally it remains to show that ~ is an asymptotic curve with a as an asymptotic
value. Let € > 0 and choose j € N so that 1/k; < e. Take x € Ui2j+1 v; C 7. Then

z € Cry,, C f7Y(B(a,1/kj41)) C f7Y(B(a,1/kj)) and therefore f(z) € B(a,1/k;), that
is, |a — f(z)| < 1/kj < e, as desired.

Next there will be shown the other inclusion, that is, that any finite asymptotic value
of f belongs to the set A. Let b € As(f) \ {oo} and consider the family of dyadic
cubes such that b = ﬂp>1 Xny,...n,-  Then, for any p > 1, there is an ¢ > 0 so that
b€ B(b,e) C Adj(Xp,,..n,) since b € int (Adj(Xm7._.7np)). Since b is a finite asymptotic
value of f, f~1(B(b,¢)) has an unbounded connected component and therefore the set
S (Adj(Xp,....,n,)) also has an unbounded connected component. Thus Xy, . n, is ad-
missible and therefore Sy, . n, = Xn,,. . n, for every p > 1 which implies b = mpzl Sni,nps
that is b € A. O
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