ASYMPTOTIC VALUES OF SOME CONTINUOUS MAPPINGS

A. CANTÓN, J. QU.

Abstract

It is shown that the set of asymptotic values of a light continuous mapping defined on \mathbb{R}^{s} is an analytic set in the sense of Suslin.

A mapping $f: \mathbb{R}^{s} \rightarrow \mathbb{R}^{t}$ is light if for every $a \in f\left(\mathbb{R}^{s}\right)$ the preimage $f^{-1}(a):=\left\{x \in \mathbb{R}^{s}:\right.$ $f(x)=a\}$ is totally disconnected. A particular instance is a discrete mapping for which every fiber $f^{-1}(a)$ is a discrete set. For example, holomorphic functions are discrete. If $f: \mathbb{R}^{s} \rightarrow \mathbb{R}^{t}$ is a light continuous mapping then $s \leq t$ (see [2] and [8]).

A point $a \in \mathbb{R}^{t}$ is an asymptotic value of a continuous mapping $f: \mathbb{R}^{s} \rightarrow \mathbb{R}^{t}$ if $f(x) \rightarrow a$ as $|x| \rightarrow \infty$ on some continuous path $\gamma \subset \mathbb{R}^{s}$. The set of asymptotic values of f will be denoted by $\operatorname{As}(f)$.

A Suslin analytic set in \mathbb{R}^{t} is a continuous image of a Borel set. There are several equivalent definitions (see, for example, [3, Lemma 11.6]) but in this note there will be used the characterization of analytic sets (in a complete separable metric space) in terms of the Suslin \mathcal{A}-operation. Concretely, $A \subset \mathbb{R}^{t}$ is analytic if and only if

$$
A=\bigcup_{\mathbb{N N}} \bigcap_{p \geq 1} S_{n_{1}, \ldots, n_{p}},
$$

where the sets $S_{n_{1}, \ldots, n_{p}} \subset \mathbb{R}^{t}$ are closed and $\mathbb{N}^{\mathbb{N}}$ is the collection of all infinite sequences of (positive) natural numbers (see [1], [3, Lemma 11.7] or [7, p.207]). Sierpinski calls the set A the nucleus of the defining system $\left\{S_{n_{1}, \ldots, n_{p}}\right\}$.

In [4], S. Mazurkiewicz shows that the set of asymptotic values of a holomorphic (or meromorphic) function, f, defined in \mathbb{C}, is an analytic set. In fact, as pointed out to the authors by Alexandre Eremenko, Mazurkiewicz does not use the analycity of the function f. Indeed, he defines a function $\rho_{f}: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{R}^{+}$as the infimum of the diameters of the f-images of curves connecting two points. When f is light ρ_{f} is a distance. Let \mathcal{X}_{f}^{*} denote the completion of the metric space $\mathcal{X}_{f}=\left(\mathbb{C}, \rho_{f}\right)$. Mazurkiewicz observes that the set of asymptotic values of f is the image (under the continuous function f) of the Borel set $\mathcal{X}_{f}^{*} \backslash \mathcal{X}_{f}$, and hence, analytic. Consequently, Mazurkiewicz's proof and conclusion can be extended to light mappings defined in \mathbb{R}^{s} (with $s \geq 3$). An important class of such mappings are quasiregular mappings which, although in general not smooth, are discrete and therefore light (see [6] or [9]).

[^0]In this note, we present an alternative approach to Mazurkiewicz's result, where we use the characterization of analytic sets given by the Suslin \mathcal{A}-operation, and work on the range of f rather than on its domain.

Theorem 1. Let $f: \mathbb{R}^{s} \rightarrow \mathbb{R}^{t}(s \leq t)$ be a light continuous mapping. Then, the set of asymptotic values of f is an analytic set.

It will be shown that $\operatorname{As}(f)$ can be written in terms of the Suslin \mathcal{A}-operation. In order to do this, consider a dyadic partition of \mathbb{R}^{t}. Concretely, let $\left\{X_{n}\right\}_{n \geq 1}$ be the family of closed unit cubes with vertices on the integer lattice so that $\mathbb{R}^{t}=\cup_{n \geq 1} X_{n}$. Each X_{n} is divided into 2^{t} congruent closed cubes $X_{n_{1}, n_{2}}$ with $n_{2} \in\left\{1, \ldots, 2^{t}\right\}$ having side length $1 / 2$. In general, a dyadic cube $X_{n_{1}, n_{2}, \ldots, n_{p}}$ of side length 2^{1-p} is divided into 2^{t} congruent closed cubes of side length 2^{-p}, and each of these cubes is denoted by $X_{n_{1}, n_{2}, \ldots, n_{p}, n_{p+1}}$ with $n_{p+1} \in\left\{1,2, \ldots, 2^{t}\right\}$. For $p \geq 1$, let \mathcal{F}_{p} be the family of all dyadic cubes of generation p, that is, $\mathcal{F}_{p}=\left\{X_{n_{1}, n_{2}, \ldots, n_{p}}: n_{1} \in \mathbb{N}, n_{i} \in\left\{1, \ldots, 2^{t}\right\}, 2 \leq i \leq p\right\}$. For $X_{n_{1}, n_{2}, \ldots, n_{p}} \in \mathcal{F}_{p}$ ($p \geq 1$), consider the set

$$
\operatorname{Adj}\left(X_{n_{1}, n_{2}, \ldots, n_{p}}\right)=\left\{X \in \mathcal{F}_{p}: X \cap X_{n_{1}, n_{2}, \ldots, n_{p}} \neq \varnothing\right\}
$$

composing the cube together with its neighbors of generation p. Clearly, $X_{n_{1}, n_{2}, \ldots, n_{p}}$ lies in the interior of $\operatorname{Adj}\left(X_{n_{1}, n_{2}, \ldots, n_{p}}\right)$.

Given a light continuous mapping $f: \mathbb{R}^{s} \rightarrow \mathbb{R}^{t}$, a dyadic cube $X_{n_{1}, n_{2}, \ldots, n_{p}}$ is said to be admissible if $f^{-1}\left(\operatorname{Adj}\left(X_{n_{1}, n_{2}, \ldots, n_{p}}\right)\right)$ has an unbounded connected component. For any finite sequence of natural numbers, n_{1}, \ldots, n_{p}, define

$$
S_{n_{1}, n_{2}, \ldots, n_{p}}= \begin{cases}X_{n_{1}, \ldots, n_{p}}, & \text { if } X_{n_{1}, \ldots, n_{p}} \text { is admissible } \tag{1}\\ \varnothing, & \text { otherwise }\end{cases}
$$

Notice that $S_{n_{1}, \ldots, n_{p}}$ is closed, with diameter $\operatorname{diam}\left(S_{n_{1}, \ldots, n_{p}}\right) \leq 2^{1-p} \sqrt{t}$ and $S_{n_{1}, \ldots, n_{p}, n_{p+1}} \subset$ $S_{n_{1}, \ldots, n_{p}}$. Theorem 1 is a consequence of Proposition 1.
Proposition 1. Let $f: \mathbb{R}^{s} \rightarrow \mathbb{R}^{t}(s \leq t)$ be a light continuous mapping and A the analytic set that is the nucleus of the defining system $\left\{S_{n_{1}, \ldots, n_{p}}\right\}$ given by (1). Then,

$$
A=\operatorname{As}(f) \backslash\{\infty\}
$$

Remark 1. If A is analytic then $A \cup\{\infty\}$ is also analytic.
Proof. First it will be shown that $A \subset \operatorname{As}(f) \backslash\{\infty\}$ or, in words, that any point $a \in A$ is a finite asymptotic value of f. Since $a \in A$ there exists a sequence of natural numbers $\left\{n_{p}\right\}_{p \geq 1}$ such that $a=\cap_{p \geq 1} S_{n_{1}, \ldots, n_{p}}$ with $S_{n_{1}, \ldots, n_{p}} \neq \varnothing$ for all $p \geq 1$. Thus for every $p \geq 1$, $S_{n_{1}, \ldots, n_{p}}=X_{n_{1}, \ldots, n_{p}}$ where $n_{2}, \ldots, n_{p} \in\left\{1, \ldots, 2^{t}\right\}$ and $X_{n_{1}, \ldots, n_{p}}$ is admissible and therefore $f^{-1}\left(\operatorname{Adj}\left(X_{n_{1}, \ldots, n_{p}}\right)\right)$ has an unbounded connected component. Given $k \in \mathbb{N}$ there is $p \in \mathbb{N}$ such that $B(a, 1 / k) \supset \operatorname{Adj}\left(X_{n_{1}, \ldots, n_{p}}\right)$, where $B(a, r)$ denotes the open ball of radius $r>0$ centered at a. Since $f^{-1}\left(\operatorname{Adj}\left(X_{n_{1}, \ldots, n_{p}}\right)\right)$ has an unbounded connected component then $f^{-1}(B(a, 1 / k))$ has an unbounded connected component. Therefore there exists a chain

$$
\begin{equation*}
C_{1} \supset C_{2} \supset \cdots \supset C_{k} \supset \cdots \tag{2}
\end{equation*}
$$

of nested sets where each C_{k} is the closure of an unbounded connected component of $f^{-1}(B(a, 1 / k))$. The continuity of f implies that each $C_{k}(k \geq 1)$ is path connected.

Since f is light there can be found an increasing subsequence of natural numbers, $\left\{k_{j}\right\}_{j \geq 1}$, and a strictly increasing sequence of positive real numbers, $\left\{r_{j}\right\}_{j \geq 0}$, with $r_{j} \nearrow \infty$ $(j \rightarrow \infty)$ such that for any $j \in \mathbb{N}$,
a) $C_{k_{j}} \cap \overline{B\left(r_{j-1}\right)}=\varnothing$, and,
b) $C_{k_{j}} \cap S\left(r_{j}\right) \neq \varnothing$,
(where $B(r)=B(0, r), S(r)=\partial B(r)$ and \bar{A} is the closure of the set A). Otherwise, there exists $\rho>0$ such that $C_{k} \cap B(\rho) \neq \varnothing$ for all $k \geq 1$. Consider $\Omega=\bigcap_{k \geq 1} C_{k}$ a subset of $f^{-1}(a)$. Since $\left\{C_{k}\right\}_{k \geq 1}$ is a decreasing sequence of unbounded closed sets that intersect $S(\rho), \Omega \neq \varnothing$, and moreover, $\Omega \cap S(r) \neq \varnothing$ for any $r \geq \rho$. Let $\widehat{\mathbb{R}^{s}}=\mathbb{R}^{s} \cup\{\infty\}$ be the Alexandroff one-point compactification of \mathbb{R}^{s}. Since every $C_{k}, k \geq 1$, is an unbounded connected closed set, then $\widehat{C_{k}}=C_{k} \cup\{\infty\}$ is a connected compact set in $\widehat{\mathbb{R}^{s}}$ and $\left\{\widehat{C_{k}}\right\}_{k \geq 1}$ decreases to $\widehat{\Omega}=\Omega \cup\{\infty\}$ where $\widehat{\Omega}$ is compact and connected with more than one point. Hence by [5, Corollaire XIII], $\widehat{\Omega}$ can be decomposed as $\widehat{\Omega}=U \cup V$ with U and V disjoint connected sets, each containing more than one point. Let U be the set that contains ∞, then $V \subset \mathbb{R}^{s}$ is a connected subset of $f^{-1}(a)$ with more than one point, which contradicts the assumption that f is light.

Hence we can use a) and b) above to find an asymptotic path for a. Pick $x_{1} \in C_{k_{1}} \cap S\left(r_{1}\right)$ and let γ_{1} be a continuous path in $C_{k_{1}}$ that joins x_{1} with $C_{k_{2}} \cap S\left(r_{2}\right)$. Let $x_{2} \in C_{k_{2}} \cap S\left(r_{2}\right)$ be the other end of γ_{1}. In general for $j \geq 2$, if $x_{j} \in C_{k_{j}} \cap S\left(r_{j}\right)$ let γ_{j} be a continuous path in $C_{k_{j}}$ that joins x_{j} with $C_{k_{j+1}} \cap S\left(r_{j+1}\right)$ and define x_{j+1} to be the other end of γ_{j}. Let $\gamma=\bigcup_{j \geq 1} \gamma_{j}$. By construction, γ is a continuous curve and $\gamma \rightarrow \infty$. Indeed, for any $r>0$ there exists $j \in \mathbb{N}$ such that $r_{j}>r$ and by condition a) above

$$
\bigcup_{i \geq j+1} \gamma_{i} \subset C_{k_{j+1}} \subset\left\{|x|>r_{j}\right\} \subset\{|x|>r\}
$$

Finally it remains to show that γ is an asymptotic curve with a as an asymptotic value. Let $\varepsilon>0$ and choose $j \in \mathbb{N}$ so that $1 / k_{j}<\varepsilon$. Take $x \in \bigcup_{i \geq j+1} \gamma_{i} \subset \gamma$. Then $x \in C_{k_{j+1}} \subset \overline{f^{-1}\left(B\left(a, 1 / k_{j+1}\right)\right)} \subset f^{-1}\left(\overline{B\left(a, 1 / k_{j}\right)}\right)$ and therefore $f(x) \in \overline{B\left(a, 1 / k_{j}\right)}$, that is, $|a-f(x)| \leq 1 / k_{j}<\varepsilon$, as desired.

Next there will be shown the other inclusion, that is, that any finite asymptotic value of f belongs to the set A. Let $b \in \operatorname{As}(f) \backslash\{\infty\}$ and consider the family of dyadic cubes such that $b=\bigcap_{p \geq 1} X_{n_{1}, \ldots, n_{p}}$. Then, for any $p \geq 1$, there is an $\varepsilon>0$ so that $b \in B(b, \varepsilon) \subset \operatorname{Adj}\left(X_{n_{1}, \ldots, n_{p}}\right)$ since $b \in \operatorname{int}\left(\operatorname{Adj}\left(X_{n_{1}, \ldots, n_{p}}\right)\right)$. Since b is a finite asymptotic value of $f, f^{-1}(B(b, \varepsilon))$ has an unbounded connected component and therefore the set $f^{-1}\left(\operatorname{Adj}\left(X_{n_{1}, \ldots, n_{p}}\right)\right)$ also has an unbounded connected component. Thus $X_{n_{1}, \ldots, n_{p}}$ is admissible and therefore $S_{n_{1}, \ldots, n_{p}}=X_{n_{1}, \ldots, n_{p}}$ for every $p \geq 1$ which implies $b=\bigcap_{p \geq 1} S_{n_{1}, \ldots, n_{p}}$; that is $b \in A$.

Acknowledgements. The authors thank David Drasin and Alexandre Eremenko for their helpful comments and suggestions.

References

[1] L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand Mathematical Studies, vol. 13, D. Van Nostrand Co., Princeton, New Jersey; Toronto, Ontario; London, England, UK, 1967. MR0225986
[2] P.T. Church, Discrete maps on manifolds, Mich. Math. J. 25 (1978), 351-357. MR512905
[3] T. Jech, Set theory. The third millennium edition, revised and expanded, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. MR1940513
[4] S. Mazurkiewicz, Sur les points singuliers d'une fonction analytique, Fund. Math. 17 (1931), 26-29.
[5] B. Knaster and C. Kuratowski, Sur les ensembles connexes, Fund. Math. 2 (1921), 206-255.
[6] S. Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 26, Springer-Verlag, Berlin, 1993. MR1238941
[7] W. Sierpinski, Introduction to General Topology, University of Toronto Press, Toronto, 1934.
[8] J. Väisälä, Local topological properties of countable mappings, Duke Math. J. 41 (1974), 541-546. MR0350688
[9] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, 1988. MR0950174

Alicia Cantón. Departamento de Ciencias Aplicadas a la Ingeniería Naval, Universidad Politécnica de Madrid, Avda. Arco de la Victoria 4, 28040 Madrid (Spain)

E-mail address: alicia.canton@upm.es
Jingjing Qu. Academy of Mathematics and System Science, Chinese Academy of Sciences, No. 55 East Zhongguancun Road, Beijing 100190, P.R.China

E-mail address: qu11@math.purdue.edu

[^0]: Date: June 17th, 2013.
 2010 Mathematics Subject Classification. Primary 54C10.
 The first author was partially supported by a grant from Ministerio de Ciencia e Innovación (Spain), MTM 2009-07800. The second author performed her research while on leave from the Chinese Academy of Sciences and thanks Purdue University, and in particular Professor Drasin for his advice and hospitality.

