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Abstract. This paper studies the stability of isoperimetric inequalities under quasi-isometries between

non-exceptional Riemann surfaces endowed with their Poincaré metrics. This stability was proved by Kanai
in a more general setting under the condition of positive injectivity radius. The present work proves the

stability of the linear isoperimetric inequality for planar surfaces (genus zero surfaces) without any condi-

tion on their injectivity radii. It is also shown that any non-linear isoperimetric inequality implies positive
injectivity radius for the surface and therefore the stability of any isoperimetric inequality.
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1. Introduction

An interesting problem in the study of geometric properties of surfaces is to consider their stability under
appropriate deformations. In the 1985, in [18] M. Kanai proved the quasi-isometric stability (see definition
(1.1)) of several geometric properties for a large class of Riemannian manifolds.

We shall be interested not only in his results but in the ideas behind the proofs. Concretely, those relating
the manifold with a particular graph (an ε-net of the manifold) in order to study the stability of the quasi-
isometry. Several authors have followed Kanai in studying the stability of some other property, or in proving
the equivalence of a manifold with a different associated graph (see e.g. [1], [7], [14], [17], [18], [19], [26], [27],
[30]).

Quasi-isometries play a central role in the theory of Gromov hyperbolic spaces for they preserve hyper-
bolicity of geodesic metric spaces (see e.g. [15], [16]).

A non-exceptional Riemann surface S will mean a two-dimensional manifold with a complete metric of
constant negative curvature −1. In this case, the universal covering space of S is the unit disk D endowed
with its Poincaré metric. The only exceptional Riemann surfaces are the sphere, the plane, the punctured
plane and the tori.

A Riemann surface S satisfies the α-isoperimetric inequality (1/2 ≤ α ≤ 1) if there exists a constant
cα(S) such that

(1.1) AS(Ω)α ≤ cα(S)LS(∂Ω)

for every relatively compact domain Ω ⊂ S. Throughout, AS , LS and dS refer to Poincaré area, length
and distance of S and LII refers to the 1-isoperimetric inequality also known as the linear isoperimetric
inequality.

There are close connections between LII and some conformal invariants of Riemann surfaces, namely the
bottom of the spectrum of the Laplace-Beltrami operator, the exponent of convergence, and the Hausdorff
dimensions of the sets of both bounded geodesics and escaping geodesics in the surface (see [5], [6, p.228],
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[10], [11], [12], [13], [21], [22], [31, p.333]). Isoperimetric inequalities are of interest in pure and applied
mathematics (see e.g. [9], [23]).

The injectivity radius ι(p) of p ∈ S is defined as the supremum of those r > 0 such that BS(p, r) is simply
connected or, equivalently, as half the infimum of the lengths of the (homotopically non-trivial) loops based
at p. The injectivity radius ι(S) of S is the infimum over p ∈ S of ι(p).

This paper considers the stability of isoperimetric inequalities under quasi-isometries between non-exceptional
Riemann surfaces. This stability was proved by Kanai in [18] under the hypothesis ι(S) > 0 in a very general
setting. Example 2.1 in the next section shows that the stability fails without the hypothesis ι(S) > 0. Since
this example involves non-zero genus surfaces, it is natural to wonder if the stability holds for planar surfaces.

The main result in this paper is the following.

Theorem 1.1. Let S and S′ be quasi-isometric non-exceptional genus zero Riemann surfaces. Then S′

satisfies a linear isoperimetric inequality if and only if S satisfies a linear isoperimetric inequality. Further-
more, if f : S −→ S′ is a c-full (a, b)-quasi-isometry, and c1(S′) <∞ then c1(S) ≤ C, where C is a universal
constant which just depends on a, b, c and c1(S′).

For surfaces of positive finite genus, Theorem 7.2 shows that the first conclusion of Theorem 1.1 holds
however Example 7.3 shows that the second conclusion of Theorem 1.1 fails in this case.

The idea behind the proof of Theorem 1.1 is simple: each surface is split into a thin part (with small
injectivity radius) and a thick part; a slight modification of the proof of Kanai’s Theorem applied to the
thick part, together with some new arguments to show that the thin part is “essentially” preserved under
the quasi-isometry give the theorem. The difficulty is the following: two quasi-isometric surfaces have a
similar shape at a large scale (if viewed from sufficiently far), but they can look very different at a small
scale (by definition a quasi-isometry may not be continuous). In particular, the image of a continuous loop
by a quasi-isometry need not be a continuous curve, and thus the injectivity radii can be very different in
two quasi-isometric surfaces (see e.g. Examples 2.2 and 2.3). Theorem 5.1 deals with this situation and
states that a quasi-isometry between planar surfaces maps points with small injectivity radius to points with
small injectivity radius (in a precise quantitative way). In fact, the core of this work is devoted to proving
Theorem 5.1.

A very different situation appears when dealing with the α-isoperimetric inequality, 1/2 ≤ α < 1. Theorem
8.2 states that, in this case, if S and S′ are quasi-isometric with ι(S) > 0, then S′ satisfies the α-isoperimetric
inequality if and only S satisfies the α-isoperimetric inequality and ι(S′) > 0.

Hence, the behaviour of the α-isoperimetric inequality in planar Riemann surfaces under quasi-isometries
is very different in the cases α = 1 and α < 1.

The outline of this paper is as follows. Section 2 contains some background and examples. In Section 3
the continuity of the injectivity radius under quasi-isometries is studied. Section 4 contains some technical
lemmas on quasi-isometries which will be needed in Section 5 in order to control the distortion of the
injectivity radius under quasi-isometries. In Section 6 the proof of Theorem 1.1 is given, and finally, sections
7 and 8 are devoted to generalize this theorem to finite genus surfaces and to non-linear isoperimetric
inequalities, respectively.

2. Background and examples

A function between two metric spaces f : X −→ Y is said to be an (a, b)-quasi-isometric embedding with
constants a ≥ 1, b ≥ 0, if

1
a
dX(x1, x2)− b ≤ dY (f(x1), f(x2)) ≤ a dX(x1, x2) + b , for every x1, x2 ∈ X.

Such a quasi-isometric embedding f is a quasi-isometry if, furthermore, there exists a constant c ≥ 0 such
that f is c-full, i.e., if for every y ∈ Y there exists x ∈ X with dY (y, f(x)) ≤ c.

Two metric spaces X and Y are quasi-isometric if there exists a quasi-isometry between them.
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An (a, b)-quasigeodesic in X is an (a, b)-quasi-isometric embedding between an interval of R and X. A
geodesic in X is a (1, 0)-quasigeodesic.

It is easy to check that to be quasi-isometric is an equivalence relation on the set of metric spaces.
The word geodesic will always be used with the meaning in Definition 1.1 except for the case of either

simple closed geodesics (which are just local geodesics) or geodesic loops (which are just local geodesics
except in their basepoints).

The surface S will be split into thin and thick parts, and some standard tools for constructing Riemann
surfaces will be needed. Doubly connected domains will be crucial.

A collar in a non-exceptional Riemann surface S about a simple closed geodesic σ is a doubly connected
domain in S “bounded” by two Jordan curves (called the boundary curves of the collar) orthogonal to the
pencil of geodesics emanating from σ; such collar is equal to {p ∈ S : dS(p, σ) ≤ d}, for some positive
constant d. The constant d is called the width of the collar.

Let S be a non-exceptional Riemann surface with a cusp q (if S ⊂ C, every isolated point in ∂S is a cusp).
A collar in S about q is a doubly connected domain in S “bounded” both by q and a Jordan curve (called
the boundary curve of the collar) orthogonal to the pencil of geodesics emanating from q. It is well known
that the length of the boundary curve is equal to the area of the collar (see e.g. [4]). A collar of area β is
called a β-collar.

A Y -piece is a compact bordered Riemann surface which is topologically a sphere without three disks and
whose border is the union of three simple closed geodesics. Given three positive numbers a, b, c, there is a
unique (up to conformal mapping) Y-piece such that their boundary curves have lengths a, b, c (see e.g. [25,
p.410]). They are a standard tool for constructing Riemann surfaces ( [8, Chapter X.3] and [6, Chapter 1]).

A generalized or degenerated Y -piece is a bordered or non-bordered Riemann surface which is topologically
a sphere without n open disks and m points, with integers n,m ≥ 0 and n+m = 3, so that the n boundary
curves are simple closed geodesics and the m deleted points are cusps. Observe that a generalized Y -piece
is topologically the union of a Y -piece and m cylinders, with 0 ≤ m ≤ 3.

A funnel is a bordered Riemann surface which is topologically a cylinder and whose border is a simple
closed geodesic. Given any positive number a, there is a unique (up to conformal mapping) funnel such that
its boundary curve has length a.

Example 2.1. There exist two non-exceptional Riemann surfaces S, S′ and an (a, b)-quasi-isometry c-full
f : S → S′, such that ι(S) = ι(S′) = 0, S does not satisfy the LII and S′ satisfies the LII.

Let us consider two isometric Y -pieces Y1, Y2 such that ∂Yj is the union of three simple closed geodesics
with length 1 for j = 1, 2. Denote by X the bordered surface obtained by pasting two boundary curves of
Y1 with two boundary curves of Y2 (X is a torus with two holes). Let us consider a sequence {Xm}m≥1 of
bordered surfaces isometric to X; denote by S0 the bordered surface obtained by pasting a boundary curve of
Xm with a boundary curve of Xm+1 for every m ≥ 1. Consider now a generalized Y -piece Y0 with a cusp
and such that ∂Y0 is the union of two simple closed geodesics with length 1.
S is the (non bordered) surface obtained by pasting a funnel (with boundary of length 1) to one boundary

curve of Y0 and S0 to the other boundary curve of Y0. S does not satisfy the LII since ∪nm=1Xm has area
4πn and its boundary has length 2 for every n ≥ 1.

The surface S′ is obtained by pasting a funnel (with boundary of length 1) to a generalized Y -piece Y ∗

with two cusps and such that ∂Y ∗ is a simple closed geodesics with length 1. S′ satisfies the LII since a
surface of finite type satisfies the LII if and only if it has at least a funnel.

The following examples show that the conclusion of Theorem 5.1 does not hold if S or S′ are surfaces of
positive genus. In particular, Example 2.3 shows that thin parts are not in correspondence.

Example 2.2. There exist constants a, b, c, I1, I2 with the following property: for each n there exist non-
exceptional Riemann surfaces Sn, S′n and an (a, b)-quasi-isometry c-full fn : Sn → S′n, such that ι(z) ≥ n
for every z ∈ Sn and I1 ≤ ι(z) ≤ I2 for every z ∈ S′n.

Let Sn be the annulus with the simple closed geodesic with length 2n. Consider an 1-net Nn of Sn; by
[18] there exists a full quasi-isometry gn : Sn → Nn with universal constants. By [3, Theorem 23], there
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exist a cubic graph Cn and a full quasi-isometry hn : Nn → Cn with universal constants. Let us consider a
sequence {Ym} of Y -pieces such that ∂Ym is the union of three simple closed geodesics with length 1 for every
m (therefore, they are isometric). It suffices to consider as S′n the surface obtained by pasting the Y -pieces
{Ym} following the combinatorial design of Cn.

Example 2.3. There exist constants a, b, c, I1, I2 with the following property: there exist non-exceptional
Riemann surfaces S, S′ and an (a, b)-quasi-isometry c-full f : S → S′, such that I1 ≤ ι(z) ≤ I2 for every
z ∈ S and ι(S′) = 0.

Let us consider two isometric Y -pieces Y1, Y2 such that ∂Yj is the union of three simple closed geodesics
with length 1 for j = 1, 2. Denote by X the bordered surface obtained by pasting two boundary curves of
Y1 with two boundary curves of Y2 (X is a torus with two holes). Let us consider a sequence {Xm}m∈Z of
bordered surfaces isometric to X; then S is obtained by pasting a boundary curve of Xm with a boundary
curve of Xm+1 for every m ∈ Z.

Consider now two isometric generalized Y -pieces Y3, Y4 with a cusp and such that ∂Yj is the union of two
simple closed geodesics with length 1 for j = 3, 4. It suffices to consider S′ as the (non bordered) surface
obtained by pasting the two boundary curves of Y3 with the two boundary curves of Y4 (S′ is a torus with
two cusps).

3. Continuity of the injectivity radius

The following result is well-known.

Lemma 3.1. Let M be a Riemannian manifold and x, y ∈M . Then |ι(x)− ι(y)| ≤ dM (x, y).

This last result can be improved for small values of the injectivity radius.

Lemma 3.2. Let S be a non-exceptional Riemann surface and z, w ∈ S. Then

ι(w) ≥ arcsinh
(
e−dS(z,w) min{1, sinh ι(z)}

)
.

In particular, if sinh ι(z), sinh ι(w) ≤ 1, then | log sinh ι(w)− log sinh ι(z)| ≤ dS(z, w).

Proof. Let us choose geodesic loops γz and γw with respective base points z and w such that ι(z) = LS(γz)
and ι(w) = LS(γw).

Assume first that γz and γw are freely homotopic. It is clear that the minimum value of ι(w) is attained
if γz and γw bordered a cusp and z and w belong to the same geodesic escaping to the cusp.

As usual, consider a fundamental domain for S in the upper halfplane H contained in {z ∈ H : 0 ≤ <z ≤ 1}
and such that {z ∈ H : 0 ≤ <z ≤ 1, =z ≥ 1/2} corresponds to the 2-collar of this cusp in S. Let us represent
γz (respectively, γw) in the upper half-plane by means of a geodesic with endpoints iα and iα+1 (respectively,
iβ and iβ + 1, with β > α). Note that

sinh ι(z) = sinh
dH(iα, iα+ 1)

2
=

1
2α

, sinh ι(w) =
1

2β
, dS(z, w) = dH(iα, iβ) = log

β

α
= log

sinh ι(z)
sinh ι(w)

.

Hence, the minimum value of ι(w) is attained with ι(w) = arcsinh
(
e−dS(z,w) sinh ι(z)

)
.

Assume now that γz and γw are not freely homotopic. Let us consider a geodesic [z, w] in S and the
nearest point z0 to z in [z, w] with a geodesic loop γz0 freely homotopic to γw such that ι(z0) = LS(gz0). It is
not difficult to see that ι(z0) ≥ arcsinh 1 (the injectivity radius of any point in the boundary of the 2-collar
of a cusp). The previous argument gives ι(w) ≥ arcsinh

(
e−dS(z0,w) sinh ι(z0)

)
≥ arcsinh e−dS(z,w). This

finishes the proof of the first statement. The second statement is a direct consequence of the first one. �

4. Technical lemmas on quasi-isometries

A key step in the proof of our main result in this paper (Theorem 1.1) is to control the distortion of the
injectivity radius under quasi-isometric transformations (see Theorems 5.1 and 5.2). Due to the complexity
of the proofs of these Theorems, this section is devoted to present some technical lemmas used in their proofs.
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Along this chapter, σ will denote a simple closed geodesic in S and w the width of the collar of σ, where
coshw = coth(LS(σ)/2).

Let us consider H > 0, a metric space X, and a subset Y ⊆ X. The set VH(Y ) := {x ∈ X : d(x, Y ) ≤ H}
is called the H-neighborhood of Y in X.

A control on how collars behave under quasi-isometries will be needed, and thus a more general definition
is required: Let us consider a finite or infinite geodesic γ ⊂ S and a connected subset γ0 of that geodesic.
Given two positive constants h and r, then the h-neighborhood of f(γ) in S′ is an (f, γ, γ0, h, r)-tube T if
for every point p ∈ γ0, the closed ball BS′(f(p), r) is contained in T .

In principle, although a tube does not need to be doubly connected, Theorems 4.4 and 4.5 will show that
they are “essentially” doubly connected, and that explain the name.

Remark 4.1. The Collar Lemma states that if σ is a simple closed geodesic there exists a collar about σ
of width d, for every 0 < d ≤ w, where coshw = coth(LS(σ)/2). Hence, if LS(σ) < 2 arccoth(cosh t), then
w > t.

Denote by Cσ,d the collar of σ of width d and by Cσ the collar of σ of width w. It is well known that if
σ1 and σ2 are disjoint simple closed geodesics, then Cσ1 ∩ Cσ2 = ∅.

For each cusp there exists a 2-collar and 2-collars of different cusps are disjoint. Besides, the collar Cσ
of the simple closed geodesic σ does not intersect the 2-collar of a cusp (see [24], [29] and [6, Chapter 4]). If
a λ-collar of a cusp (with 0 < λ ≤ 2) in a Riemann surface has boundary curve α, denote this collar by Cα.
Denote also by Cα the H-neighborhood of the 2-collar of a cusp with boundary α (now α can be a union of
closed curves).

The next result deals with collars of geodesics and cusps separately:

Lemma 4.2. Assume that S is a genus zero Riemann surface.
(1) Let t > 0, and γ be any geodesic perpendicular to σ contained in Cσ with LS(γ) = 2w. Then, there

exist positive constants k1, k2, which just depend on a, b, c, t, so that for γ0 := {p ∈ γ : dS(p, σ) <
w − k1} and LS(σ) < k2 there exists an (f, γ, γ0, h, h+ t)-tube T ⊂ S′ with h := 3a+ b+ c.

(2) Let C be the 2-collar of a cusp in S with boundary curve σ, γ an infinite geodesic contained in
C perpendicular to σ and t > 0. Then, there exists a positive constant k, which just depends on
a, b, c, t, so that for γ0 := {p ∈ γ : dS(p, σ) > k} there exists an (f, γ, γ0, h, h + t)-tube T ⊂ S′ with
h := 2a+ b+ c.

Proof. (1) Set k1 := 2a(3a+ 2b+ 2c+ t) and k2 := 2 arccoth(cosh k1). Notice that k1 ≥ 6, since a ≥ 1.
Since S is a zero genus surface, γ is a geodesic (not just a local geodesic); therefore, f(γ) is an
(a, b)-quasigeodesic.

Seeking for a contradiction, let us assume that there exists a point p ∈ γ0 such that the ball
B := BS′(f(p), h+ t) is not contained in T . That is, there exists a point q ∈ B \ T for which

(4.2) dS′(q, f(γ)) > h.

Since f is c-full, there must exist p1 ∈ S \ γ such that dS′(f(p1), q) ≤ c. Let us assume that
dS(p1, σ) > w − k1/2. Since p ∈ γ0, it means that dS(p, p1) > k1/2. Using the fact that f is an
(a, b)-quasi-isometry,

(4.3) dS′(f(p), f(p1)) ≥ 1
a
dS(p, p1)− b > k1

2a
− b.

By the triangle inequality, and using that q ∈ B,

(4.4) dS′(f(p1), f(p)) ≤ dS′(f(p1), q) + dS′(q, f(p)) ≤ 3a+ b+ 2c+ t.

Combining now (4.3) and (4.4), one deduces k1 < 2a(3a + 2b + 2c + t), which contradicts the
definition of k1. Therefore, p1 ∈ Cσ,w−k1/2. Then, there exists a point p2 ∈ γ close enough to p1,
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verifying that dS(p1, p2) is upper bounded by the length of one of the boundary curves of Cσ,w−k1/2.
Using Fermi coordinates based on σ, it is easy to check that LS(∂Cσ,w−k1/2)/2 ≤ LS(∂Cσ)/2 =
LS(σ) coshw. Remark 4.1, gives dS(p1, p2) ≤ LS(∂Cσ)/2 = LS(σ) coshw = LS(σ) coth(LS(σ)/2) ≤
3 since k1 ≥ 6 and LS(σ) < 2 arccoth(cosh k1).

On one hand, since f is an (a, b)-quasi-isometry (recall that p2 ∈ γ),

(4.5) dS′(f(p1), f(γ)) ≤ dS′(f(p1), f(p2)) ≤ adS(p1, p2) + b < 3a+ b.

On the other hand, taking into account (4.2),

(4.6) dS′(f(p1), f(γ)) ≥ dS′(f(γ), q)− dS′(q, f(p1)) ≥ 3a+ b+ c− c = 3a+ b.

Obviously (4.6) contradicts (4.5), so such a point q ∈ B\T cannot exist and the tube T mentioned
in the statement of the theorem does exist.

(2) The same arguments work for this situation, defining k := a(2a+ 2b+ 2c+ t).
�

Lemma 4.3. Let η be an (a, b)-quasi-geodesic in S and h > 0. Then there exists a positive constant r0,
which just depends on a, b, h, with the following property: if for some z0 ∈ η the ball B := BS(z0, r) is simply
connected and it is contained in the h-neighborhood of η, then r ≤ r0.

Proof. Let us define r0 := 2h(J + 1), where J is the least integer satisfying

J >
1
h

(
a2

(
a2

2
(3h+ b) + 2b+ 5h

)
+ b+ h

)
.

Note that, since B is simply connected, the ball B1 := BS(z0, r/2) is simply connected and, besides, geodesi-
cally convex. Let I be a closed interval on the real line and η : I −→ S a parametrization of the (a, b)-
quasigeodesic. Seeking for a contradiction, let us assume that r > 2h(J + 1).

Define j1 as the least integer verifying

j1 >
1
h

(
a2

2
(3h+ b) + b+ 2h

)
.

There exists δ > 0 such that
(4.7)

r > 2(h+ δ)(J + 1),

1
h+ δ

(
a2

2
(3h+ 3δ + b) + b+ 2h+ 2δ

)
+ 2 > j1 >

1
h+ δ

(
a2

2
(3h+ 3δ + b) + b+ 2h+ 2δ

)
and

J >
1

h+ δ

(
a2

(
a2

2
(3h+ 3δ + b) + 2b+ 5h+ 5δ

)
+ b+ h+ δ

)
.

Let us consider any geodesic γ1 ⊂ B1 extended in both directions from the point z0 and a second geodesic
γ2, perpendicular to γ1 and extended just in one direction from z0. Let us fix points z1, z2, z3, . . . ∈ γ1

in one of the directions starting at z0 and z−1, z−2, z−3, . . . ∈ γ1 in the opposite direction from z0, such
that dS(z0, zj) = |j|(h + δ) for every j with |j|(h + δ) < r/2. Analogously, choose points wj ∈ γ2 with
dS(z0, wj) = j(h+ δ) for every j > 0 with j(h+ δ) < r/2.

Since B1 is contained in the h-neighborhood of η, for each of these points zj , wj ∈ B1 there exist points
z∗j , w

∗
j ∈ η verifying dS(zj , z∗j ) ≤ h+ δ and dS(wj , w∗j ) ≤ h+ δ.

Let tj , sj ∈ I be the real values such that η(tj) = z∗j and η(sj) = w∗j (according to this notation,
η(t0) = z0 = z∗0). Then |tj − tk| ≤ a(dS(z∗j , z

∗
k) + b) ≤ a(|j − k|(h+ δ) + 2h+ 2δ + b) and, in particular,

(4.8) |tj − tj+1| ≤ a(3h+ 3δ + b).



QUASI-ISOMETRIES AND ISOPERIMETRIC INEQUALITIES IN PLANAR DOMAINS 7

Note that z∗J and z∗−J are both in the ball B1:

dS(z∗±J , z0) ≤ dS(z∗±J , z±J) + dS(z±J , z0) ≤ h+ δ + J(h+ δ) = (h+ δ)(J + 1) < r/2.

For the defined value j1

(4.9)
|sj1 − t0| ≤ a(dS(w∗j1 , z0) + b) ≤ a(dS(w∗j1 , wj1) + dS(wj1 , z0) + b)

≤ a(h+ δ + j1(h+ δ) + b).

A similar argument gives,

(4.10) |tJ − t0| ≥
1
a

(dS(z0, z∗J)− b) ≥ 1
a

(J(h+ δ)− h− δ − b) .

Using the third inequality in (4.7) and j1(h+ δ) < a2/2(3h+ 3δ + b) + b+ 4h+ 4δ, it is easy to check that
1
a

(J(h+ δ)− h− δ − b) > a(h+ δ + b+ j1(h+ δ)).

Therefore, comparing (4.9) and (4.10), one obtains |tJ − t0| > |sj1 − t0|. Analogously, |t−J − t0| > |sj1 − t0|.
Hence, by (4.8), there exists some j2 ∈ Z such that

|sj1 − tj2 | ≤
a

2
(3h+ 3δ + b).

Taking into account the above inequality,

dS(wj1 , zj2) ≤ dS(w∗j1 , z
∗
j2) + 2h+ 2δ ≤ a|sj1 − tj2 |+ b+ 2h+ 2δ

≤ a2

2
(3h+ 3δ + b) + b+ 2h+ 2δ and

dS(wj1 , zj2) ≥ dS(wj1 , z0) = j1(h+ δ).

Thus,

j1(h+ δ) ≤ a2

2
(3h+ 3δ + b) + b+ 2h+ 2δ,

which contradicts the second inequality in (4.7). Therefore, r ≤ 2h(J + 1) as claimed. �

Theorem 4.4. Assume that S and S′ are genus zero surfaces. Let γ be any geodesic perpendicular to σ
contained in Cσ with LS(γ) = 2w. There exist positive constants r0, k0, k1, k2, which just depends on a, b, c,
so that if γ0 := {p ∈ γ : dS(p, σ) < w − k1} and LS(σ) < k2, then there exists an (f, γ, γ0, h, h + k0)-tube
T ⊂ S′ with h := 3a+ b+ c.

Furthermore, if u1, u2 are the endpoints of γ0, and gi is any simple geodesic loop with base point f(ui)
and LS′(gi) = 2ι(f(ui)) (i = 1, 2), then g1 and g2 bound a doubly connected set in S′, and for every z ∈ γ0,
ι(f(z)) ≤ r0 and the injectivity radius in f(z) is attained in the geodesic loop with base point f(z) freely
homotopic to a simple closed geodesic σ′ in S′, where σ′ only depends on σ and f . Besides, f(Cσ) is
contained in the H0-neighborhood of the collar Cσ′ of σ′, where H0 := r0 + ak1 + b.

Note that σ′ does not depend neither on γ or γ0.

Proof. Let us define J as the least integer satisfying

J >
1
h

(
a2

(
a2

2
(3h+ b) + 2b+ 5h

)
+ b+ h

)
,

r0 := 2h(J + 1), k0 := a2(12h(J + 1) + 1/2 + 3b) + 12h(J + 1) + b+ h+ 3, k1 := 2a(3a+ 2b+ 2c+ k0) and
k2 := 2 arccoth(cosh(k1 + a(4h(J + 1) + b)/2)).

Since LS(σ) < k2, the width w of the collar Cσ verifies the inequality w > k1 + a(2r0 + b)/2 (see Remark
4.1), and consequently,

dS′(f(u2), f(u1)) ≥ 1
a
dS(u2, u1)− b =

2w − 2k1

a
− b > 4h(J + 1) = 2r0.
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Therefore, it is possible to choose points x0, x1, . . . , xm ∈ γ0, where x0 = u1, xm = u2 and

(4.11) 2r0 < dS′(f(xj), f(xj−1)) ≤ 4r0

for j = 1, . . . ,m.
Note that h+ k0 > r0. Let us consider any r1 with h+ k0 > r1 > r0. By Lemma 4.2 (1), taking t = k0,

Vh+k0(f(γ0)) ⊂ Vh(f(γ)), and thus Lemma 4.3 gives that the balls BS′(f(xj), r1) are not simply connected
for j = 0, 1, . . . ,m. Therefore, the injectivity radius ι(f(xj)) at the point f(xj) is less than r1 for every
r1 > r0, and then ι(f(xj)) ≤ r0. In particular, ι(f(u1)), ι(f(u2)) ≤ r0. Consequently, there exists a simple
geodesic loop gj with base point f(xj) and LS′(gj) = 2ι(f(xj)) ≤ 2r0. In light of (4.11), gj ∩ gj+1 = ∅.
Since S′ is a genus zero surface, gj and gj+1 disconnect S′, and then S′ \ (gj ∪ gj+1) has three connected
components. Consider the geodesics γ′j := [f(xj), f(xj+1)] ⊂ S′.

Claim. γ′j ∩ gj = {f(xj)} for j = 0, . . . ,m

Assume the claim holds. Assume that gj is not freely homotopic to gj+1 for some j. It will be shown
that, in that case, B′S(f(xj), k0) * Vh(f(γ)), contradicting Lemma 4.2 (1). Set ηj := gj ∪ γ′j ∪ gj+1 ∪ (−γ′j).
Note that LS′(ηj) ≤ 12r0. By means of a slight modification of ηj , one can construct a simple closed curve
η′j freely homotopic to ηj , with η′j ∩ {gj ∪ gj+1} = ∅, LS′(η′j) ≤ 12r0 + 1 and HS′(ηj , η′j) ≤ 1 (where HS′
denotes Hausdorff distance) as follows way. Without loss of generality, S′ is a domain contained in C, so
take opposite orientation for gj and gj+1 and let ηj be an oriented curve. If either gj surrounds gj+1 or
gj+1 surrounds gj , Choose η′j contained in the annulus in C bounded by gj and gj+1. Otherwise, choose η′j
contained in the “exterior” connected component of S′ \ ηj .

Since the curves gj , gj+1 and η′j are not trivial, gj , gj+1 and η′j disconnect S′ and S′ \ (gj ∪ gj+1 ∪ η′j)
has four connected components, one of them bounded (with finite diameter) denoted by V ; and other three
unbounded (with infinite diameter). Note that ∂V = gj ∪ gj+1 ∪ η′j . Since there are three unbounded
connected components of S′ \ (gj ∪ gj+1 ∪ η′j), there must exist an unbounded connected component U with
f(u), f(v) /∈ U . Note that

diamS′ ∂U ≤
1
2

max{LS′(gj), LS′(gj+1), LS′(η′j)} ≤ 6r0 +
1
2
.

Since V is contained in the 1-neighborhood of ηj and LS′(ηj) ≤ 12r0, then

diamS′ V ≤ 1 + diamS′ ηj + 1 ≤ 6r0 + 2.

Assume first that f(γ) intersects U . In this case, diam(f(γ) ∩ U) is bounded above. Indeed, consider
γ0 to be oriented from u1 to u2 and consider points p′ := inf{τ ∈ [u1, u2] : f(τ) ∈ U} and q′ := sup{τ ∈
[u1, u2] : f(τ) ∈ U}.

Given p, q ∈ γ ∩ f−1(U), since LS′(η′j) ≤ 12r0 + 1, f(γ) is a (possibly) discontinuous curve with gaps of
amplitude at most b, one deduces

(4.12)

dS′(f(p), f(q)) ≤ adS(p, q) + b ≤ adS(p′, q′) + b ≤ a2dS′(f(p′), f(q′)) + a2b+ b

≤ a2(diamS′ ∂U + 2b) + a2b+ b

≤ a2(6r0 + 1/2 + 3b) + b = k0 − 6r0 − h− 3.

Thus diamS′
(
f(γ) ∩ U

)
≤ k0 − 6r0 − 2 − h − 1. Consequently, if z ∈ f(γ) ∩ U , then dS′(f(xj), z) ≤

diamS′ V + diamS′
(
f(γ) ∩ U

)
≤ k0 − h− 1.

If f(γ) does not intersect U and z ∈ U , then dS′(f(xj), z) ≤ diamS′ V ≤ k0 − h− 1.
Therefore, in both cases, the region U is unbounded, the ball BS′(f(xj), k0) cannot be contained in

Vh(f(γ)) which contradicts Lemma 4.2 (1).
Since it was shown that the closed ball BS′(f(xj), h+ k0) must be contained in T , then BS′(f(xj), k0)

must also be contained in T .
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Therefore, gj is freely homotopic to gj+1 for every j. Consequently, the simple geodesic loops g0 = g1 and
gm = g2 with base points f(u1) and f(u2), respectively, are freely homotopic and bound a doubly connected
set in S′ as claimed.

By taking different sequences of points {xj} one can check that if z ∈ γ0, and gz is any simple geodesic
loop with base point f(z) and LS′(gz) = 2ι(f(z)), then gz is freely homotopic to g1 and ι(f(z)) ≤ r0.

By Theorem 4.5 below, the map f provides a bijective correspondence from the cusps of S to the cusps of
S′; hence, there exists a simple closed curve σ′ freely homotopic to g1 of length l. By the Collar Lemma and
[6, p.454], the injectivity radius ι0 at the points in ∂Cσ′ satisfies sinh ι0 = sinh(l/2) coshw = cosh(l/2) > 1.

For z ∈ γ0 f(z) either belongs to the collar Cσ′ , and thus to Vr0(C ′σ), or, otherwise, let us define
t := dS′(f(z), σ′)− w > 0. Then, sinh r0 ≥ sinh ι(z) = sinh(l/2) cosh(w + t) and

1
2
et <

1
2
et sinh(l/2) coshw <

1
2
ew+t sinh(l/2) < cosh(w + t) sinh(l/2) ≤ sinh r0 <

1
2
er0 .

Hence, t < r0 and f(γ0) ⊂ Vr0(Cσ′). Given another geodesic γ̃0 perpendicular to σ, it has been proved that
f(γ̃0) is contained in the r0-neighborhood of Cσ̃′ for some simple closed curve σ̃′ in S′; in order to check
that σ̃′ = σ′ it suffices to repeat the previous argument replacing γ0 by any geodesic γ1 meeting σ with an
angle π/2− ε for small ε > 0. Therefore, f({p ∈ S : dS(p, σ) ≤ w− k1}) is contained in the r0-neighborhood
of Cσ′ , and f(Cσ) is contained in the (ak1 + b+ r0)-neighborhood of Cσ′ .

To prove the claim, assume that there exists a point ζ in γ′j ∩ gj \ {f(xj)} and argue by contradiction.
Denote by g∗j a subcurve of gj joining f(xj) and ζ and denote by γ∗j the subcurve of γ′j joining f(xj) and

ζ.
Since γ′j is a geodesic, LS′(γ∗j ) ≤ LS′(g∗j ). Choose g∗j so that the loop Γ0 := g∗j ∪ γ∗j with base point f(xj)

is non trivial; since Γ0 has a corner in ζ, there exists a curve Γ freely homotopic to Γ0 (thus non trivial)
with LS′(Γ) < LS′(g∗j ) + LS′(γ∗j ) ≤ LS′(gj). This inequality contradicts

LS′(gj) = 2ι(f(xj)) = inf{LS′(c) : c is a loop with base point f(xj) }.

The claim, and hence the Theorem, hold. �

Theorem 4.5. Assume that S′ is a genus zero surface and f : S −→ S′ a c−full (a, b)−quasi-isometry. Let C
be the 2-collar of a cusp in S with boundary curve σ and γ an infinite geodesic contained in C perpendicular to
σ. There exist positive constants H, k, t, which just depends on a, b, c, so that if γ0 := {p ∈ γ : dS(p, σ) > k},
then there exists an (f, γ, γ0, h, h+ t)-tube T ⊂ S′ with h := 2a+ b+ c. Furthermore, f(C ) is contained in
the H-neighborhood of the 2-collar of a cusp in S′.

Proof. Define J as the least integer satisfying

J >
1
h

(
a2

(
a2

2
(3h+ b) + 2b+ 5h

)
+ b+ h

)
.

Let us consider positive constants t := a2(12h(J+1)+1/2+3b)+12h(J+1)+b+h+3, k := a(2a+2b+2c+t)
and H := ak + b+ log sinh(2h(J + 1)).

The statement about the existence of the tube is given by Lemma 4.2 (2), since this lemma holds for any
positive value of t, and k is defined as in the proof of Lemma 4.2

Let us choose now two points u1, u2 ∈ γ0 such that dS(u1, u2) > a(4h(J+1)+ b), which is always possible
since γ0 is infinite. Notice that

dS′(f(u2), f(u1)) ≥ 1
a
dS(u2, u1)− b > 4h(J + 1).

Let us define the constant C := a2(12h(J+1)+1/2+2b)+12h(J+1)+ab+b+h+3. From this point on,
the conclusion of this theorem can be obtained repeating the reasoning offered in the proof of Theorem 4.4
with C playing the role of k0. However, since now the geodesic γ0 is infinite, the distance between u1 and u2

can be arbitrarily large. Then, all the geodesic loops {gj} with base point f(xj), for any xj located on γ0 are
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homotopic and, besides, LS′(gj) ≤ 4h(J + 1). It means that f(C ) is actually contained in a neighborhood
of a cusp in S′, since f(C ) is not a bounded set.

Next, it will be shown that f(C ) is inside the H-neighborhood of the 2-collar of a cusp in S′. Let us
choose any of the geodesic loops gj mentioned above, and let us assume that it lies out of the 2-collar of
the corresponding cusp in S′. As usual, consider a fundamental domain for S′ in the upper halfplane H
contained in {z ∈ H : 0 ≤ <z ≤ 1} and such that {z ∈ H : 0 ≤ <z ≤ 1, =z ≥ 1/2} corresponds to
the 2-collar of this cusp in S′. Let us represent gj in the upper half-plane by means of a geodesic with
endpoints iα and iα + 1. If α ≥ 1/2, then gj is in the 2-collar in S′. Hence, α < 1/2. If d is the
actual length of gj , then sinh(d/2) = 1/(2α). Taking into account that d = LS′(gj) ≤ 4h(J + 1), then
1/(2α) = sinh(d/2) ≤ sinh(2h(J + 1)), and

dH(iα, i/2) = log
1

2α
≤ log sinh(2h(J + 1)) =: H1,

which means that xj is in the H1-neighborhood of the boundary curve of the 2-collar in S′. Hence, in any
case, xj is in the H1-neighborhood of the 2-collar in S′. Therefore, f({p ∈ C : dS(p, σ) > k}) is contained
in the H1-neighborhood of the 2-collar in S′, and f(C ) is contained in the (H1 + ak + b)-neighborhood of
the 2-collar of a cusp in S′. �

Lemma 4.6. Fix two positive constants d1 and ι0. Let S be a non-exceptional Riemann surface, σ be a
simple closed geodesic with S \σ non-connected, and x, y points in S such that dS(x, y) ≥ d1 and the geodesic
loops gx, gy with base points x, y, respectively, freely homotopic to σ, verify LS(gx), LS(gy) ≤ 2ι0. Let σx
(respectively, σy) be the set of points in the connected component of S \σ containing x (respectively, y) which
are at distance dS(x, σ) (respectively, dS(y, σ)) from σ; denote by C the domain in S bounded by σx and σy,
and by C0 the set of points in C at distance greater or equal than d2 from ∂C = σx ∪ σy, with

(4.13) 0 < d2 < arccosh
2 cosh2(d1/2)√

4 cosh2(d1/2) + sinh2ι0
.

Then C0 is non empty and sinh ι(z) < 2 e−d2 sinh ι0 for every z ∈ C0.

Remark 4.7. An elementary computation gives that if d1 ≥ max{2ι0, 2d2 + log 20}, then (4.13) holds.

Proof. Define l := LS(σ) and x0 (respectively, y0) the point in σ with dS(x, σ) = dS(x, x0) (respectively,
dS(y, σ) = dS(y, y0)). It is clear that the maximum of the injectivity radius is attained when S is an annulus
with simple closed geodesic σ, dS(x, y) = d1, LS(gx), LS(gy) = 2ι0, and x, y are antipodal points with respect
to σ, i.e. dS(x, σ) = dS(y, σ) and dS(x0, y0) = l/2. In this case, defining u := dS(x, σ) = dS(y, σ), it is
well-known (see e.g. [6, p.454]) that cosh(d1/2) = coshu cosh(l/4) and sinh ι0 = sinh(l/2) coshu. Hence,

sinh(l/4) =
sinh(l/2)

2 cosh(l/4)
=

sinh ι0
2 cosh(d1/2)

, coshu =
cosh(d1/2)
cosh(l/4)

=
2 cosh2(d1/2)√

4 cosh2(d1/2) + sinh2ι0
.

Therefore, take 0 < d2 < dS(x, σ) = dS(y, σ) and C0 is not the empty set. If u ∈ Cσ, denote by ψu the
geodesic loop with base point u freely homotopic to σ. For any z ∈ ∂C0, it is well-known (see e.g. [6, p.454])
that

sinh(LS(ψz)/2) = sinh(l/2) cosh(u− d2) ≤ eu−d2 sinh(l/2) < 2 e−d2 sinh(l/2) coshu = 2 e−d2 sinh ι0.

Hence, for any z ∈ C0, sinh(LS(ψz)/2) < 2 e−d2 sinh ι0 and, consequently, sinh ι(z) < 2 e−d2 sinh ι0. �

Lemma 4.8. Let S be a non-exceptional Riemann surface and z ∈ S. If ι(z) < arcsinh 1, then the shortest
geodesic loop η with base point z is contained either in the 2-collar of a cusp or in the collar Cσ of a simple
closed geodesic σ.

Proof. Given any point p on the boundary of the 2-collar of a cusp, or on the boundary of the collar of a
simple closed geodesic then ι(p) ≥ arcsinh 1 by the Collar Lemma.
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Therefore z must lie inside the cusp or collar. Lifting its shortest geodesic loop to the universal covering
shows this will also be the case for its geodesic loop.

�

Lemma 4.9. Let S be a non-exceptional Riemann surface, σ be a simple closed geodesic in S and z a point
in the collar Cσ. Then dS(z, ∂Cσ) ≥ log(1/ sinh ι(z)).

Proof. If ι(z) ≥ arcsinh 1, then dS(z, ∂Cσ) ≥ 0 ≥ log(1/ sinh ι(z)). Assume now that ι(z) < arcsinh 1. By
Lemma 4.8 the shortest geodesic loop η with base point z is contained in Cσ. Note that if d := dS(z, σ),
then dS(z, ∂Cσ) = w − d. Let l := LS(σ); by the Collar Lemma (see e.g. [6, p.454]):

sinh ι(z) = sinh(l/2) cosh d =
cosh d
sinhw

≥ ed−w,

which implies the result. �

Lemma 4.10. Let S be a non-exceptional genus zero Riemann surface, I and h two positive constants, σ
a simple closed geodesic with LS(σ) ≤ 2 I, and Chσ the h-neighborhood of Cσ. Denote by S1 a connected
component of S \ σ, and by α1 the set of closed curves in ∂Chσ ∩ S1. If p, q ∈ α1, then dS(p, q) ≤ ehI coth I.

Proof. Without loss of generality, assume that S is an annulus and σ is the simple closed geodesic in S.
Define l := LS(σ) and L := LS(α1). Since l/2 ≤ I and g(x) = x cothx is an increasing function for x > 0,

dS(p, q) ≤ L/2 = (l/2) coshw
cosh(w + h)

coshw
< (l/2) coth(l/2)

cosh(w + h)
coshw

≤ eh I coth I.

�

Finally, the following two lemmas are easy to check.

Lemma 4.11. Let g : [α, β] → R be an (a, b)-quasi-isometric embedding with g(β) > g(α). If x, y ∈ [α, β]
and y > x+ (a+ 1)b, then g(y) > g(x).

Lemma 4.12. Let g : [0,∞)→ [0,∞) be an (a, b)-quasi-isometrc embedding. If x, y ≥ 0 and y > x+(a+1)b,
then g(y) > g(x).

5. Stability of the injectivity radius under quasi-isometries

Recall the notation Cσ and Cα for collars of simple closed geodesic and cusps respectively. Also denote by
Cα the H-neighborhood of the 2-collar of a cusp with boundary α (now α can be a union of closed curves).

Theorem 5.1. Let S and S′ be non-exceptional genus zero Riemann surfaces and let f : S −→ S′ be a c-full
(a, b)-quasi-isometry. For each ε′ > 0 there exists ε > 0 which just depends on ε′, a, b, c, such that if ι(z) < ε
then ι(f(z)) < ε′. Moreover, given ε1 > 0, ε can be taken so that ε < ε1.

Proof. Without loss of generality assume that 0 < ε′, ε ≤ arcsinh 1.

The proof takes advantage of the relation between ι(z) and the distance from z to the boundary of the
collar of a cusp when z is in the interior of the collar of a cusp, or the distance from z to the boundary of
the collar of a simple closed geodesic when z is in the collar.

Assume first that the shortest geodesic loop based on z is freely homotopic to a cusp in S. Let z
belong to the interior of the 2-collar of this cusp, Cα, where α is its boundary curve. In this setting
sinh ι(z) = e−dS(z,α) < 1.

For every u ∈ Cα define Wα(u) := dS(u, α) . Then for any two points u, v ∈ Cα,

(5.14) |Wα(v)−Wα(u)| ≤ dS(v, u) ≤ |Wα(v)−Wα(u)|+ 1,

By Theorem 4.5, f(Cα) is contained in Cα′ , the H-neighborhood of the 2-collar of a cusp in S′ (now
α′ := ∂Cα′ can be a union of closed curves). Let us define Wα′(p) := dS′(p, α′) for every p ∈ Cα′ . Then,

(5.15) |Wα′(f(v))−Wα′(f(u))| ≤ dS′(f(v), f(u)) ≤ |Wα′(f(v))−Wα′(f(u))|+ 1 + 2H,
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for any two points u, v ∈ Cα.
By (5.14) and (5.15),

(5.16)

|Wα′(f(v))−Wα′(f(u))| ≤ dS′(f(v), f(u)) ≤ adS(v, u) + b ≤ a(|Wα(v)−Wα(u)|+ 1) + b

= a|Wα(v)−Wα(u)|+ a+ b,

|Wα′(f(v))−Wα′(f(u))| ≥ dS′(f(v), f(u))− 1− 2H ≥ 1
a
dS(v, u)− b− 1− 2H

≥ 1
a
|Wα(v)−Wα(u)| − 1− b− 2H,

for any two points u, v ∈ Cα. Therefore, (5.16) shows that there is an (a, a + b + 2H) quasi-isometric
embedding defined from [0,∞) to [0,∞) that relates Wα(u) with Wα′(f(u)), for every u ∈ Cα.

Let z0 be the point in α so that dS(z, α) = dS(z, z0). Then

(5.17) Wα(z)−Wα(z0) = Wα(z) = log
1

sinh ι(z)
> log

1
sinh ε

.

Choosing ε so that sinh ε < e−(a+1)(a+b+2H),

Wα(z)−Wα(z0) > (a+ 1)(a+ b+ 2H).

By Lemma 4.12, Wα′(f(z)) > Wα′(f(z0)), and thus (5.16) and (5.17) give

Wα′(f(z)) ≥Wα′(f(z))−Wα′f((z0)) =
∣∣Wα′(f(z))−Wα′f((z0))

∣∣
≥ 1
a

∣∣Wα(z)−Wα(z0)
∣∣− 1− b− 2H >

1
a

log
1

sinh ε
− 1− b− 2H > log

1
sinh ε′

+H ≥ H,

since 0 < ε′ ≤ arcsinh 1, and if ε is taken to be

sinh ε < min{(sinh ε′)ae−a(3H+1+b), e−(a+1)(a+b+2H)}.

Since Wα′(f(z)) > H, f(z) is in the 2-collar of the cusp, and thus Wα′(f(z)) = − log sinh ι(f(z))+H. Hence
ι(f(z)) < ε′.

Assume now that the shortest loop based on z is freely homotopic to a simple closed geodesic σ; let z
belong to the interior of the collar Cσ of width w. Let us consider the geodesics γ, γ0 and the constants
r0, k0, k1, k2, H0 as in Theorem 4.4 and let l := LS(σ) ≤ 2ι(z) < k2. If we require ε ≤ k2/2, by the Collar
Lemma, for any u ∈ Cσ, sinh ι(z) = cosh(l/2) < cosh(k2/2) =: k3.

Denote by α1, α2 the simple closed curves in ∂Cσ; then LS(αj) = l coshw < 2 sinh(l/2) coshw =
2 cosh(l/2) < 2 cosh(k2/2) = 2k3 for j = 1, 2. Define Wαj (u) := dS(u, αj) for every u ∈ Cσ and j = 1, 2.
Since S is a genus zero surface,

(5.18) |Wαj (v)−Wαj (u)| ≤ dS(v, u) ≤ |Wαj (v)−Wαj (u)|+ k3,

for any two points u, v ∈ Cσ.
By Theorem 4.4, f(Cσ) is contained in the H0−neighborhood of the collar Cσ′ of a simple closed geodesic

σ′ in S′.
Denote by Ψu the geodesic loop with base point f(u) freely homotopic to σ′. Let u ∈ Cσ, then

LS′(Ψu) ≤ 2(r0 + ak1 + b) := 2r′0

since if dS(u, ∂Cσ) ≥ k1, Theorem 4.4 gives LS′(Ψu) = 2ι(f(u)) ≤ 2r0.
S′ is also a genus zero surface, therefore S′ \ σ′ has two connected components S′1, S

′
2. Then, f(Cσ)

intersects either both of them or only one of them. In the former case, define rj := sup{dS′(f(u), σ′)/ u ∈
Cσ, f(u) ∈ S′j} and α′j := {v ∈ S′j : dS′(v, σ′) = rj} for j = 1, 2.

In the latter case, define r1 := inf{dS′(f(u), σ′)/ u ∈ Cσ}, r2 := sup{dS′(f(u), σ′)/ u ∈ Cσ}, and α′j :=
{v ∈ S′i : dS′(v, σ′) = rj} for j = 1, 2 where i so that S′i ∩ f(Cσ) 6= ∅.
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Let C0
σ′ the domain in S′ bounded by α′1 and α′2. For any p ∈ C0

σ′ , define Wα′j
(p) := dS′(p, α′j), j = 1, 2.

By Lemma 4.10, for any u, v ∈ Cσ,

(5.19) |Wα′j
(f(v))−Wα′j

(f(u))| ≤ dS′(f(v), f(u)) ≤ |Wα′j
(f(v))−Wα′j

(f(u))|+ eH0r′0 coth r′0,

By virtue of (5.18) and (5.19), for any u, v ∈ Cσ,

(5.20)

|Wα′j
(f(v))−Wα′j

(f(u))| ≤ dS′(f(v), f(u)) ≤ adS(v, u) + b ≤ a(|Wαj (v)−Wαj (u)|+ k3) + b

= a|Wαj (v)−Wαj (u)|+ ak3 + b,

|Wα′j
(f(v))−Wα′j

(f(u))| ≥ dS′(f(v), f(u))− eH0r′0 coth r′0 ≥
1
a
dS(v, u)− b− eH0r′0 coth r′0

≥ 1
a
|Wαj (v)−Wαj (u)| − eH0r′0 coth r′0 − b,

If u, v ∈ γ, where γ is a geodesic orthogonal to σ, and setting k4 := eH0r′0 coth r′0, 5.20 shows that there are
two (a, ak3+b+k4)-quasi-isometric embeddings defined from [0, 2w] to R that relate Wαj (u) with Wα′j

(f(u)),
for every u ∈ γ and j = 1, 2.

Let z ∈ γ and let zj the point zj := γ ∩ αj for j = 1, 2. By Lemma 4.9,

Wαj (z)−Wαj (zj) = Wαj (z) ≥ dS(z, ∂Cσ) ≥ log
1

sinh ι(z)
> log

1
sinh ε

≥ (a+ 1)(ak3 + b+ k4),

if ε is taken to be ε ≤ arcsinh e−(a+1)(ak3+b+k4).
Without loss of generality, label α′1 and α′2 so that (f(zi)) is closest to α′i for i = 1, 2.
Therefore, by Lemma 4.11 together with 5.20,

Wα′j
(f(z)) ≥

∣∣Wα′j
(f(z))−Wα′j

f((zj))
∣∣ ≥ 1

a

∣∣Wαj (z)−Wαj (zj)
∣∣− k4 − b =

1
a
Wαj (z)− k4 − b.

By Lemma 4.9

dS(z, ∂Cσ) ≥ log
1

sinh ι(z)
> log

1
sinh ε

If ε is taken to be so that

log
1

sinh ε
≥ a

(
1 + b+ k4 + log

2 sinh r′0
sinh ε′

)
Lemma 4.9 gives, together with the quasi-isometric embedding,

Wα′j
(f(z)) ≥ 1

a
Wαj (z)− k4 − b ≥

1
a
dS(z, ∂Cσ)− k4 > log

2 sinh r′0
sinh ε′

.

Set d2 := 1 + log 2 sinh r′0
sinh ε′ and d1 := dS′(f(z1), f(z2)). In order to apply Remark 4.7, d1 should satisfy,

d1 > max{2r′0, 2d2 + log 20}, since ι(f(zj)) ≤ r′0. Using f is an (a, b)−quasi-isometry,

d1 ≥
1
a
dS(z1, z2)− b =

2w
a
− b

by the Collar Lemma together with ι(z) < ε, the width w satisfies coshw > coth ε. Therefore, it is enough
to choose ε to be so that coth ε ≤ cosh

(
a
2 (b+ max{2r′0, 2d2 + log 20})

)
.

Hence, by Lemma 4.6, sinh ι(f(z)) < 2 e−d2 sinh r′0 < sinh ε′ if ι(z) < ε where ε must satisfy all the above
restrictions, namely:

0 < ε ≤ min
{
k2/2, arcsinh e−(a+1)(ak3+b+k4), arcsinh e−k

∗
1 , arccoth cosh

(
a(b+ max{2r′0, 2d2 + log 20})/2

)}
.

�

Note that the constant ε in Theorem 5.1 does not depend on z, f, S, S′.

Theorem 5.2. Let S and S′ be non-exceptional genus zero Riemann surfaces and f : S −→ S′ an (a, b)-
quasi-isometry c-full. For each ε > 0 there exists ε′ > 0 which just depends on ε, a, b, c, such that if ι(z) ≥ ε
then ι(f(z)) ≥ ε′.



14 ALICIA CANTON(1), ANA GRANADOS(1), ANA PORTILLA(1)(2), JOSE M. RODRIGUEZ (1)(3)

Proof. For each fixed z ∈ S let us define a function Fz : S′ −→ S as follows: Fz(f(z)) := z; for each
y ∈ f(S) \ {f(z)} fix any x ∈ f−1(y) and define Fz(y) := x; finally, for each y ∈ S′ \ f(S) choose any x ∈ S
with dS′(f(x), y) ≤ c and define Fz(y) := x. It is easy to check that Fz is an ab-full (a, a(b + 2c))-quasi-
isometry.

Consequently, by Theorem 5.1, for each ε > 0 there exists ε′ > 0, which just depends on ε, a, b, c, such
that if ι(p) < ε′ then ι(Fz(p)) < ε. In particular, if ι(f(z)) < ε′ then ι(z) = ι(Fz(f(z))) < ε. Since ε′ does
not depend on z, f or Fz, then ι(z) < ε for every z ∈ S with ι(f(z)) < ε′. �

6. Proof of theorem 1.1

This section is devoted to the proof of Theorem 1.1, which follows Kanai’s approach. In Kanai’s results
it is essential that both ι(S) and ι(S′) are positive; these conditions will be avoided due to Theorems 5.1
and 5.2 and the thick-thin decomposition of Riemann surfaces given by Margulis Lemma (see, e.g., [2,
p.107]). Concretely, for any ε < arcsinh 1 any Riemann surface, S, can be partitioned into a thick part,
Sε := {z ∈ S : ι(z) > ε}, and a thin part, S \ Sε, whose components are either collars of cusps or collars of
closed geodesics of length less than or equal to 2ε.

In order to prove Theorem 1.1, it will be shown that it suffices to consider the thick parts of S and S′

for some particular choices of ε and ε′, so that Kanais’ insight can be brought to Sε and S′ε′ if we avoid the
(possible) contribution to the LII given by ∂Sε and ∂S′ε′ . Concretely, for a choice of ε < arcsinh 1 Theorem
5.2 gives ε′ > 0 which without loss of generality can be taken to be smaller than arcsinh 1. From now on Sε
and S′ε′ will refer to this particular choice of ε and ε′.

Lemma 6.1. Let S and S′ be non-exceptional genus zero Riemann surfaces, and f : S −→ S′ be a c-full
(a, b)-quasi-isometry. Then, given 0 < ε, ε1 < arcsinh 1, there exist 0 < ε′, ε̃ < ε1, which just depend on
ε, ε1, a, b, c, so that

f(Sε) ⊂ S′ε′ ⊂ Vc(f(Sε̃)).

Proof. Theorem 5.2 asserts that given ε there exists ε′ so that the first inclusion holds. For the second one,
given ε′ there exists ε̃′ such that S′ \ S′ε′ ⊃ Vc(S′ \ S′ε̃′) by Lemma 3.2. Let z′ ∈ S′ε′ ; then Vc(z′) ⊂ S′ε̃′ and
since f is c-full, there exists x′ ∈ Vc(z′) so that x′ = f(x) for some x ∈ Sε̃ where ε̃ is given by ε̃′ in Theorem
5.1. Therefore z′ ∈ Vc(f(Sε̃)). Since St becomes larger as t > 0 decreases, one can obtain 0 < ε′, ε̃ < ε1. �

As a first goal it is going to be proved the LII intrinsic to a bordered surface, Sε contained in S; note
that Sε is not necessarily connected. To this end, define the “thick” boundary of a subset of S as its intrinsic
boundary in Sε, and the “intrinsic” LII that will refered to as LIIε.

Definition 6.2. Given a non-exceptional Riemann surface S, ε > 0 and a domain Ω in Sε, define

∂εΩ := ∂Ω ∩ Sε = ∂Ω \ ∂Sε.

Remark 6.3. If γ is a non-trivial simple closed curve, γ ⊂ ∂εΩ, then LS(γ) > 2ε.

Definition 6.4. Sε is said to satisfy the ε-linear isoperimetric inequality, LIIε, if there exists a positive
constant c1(Sε), such that if Ω is a relatively compact domain in Sε with smooth boundary, then

(6.21) AS(Ω) ≤ c1(Sε)LS(∂εΩ).

A reduction is that it suffices to prove LIIε for intrinsic geodesic domains in Sε. A domain Ω ⊂ S is said
to be a geodesic domain if ∂Ω is a finite number of simple closed geodesics, and AS(Ω) is finite. Note that
Ω does not need to be relatively compact for it could contain a finite number of cusps. From this point of
view, the boundary of a cusp will be considered as an improper geodesic of zero length. An intrinsic geodesic
domain is a geodesic domain intrinsic to Sε, i.e., the intersection of a geodesic domain in S with Sε.

Let us denote by c1(Sε) the sharp linear isoperimetric constant of Sε and by c1,g(Sε) the sharp linear
isoperimetric constant of Sε for intrinsic geodesic domains.
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Lemma 6.5. Let S be a non-exceptional Riemann surface and ε ≥ 0 so that ε < arcsinh 1. Then,

Sε has LIIε ⇐⇒ Sε has LIIε for intrinsic geodesic domains in Sε.

In fact, c1,g(Sε) ≤ c1(Sε) ≤ c1,g(Sε) + 2.

Note that this lemma also holds for S, corresponding to the case ε = 0.

Proof. The first inequality is direct. For the second one, the Collar Lemma and Ber’s Theorem (see [4])
give LIIε with constant 2 for simply connected and doubly connected domains. It is well known that these
domains satisfy LII with constant 1. For other domains, Ω ⊂ Sε, write ∂Ω = ∪nj=1gj , where each gj can be
assumed to be a non-trivial simple closed curve and n ≥ 3. Consider Ω̃, the intrinsic geodesic domain in Sε
bounded by ∪nj=1βj where βj is the intrinsic geodesic in Sε∪∂Sε homotopic to gj . Then LS(∂εΩ̃) ≤ LS(∂εΩ)
and AS(Ω) ≤ AS(Ω̃)+AS(Ω\Ω̃) where Ω\Ω̃ is a disjoint union of doubly connected domains, each component
bounded by a pair βj and gj , or simply connected domains bounded by subsets of βj and gj with the same
endpoints. Since LS(βj) ≤ LS(gj), applying the LII for simply and doubly connected domains to each
component of Ω \ Ω̃ one gets AS(Ω \ Ω̃) ≤ 2LS(∂εΩ) and thus

AS(Ω) ≤ AS(Ω̃) + 2LS(∂εΩ) ≤ c1,g(Sε)LS(∂εΩ) + 2LS(∂εΩ),

and then c1(Sε) ≤ c1,g(Sε) + 2. This inequality and the first one prove the lemma. �

Finally the LII in S can be deduced from the LIIε in Sε,

Proposition 6.6. Let S be a non-exceptional Riemann surface. Then there exists a universal positive
constant ε0 ≤ arcsinh 1 verifying the following properties:

(1) If Sε has LIIε for some 0 < ε < ε0, then S has LII. Moreover, c1(S) ≤ 2c1,g(Sε) + 2.
(2) If S has LII, then Sε has LIIε for every 0 < ε < min

{
ε0, (12c1,g(S))−1

}
. Moreover, c1(Sε) ≤

2πc1,g(S)
2π − 1

+ 2.

Proof. By the Collar Lemma, there exists a positive constant ε0 ≤ arcsinh 1 so that if 0 < ε < ε0, then
AS(C \ Sε) ≤ AS(C ∩ Sε) for all C collars in S, and LS(η) ≤ 3ε for every closed curve η ⊆ ∂Sε.

In order to prove the first item, consider any fixed geodesic domain Ω ⊂ S. Then

Ω ∩ Sε = Ω1 ∪ · · · ∪ Ωm

with {Ωk} disjoint intrinsic geodesic domains in Sε. Since 0 < ε < ε0,

AS(Ω) = AS(Ω ∩ Sε) +AS(Ω \ Sε) ≤ 2AS(Ω ∩ Sε)

= 2
∑
k AS(Ωk) ≤ 2c1,g(Sε)

∑
k LS(∂εΩk) = 2c1,g(Sε)LS(∂Ω).

Then c1,g(S) ≤ 2c1,g(Sε) and Lemma 6.5 gives the first item.
By Lemma 6.5, the proof of the second item will follow if it is shown that when S satisfies the LII then

Sε satisfies the LIIε for intrinsic geodesic domains. It will first be shown that, as a consequence of the LII
in S, for any geodesic domain Ω̃ in S, the length of the short curves of its boundary is controlled by the
length of the long curves; concretely, LS(∂εΩ̃) ≥ (2π − 1)LS(∂Ω̃ \ ∂εΩ̃).

To this end, consider Ω̃ a geodesic domain in S with ∂Ω̃ = ∪nj=1βj (each βj is either a simple closed
geodesic or a cusp and n ≥ 3) and define J :=

{
j : LS(βj) < (2c1,g(S))−1

}
where c1,g(S) is the LII constant

in S for geodesic domains. Then, if g denotes the genus of Ω̃, by Gauss-Bonnet Theorem, the LLI can be
written as

c1,g(S)

∑
j∈J

LS(βj) +
∑
j /∈J

LS(βj)

 ≥ 2π(n− 2 + 2g),
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and using that (c1,g(S))−1 ≥ 2(]J)−1
∑
j∈J LS(βj) one gets∑

j /∈J

LS(βj) ≥
(

4π(n− 2 + 2g)
]J

− 1
)∑
j∈J

LS(βj) ≥ (2π − 1)
∑
j∈J

LS(βj).

If ε > 0 is chosen so that ε < ε0 and 3ε < (4c1,g(S))−1, then for any j /∈ J , βj is in ∂εΩ̃, and the above
inequality implies LS(∂εΩ̃) ≥ (2π − 1)LS(∂Ω̃ \ ∂εΩ̃) for any geodesic domain in S.

Let us show now that Sε (with ε < min
{
ε0, (12c1,g(S))−1

}
chosen as above) satisfies the LIIε for intrinsic

geodesic domains. If Ω is an intrinsic geodesic domain in Sε then it can be written as Ω = Ω̃ ∩ Sε, where Ω̃
is a geodesic domain in S such that ∂εΩ = ∂εΩ̃ and since Ω̃ satisfies the LII in S,

AS(Ω) ≤ AS(Ω̃) ≤ c1,g(S)
(
LS(∂εΩ̃) + LS(∂Ω̃ \ ∂εΩ̃)

)
≤ 2πc1,g(S)

2π − 1
LS(∂εΩ).

Then Lemma 6.5 gives the second item. �

Following Kanai’s procedure, the LII will be transfered from bordered surfaces to nets and viceversa. To
this end, a subset G of S is said to be δ-separated for δ > 0, if dS(p, q) > δ whenever p and q are distinct
points of G. It is called maximal if it is maximal with respect to the order relation of inclusion.

Consider the distance dG in G induced by the distance dS of S. Concretely, given p1, p2 ∈ G, dG(p1, p2) =
M if and only if M ≥ 0 is the only natural number such that

(6.22) δM ≤ dS(p1, p2) < δ(M + 1).

The set of neighbors of G is defined as N(p) = {q ∈ G : dG(p, q) = 1} and gives a net structure to the set G.
Such net will be referred to as δ-net.

The linear isoperimetric inequality on nets is therefore defined as follows.

Definition 6.7. Let G be a net. For a subset T of G, define its boundary as ∂T := {q ∈ G\T : dG(q, T ) = 1}.
It is said that G satisfies the LII if there exists a finite constant c1(G) > 0 so that for any non-empty finite
subset T of G,

#T ≤ c1(G)#∂T.

Let S be a Riemann surface and 0 < ε < arcsinh 1. Note that Lemma 3.2 gives that ι (Vε(Sε)) ≥ c(ε),
where c(ε) := arcsinh

(
e−ε sinh ε

)
. The pair (G, δ) will denote a δ-net associated to the pair (S, ε) as follows:

Set δ ≤ 1
2 ι(Vε(Sε)), and choose a maximal δ-net G on Sε so that

(6.23) AS(Sε ∩BS(p, δ)) >
1
2
AS(BS(p, δ)),

for all p ∈ G; such choice of G is possible due to the Collar Lemma. Note also that G does not need to be
connected.

Notice that since (G, δ) is maximal, there are no neighborhoods of points of Sε that are not covered by
balls BS(p, δ) with p ∈ G. If this were the case one could add such point p to the net G contradicting
maximality. If nevertheless there was a point q on the boundary of some balls BS(p, δ) not covered, these
balls could be slightly moved so that a neighborhood of q would not be covered and, as before, add q to the
net. So, without loss of generality, Sε ⊂ ∪p∈GBS(p, δ).

The strategy of the proof of Theorem 1.1 is as follows: Consider S and S′ Riemann surfaces and f : S −→
S′ a quasi-isometry, (G, δ) and (G′, δ′) nets in (S, ε) and (S′, ε′). It will be assumed that S′ satisfies the LII
that will be transfered to the net (G′, δ′). Then it will be shown that (G, δ) and (G′, δ′) are quasi-isometric
and so (G, δ) also satisfies the LII. Finally, this LII will be transfered to S. The next two results deal
with transfering the LII between surfaces and nets: A direct application of [18, Lemma 4.5] is the following
result:
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Lemma 6.8. Let S′ be a Riemann surface satisfying the LII and 0 < ε′ < min
{
ε0, (12c1(S′))−1

}
, where ε0

is the constant in Proposition 6.6. Let (G′, δ′) be a δ′-net associated to (S′, ε′). Then,

(G′, δ′) also satisfies the LII and c1(G′) ≤ 12 sinh δ′

cosh(δ′/2)− 1
c1(S′).

Proof. Proposition 6.6 implies that S′ε′ satisfies the LIIε′ and applying Kanai’s arguments in [18, Lemma
4.5] to S′ε′ and G′ the proof follows. �

The following lemma gives the other direction. To this end, recall Buser’s local lineal isoperimetric
inequality ([6, p.215],[18, p.411]).

Lemma 6.9. Let (G, δ) be a δ-net associated to (S, ε). Then

(6.24) (G, δ) has LII =⇒ Sε has LIIε.

Moreover, c1(Sε) ≤ 2mc1,l(Sε) max

{
1, 2 c1(G)

(
sinh(9δ/4)
sinh(δ/4)

)2
}

+ 2, where c1,l(Sε) is the constant in the

local LII and m =: supz∈S #{p ∈ G : z ∈ BS(p, δ)} <∞.

Proof. As in the previous lemma, it is possible to reproduce Kanai’s proof in [18, Lemma 4.5] to get the
result, mainly because it deals with a subset of S with positive injectivity radius, Sε.

By Lemma 6.5, it suffices to consider Ω an intrinsic geodesic domain of Sε, for which it is possible to
separate ∂Sε from ∂εΩ (by the Collar Lemma). That is, if p ∈ ∂εΩ, there exists a ball BS(p, 3ε) so that
∂Sε ∩BS(p, 3ε) = ∅. Following Kanai’s proof, define sets O,P0 ⊂ G

O :=
{
p ∈ G : AS(BS(p, δ) ∩ Ω) >

1
2
AS(BS(p, δ))

}
and P0 := {p ∈ G \O : BS(p, δ) ∩ Ω 6= ∅} ,

so that Ω ⊂
⋃
p∈O∪P0

BS(p, δ).
Since Ω is an intrinsic geodesic domain its boundary is a union of simple closed curves, some of them

curves of ∂Sε and the rest geodesics on S (the latter conform ∂εΩ). Since (G, δ) is a δ-net associated to
(S, ε), the Collar Lemma implies that if BS(p, δ) (for p ∈ G) intersects one curve of ∂Ω \ ∂εΩ ⊂ ∂Sε then
it does not intersect any other curve of ∂Ω. If this is the case, the fact that G ⊂ Sε and condition (6.23)
imply that p ∈ O. Therefore, BS(p, δ)∩ (∂Ω \ ∂εΩ) = ∅ for all p ∈ P0. Since ι(Sε) > δ the local LII can be
applied∑
p∈P0

AS(BS(p, δ)∩Ω) ≤ c1,l(Sε)
∑
p∈P0

LS(BS(p, δ)∩∂Ω) = c1,l(Sε)
∑
p∈P0

LS(BS(p, δ)∩∂εΩ) ≤ c1,l(Sε)mLS(∂εΩ).

Now, following Kanai’s estimates:

AS(Ω) ≤
∑
p∈O

AS(BS(p, δ) ∩ Ω) +
∑
p∈P0

AS(BS(p, δ) ∩ Ω) ≤ A(δ)]O + c1,l(Sε)mLS(∂εΩ),

where A(r) = 4π sinh2 r is the area of balls with radius r in D (the universal covering space of S). Writing

ν :=
LS(∂εΩ)
AS(Ω)

, then AS(Ω) ≤ A(δ)
1− c1,l(Sε)mν

]O. If ν ≥ (2mc1,l(Sε))−1 then the LIIε holds for Ω with

constant 2mc1,l(Sε); otherwise, ν ≤ (2mc1,l(Sε))−1 and thus

AS(Ω) ≤ 2A(δ)]O.

On the other hand, points in ∂εΩ will be near of points in ∂O (since ∂O ⊂ Sε). More precisely, if p ∈ ∂O
then there exists p′ ∈ N(p)∩O, and BS(p, δ)∩σ 6= ∅ for some simple closed geodesic σ ⊂ ∂εΩ. Note that σ
separates p from p′ in BS(p′, 2δ) since it is a geodesic and so AS(BS(z, δ))∩Ω) = AS(BS(z, δ))/2 for z ∈ σ.
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Thus dS(p′, σ) < 2δ and therefore ∂O ⊂ V2δ(∂εΩ). Let Q be a maximal δ-separated subset of ∂εΩ; then
∪p∈∂OBS(p, δ/2) ⊂ V5δ/2(∂εΩ) ⊂ ∪q∈QBS(q, 9δ/2), which implies

A(δ/2)]∂O ≤
∑
q∈Q

AS (BS(q, 9δ/2)) ≤ A(9δ/2)
A(δ)

∑
q∈Q

AS (BS(q, δ)) =
2A(9δ/2)
A(δ)

∑
q∈Q

AS (BS(q, δ) ∩ Ω)

≤ 2c1,l(Sε)A(9δ/2)
A(δ)

∑
q∈Q

LS (BS(q, δ) ∩ ∂εΩ) ≤ 2mc1,l(Sε)A(9δ/2)
A(δ)

LS (∂εΩ) ,

where the local isoperimetric inequality was once again used. Combining this estimate with the previous
one, and using the LII for G the desired result is obtained also in the case ν ≤ (2mc1,l(Sε))−1. �

As a last step, it will be constructed a quasi-isometry between the two nets (G, δ) and (G′, δ′) associated
to (S, ε) and (S, ε′) respectively with 0 < ε < arcsinh 1 and 0 < ε′, ε̃ < ε given by Lemma 6.1.

Proposition 6.10. The nets (G, δ) and (G′, δ′) are quasi-isometric. More precisely, there is a C ′-full (A,B)-

quasi-isometry g : G −→ G′, with A = amax
{
δ′

δ
,
δ

δ′

}
, B = 5+

aδ

δ′
+
b

δ′
and C ′ = 2+

a(2δ + C(ε, ε̃)) + 2b+ c

δ′

where C(ε, ε̃) is the maximum diameter of the connected components of Sε̃ \ Sε where ε̃ is given by Lemma
6.1.

Moreover, for any X ⊂ G, #X ≤ µ#g(X) where µ ≤ 13
a(2δ′+b)

δ .

Remark 6.11. No connectivity is assumed for either G or G′. Note that the constant C(ε, ε̃) does not
depend on S due to Margulis Lemma.

In [18, Lemma 4.2] Kanai proves that the LII on graphs is preserved by quasi-isometries; thus an inmediate
consequence is:

Corollary 6.12. For (G, δ) and (G′, δ′) as above,

(G, δ) satisfies the LII ⇐⇒ (G′, δ′) satisfies the LII.

Moreover, c1(G) ≤ µ12A(B+2C−1)+C−2c1(G′), with µ as in Proposition 6.10.

Proof. The function g will be defined as follows:
Given p1 ∈ G, there exists at least one point p′1 ∈ G′ so that p′1 ∈ BS′(f(p1), 2δ′), since f(Sε) ⊂ S′ε′ by

Lemma 6.1. Define g(p1) := p′1.

Consider two points p1, p2 ∈ G and suppose dG′(g(p1), g(p2)) = M for some M ≥ 0; that is,

Mδ′ ≤ dS′(g(p1), g(p2)) < (M + 1)δ′.

Transfering this property to f :

dS′(f(p1), f(p2)) ≤ dS′(f(p1), g(p1)) + dS′(f(p2), g(p2)) + dS′(g(p1), g(p2))
≤ 4δ′ + (M + 1)δ′ = (5 +M)δ′.

This estimate together with f being an (a, b)-quasi-isometry give:
1
a
dS(p1, p2)− b ≤ dS′(f(p1), f(p2)) ≤ (5 +M)δ′ ≤ δ′ (5 + dG′(g(p1), g(p2))) ,

that is,
1
aδ′

dS(p1, p2)−
(
b

δ′
+ 5
)
≤ dG′(g(p1), g(p2)).

Use the fact that δdG(p1, p2) ≤ dS(p1, p2) to finally conclude

δ

aδ′
dG(p1, p2)−

(
5 +

b

δ′

)
≤ dG′(g(p1), g(p2)).
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The other direction follows from an analogous argument, obtaining in this case:

dG′(g(p1), g(p2)) ≤ aδ

δ′
dG(p1, p2) +

(
4 +

b+ aδ

δ′

)
.

Finally it will be shown that
G′ ⊂

⋃
p∈G

B′G(g(p), C ′).

Take q ∈ G′ ⊂ S′ε′ and 0 < ε̃ < ε given by Lemma 6.1 such that S′ε′ ⊂ Vc(f(Sε̃)); then q ∈ Vc(f(Sε̃)).
Therefore, there exist x̃ ∈ Sε̃ and x ∈ Sε so that dS(x, x̃) < C(ε, ε̃) and dS′(f(x̃), q) ≤ c (f is c-full). Since
G is a maximal δ-net in Sε there exists p ∈ G such that dS(p, x) < 2δ. Let r ∈ G′ be given by r := g(p);
then dS′(r, f(p)) < 2δ′.

These facts together with f being an (a, b)-quasi-isometry, give:

dS′(q, g(p)) ≤ a(2δ + C(ε, ε̃)) + 2b+ c+ 2δ′.

Since dG′(q, g(p)) ≤ dS′(q, g(p))
δ′

, then dG′(q, g(p)) ≤ 2 +
a(2δ + C(ε, ε̃)) + 2b+ c

δ′
.

Finally, #X ≤ µ#g(X) where µ ≤ 13
a(2δ′+b)

δ will be shown. It is easy to check that for Riemann surfaces,
the number of points p ∈ G contained in a ball of radius δ is at most 13 since they are δ-separated. By
the way g was defined, if p, q ∈ G, with g(p) = g(q), then dS(p, q) ≤ a(2δ′ + b). And thus the corollary
follows. �

Finally, the combination of all previous results will give the proof of Theorem 1.1.

Proof of Theorem 1.1 Assume that S′ has LII. If ε0 is the constant in Proposition 6.6, let us fix
0 < ε < ε0 and let 0 < ε′, ε̃ < min

{
ε0, (12c1(S′))−1

}
given by Lemma 6.1. Let (G′, δ′) be a net associated

to (S′, ε′). Since S′ has LII, by Lemma 6.8, G′ has LII. If (G, δ) is a net associated to (S, ε), then
Proposition 6.10 gives that (G, δ) and (G′, δ′) are quasi-isometric, and Corollary 6.12 concludes that (G, δ)
has LII. Lemma 6.9 states that Sε has LIIε and, since 0 < ε < ε0, Lemma 6.6 gives that S has LII.

Moreover, the isoperimetric constant obtained c1(S) < ∞ depends just on ε, a, b, c, c1(S′). In order to
avoid the dependence on ε, it suffices to take ε = ε0/2, since ε0 is a universal constant. �

7. Surfaces with finite genus

In order to obtain a similar result to Theorem 1.1 for surfaces with finite genus, the following lemma is
needed.

Lemma 7.1. Let S be a non-exceptional Riemann surface with finite genus and infinite area. Let σ1, . . . , σk
be a set of pairwise disjoint simple closed geodesics in S such that S \ {σ1 ∪ · · · ∪ σk} is connected and has
not genus; denote by S0 the bordered surface obtained as the completion of S \ {σ1 ∪ · · · ∪ σk}. Then the
following facts hold:

• S and S0 are quasi-isometric.
• S satisfies the LII if and only if S0 satisfies the LII.

Proof. Theorem 2.2 in [28] gives the first statement.
In order to prove the second one, assume that S0 satisfies the LII (the other implication is direct).

Seeking for a contradiction let us suppose that S does not satisfy the LII. Hence, by Lemma 6.5 there exists
a sequence of geodesic domains Ωn in S with AS(Ωn)/LS(∂Ωn) → ∞. Since S0 satisfies the LII, without
loss of generality, assume that there exists 1 ≤ jn ≤ k with σjn ⊂ ∂Ωn for each n; furthermore, since
LS(σ1 ∪ · · · ∪ σk) is a fixed number (and then bounded), one can also assume AS(Ωn) ≤ c for some constant
c and every n, and LS(∂Ωn)→ 0 (note that LS(∂Ωn) > 0 since S has infinite area).

Let us consider a ball BS(z, r) in S with σ1 ∪ · · · ∪ σk ⊂ BS(z, r); let us choose now R > r with
AS(BS(z,R) \ BS(z, r)) > c (this is possible since S has infinite area). Let us define u := min{LS(σ) :
σ is a simple closed geodesic with σ ∩ BS(z,R) 6= ∅}. Since AS(BS(z,R) \ BS(z, r)) > AS(Ωn) and
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σ1∪· · ·∪σk ⊂ BS(z, r), there exists a simple closed geodesic σn ⊆ ∂Ωn with σn∩BS(z,R) 6= ∅ and σn 6= σj
for j = 1, . . . , k (since S \ {σ1 ∪ · · · ∪ σk} is connected and S has infinite area, there is no geodesic domain
Ω in S with ∂Ω ⊆ σ1 ∪ · · · ∪ σk). Hence,

AS(Ωn) ≤ c LS(σn)
u

≤ c

u
LS(∂Ωn),

which contradicts AS(Ωn)/LS(∂Ωn)→∞. �

Theorem 7.2. Let S and S′ be non-exceptional Riemann surfaces with finite genus and f : S −→ S′ a
quasi-isometry. Then S′ satisfies the LII if and only S satisfies the LII.

Proof. It is not difficult to check that S has finite area if and only if S′ has finite area; in this case, S and
S′ do not satisfy the LII. Otherwise, the theorem is a consequence of Theorem 1.1 (which also holds for
bordered surfaces whose border is a finite union of simple closed geodesics) and Lemma 7.1. �

It is not possible to obtain a quantitative version of Theorem 7.2, as shows the following example.

Example 7.3. There exist constants a, b, c, with the following property: for each n there exist non-exceptional
Riemann surfaces with finite genus Sn satisfying the LII and an (a, b)-quasi-isometry c-full fn : Sn → S1,
such that the isoperimetric constant of Sn grows to infinity as n→∞.

Let us consider two isometric Y -pieces Y1, Y2 such that ∂Yj is the union of three simple closed geodesics
with length 1 for j = 1, 2. Denote by X the bordered surface obtained by pasting two boundary curves of
Y1 with two boundary curves of Y2 (X is a torus with two holes). Let us consider a sequence {Xm}m≥1 of
bordered surfaces isometric to X; denote by Rn the bordered surface obtained from X1, . . . , Xn by pasting a
boundary curve of Xm with a boundary curve of Xm+1 for every 1 ≤ m ≤ n− 1 (Rn is a surface with genus
n and two boundary curves). Consider now a generalized Y -piece Y0 with a cusp and such that ∂Y0 is the
union of two simple closed geodesics with length 1. Denote by R0 the bordered surface obtained by pasting
two boundary curves of Y1 with two boundary curves of Y0 (R0 is a torus with a cusp and a hole). Sn is the
(non bordered) surface obtained by pasting a funnel (with boundary of length 1) to one boundary curve of Rn
and R0 to the other boundary curve of Rn.
Sn satisfies the LII since a surface of finite type satisfies the LII if and only if it has at least a funnel.
The domain ∪nm=1Xm in Sn has area 4πn and its boundary has length 2 for every n ≥ 1. This implies

that the isoperimetric constant of Sn grows to infinity as n→∞.

8. Non-linear isoperimetric inequalities

This section deals with α-isoperimetric inequalities with 1/2 ≤ α < 1, which have a very different behavior
from LII.

Proposition 8.1. If a Riemann surface S satisfies ι(S) = 0, then S does not satisfy the α-isoperimetric
inequality for each 1/2 ≤ α < 1.

Proof. Seeking for a contradiction, let us assume that S satisfies the α-isoperimetric inequality for some
1/2 ≤ α < 1.

If S has a cusp, let us consider the a-collars C(a) of the cusp, with 0 < a ≤ 2. It is well known that
AS(C(a)) = LS(∂C(a)) = a; hence, aα ≤ cαa, which gives a contradiction if a→ 0+.

If S has no cusp, then there exists a sequence of simple closed geodesics {σn} with limn→∞ LS(σn) = 0.
Denote by Cn the collar of σn of width 1. It is well known that AS(Cn) = 2LS(σn) sinh 1 and LS(∂Cn) =
2LS(σn) cosh 1; hence, (2LS(σn) sinh 1)α ≤ cα2LS(σn) cosh 1, which gives a contradiction if n→∞. �

From Proposition 8.1 and [18, Theorem 4.1] the following result is deduced.

Theorem 8.2. Let S and S′ be non-exceptional Riemann surfaces with ι(S) > 0, f : S −→ S′ an (a, b)-
quasi-isometry c-full, and 1/2 ≤ α < 1. Then S′ satisfies the α-isoperimetric inequality if and only S satisfies
the α-isoperimetric inequality and ι(S′) > 0.
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